
Data Structures
and
Program Design
in C++

NAVIGATING THE DISK

For information on using the Acrobat toolbar and other Acrobat commands, consult
the Help document within Acrobat. See especially the section “Navigating Pages.”

Material displayed in green enables jumps to other locations in the book, to
transparency masters, and to run sample demonstration programs. These come in
three varieties:

➥ The green menu boxes in the left margin of each page perform jumps to fre-
quently used parts of the book:

➥ Green material in the text itself will jump to the place indicated. After taking
such a jump, you may return by selecting the // icon (go back) in the Acrobat
toolbar.

➥ The transparency-projector icon () brings up a transparency master on the
current topic. Return by selecting the // icon (go back) in the Acrobat toolbar.

➥ The Windows () icon in the left margin select and run a demonstration pro-
gram, which will operate only on the Windows platform.

This CD contains a folder textprog that contains the source code for all programs
and program segments appearing in the book. These files cannot be compiled
directly, but they can be copied and used for writing other programs.

HINTS FOR PAGE NAVIGATION

➥ Each chapter (or other major section) of the book is in a separate pdf file, so
you may start Acrobat directly on a desired chapter.

➥ To find a particular section in the current chapter, hit the Home key, or select
|/ in the Acrobat toolbar or in the green menu bar, which will jump to the
first page of the chapter where there is a table of contents for the chapter.

➥ After jumping to a new location in the book, you can easily return to your
previous location by selecting // (go back) in the Acrobat toolbar.

➥ To find a particular topic, select the index icon () in the left margin.

➥ To find a particular word in the current chapter, use the binoculars icon in the
Acrobat toolbar.

➥ The PgDown and Enter (or Return) keys advance one screenful, whereas ., ↓,
→, and advance one page. Of these, only will move from the last page of
one chapter to the first page of the next chapter.

➥ To move backwards, PgUp and Shift+Enter move up one screenful, whereas
/, ↑, ←, and move back one page. Of these, only will move from the first
page of one chapter to the last page of the previous chapter.

Data Structures
and
Program Design
in C++

Robert L. Kruse

Alexander J. Ryba

CD-ROM prepared by

Paul A. Mailhot

Prentice Hall
Upper Saddle River, New Jersey 07458

Library of Congress Cataloging–in–Publication Data

KRUSE, ROBERT L.
Data structures and program design in C++ / Robert L. Kruse,
Alexander J. Ryba.

p. cm.
Includes bibliographical references and index.
ISBN 0–13–087697–6
1. C++ (Computer program language) 2. Data Structures
(Computer Science) I. Ryba, Alexander J. II. Title.

QA76.73.C153K79 1998 98–35979
005.13’3—dc21 CIP

Publisher: Alan Apt
Editor in Chief: Marcia Horton
Acquisitions Editor: Laura Steele
Production Editor: Rose Kernan
Managing Editor: Eileen Clark
Art Director: Heather Scott
Assistant to Art Director: John Christiana
Copy Editor: Patricia Daly

Cover Designer: Heather Scott
Manufacturing Buyer: Pat Brown
Assistant Vice President of Production and

Manufacturing: David W. Riccardi
Editorial Assistant: Kate Kaibni
Interior Design: Robert L. Kruse
Page Layout: Ginnie Masterson (PreTEX, Inc.)
Art Production: Blake MacLean (PreTEX, Inc.)

Cover art: Orange, 1923, by Wassily Kandinsky (1866-1944), Lithograph in Colors. Source: Christie’s Images

© 2000 by Prentice-Hall, Inc.
Simon & Schuster/A Viacom Company
Upper Saddle River, New Jersey 07458

The typesetting for this book was done with PreTEX, a preprocessor and macro package for the TEX typesetting system
and the POSTSCRIPT page-description language. PreTEX is a trademark of PreTEX, Inc.; TEX is a trademark of the American
Mathematical Society; POSTSCRIPT is a registered trademarks of Adobe Systems, Inc.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the re-
search, development, and testing of the theory and programs in the book to determine their effectiveness. The authors
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documenta-
tion contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writ-
ing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-087697-6

Prentice-Hall International (U.K.) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

Preface ix
Synopsis xii
Course Structure xiv
Supplementary Materials xv
Book Production xvi
Acknowledgments xvi

1 Programming
Principles 1

1.1 Introduction 2

1.2 The Game of Life 4
1.2.1 Rules for the Game of Life 4
1.2.2 Examples 5
1.2.3 The Solution: Classes, Objects,

and Methods 7
1.2.4 Life: The Main Program 8

1.3 Programming Style 10
1.3.1 Names 10
1.3.2 Documentation and Format 13
1.3.3 Refinement and Modularity 15

1.4 Coding, Testing,
and Further Refinement 20
1.4.1 Stubs 20
1.4.2 Definition of the Class Life 22
1.4.3 Counting Neighbors 23
1.4.4 Updating the Grid 24
1.4.5 Input and Output 25
1.4.6 Drivers 27

1.4.7 Program Tracing 28
1.4.8 Principles of Program Testing 29

1.5 Program Maintenance 34
1.5.1 Program Evaluation 34
1.5.2 Review of the Life Program 35
1.5.3 Program Revision

and Redevelopment 38

1.6 Conclusions and Preview 39
1.6.1 Software Engineering 39
1.6.2 Problem Analysis 40
1.6.3 Requirements Specification 41
1.6.4 Coding 41

Pointers and Pitfalls 45

Review Questions 46

References for Further Study 47
C++ 47
Programming Principles 47
The Game of Life 47
Software Engineering 48

2 Introduction
to Stacks 49

2.1 Stack Specifications 50
2.1.1 Lists and Arrays 50
2.1.2 Stacks 50
2.1.3 First Example: Reversing a List 51
2.1.4 Information Hiding 54
2.1.5 The Standard Template Library 55

v

vi Contents

2.2 Implementation of Stacks 57
2.2.1 Specification of Methods

for Stacks 57
2.2.2 The Class Specification 60
2.2.3 Pushing, Popping,

and Other Methods 61
2.2.4 Encapsulation 63

2.3 Application: A Desk Calculator 66

2.4 Application: Bracket Matching 69

2.5 Abstract Data Types
and Their Implementations 71
2.5.1 Introduction 71
2.5.2 General Definitions 73
2.5.3 Refinement of Data Specification 74

Pointers and Pitfalls 76

Review Questions 76

References for Further Study 77

3 Queues 78
3.1 Definitions 79

3.1.1 Queue Operations 79
3.1.2 Extended Queue Operations 81

3.2 Implementations of Queues 84

3.3 Circular Implementation
of Queues in C++ 89

3.4 Demonstration and Testing 93

3.5 Application of Queues: Simulation 96
3.5.1 Introduction 96
3.5.2 Simulation of an Airport 96
3.5.3 Random Numbers 99
3.5.4 The Runway Class Specification 99
3.5.5 The Plane Class Specification 100
3.5.6 Functions and Methods

of the Simulation 101
3.5.7 Sample Results 107

Pointers and Pitfalls 110

Review Questions 110

References for Further Study 111

4 Linked Stacks
and Queues 112

4.1 Pointers and Linked Structures 113
4.1.1 Introduction and Survey 113
4.1.2 Pointers and Dynamic Memory

in C++ 116
4.1.3 The Basics of Linked Structures 122

4.2 Linked Stacks 127

4.3 Linked Stacks with Safeguards 131
4.3.1 The Destructor 131
4.3.2 Overloading the

Assignment Operator 132
4.3.3 The Copy Constructor 135
4.3.4 The Modified

Linked-Stack Specification 136

4.4 Linked Queues 137
4.4.1 Basic Declarations 137
4.4.2 Extended Linked Queues 139

4.5 Application: Polynomial Arithmetic 141
4.5.1 Purpose of the Project 141
4.5.2 The Main Program 141
4.5.3 The Polynomial Data Structure 144
4.5.4 Reading and Writing

Polynomials 147
4.5.5 Addition of Polynomials 148
4.5.6 Completing the Project 150

4.6 Abstract Data Types
and Their Implementations 152

Pointers and Pitfalls 154

Review Questions 155

5 Recursion 157
5.1 Introduction to Recursion 158

5.1.1 Stack Frames for Subprograms 158
5.1.2 Tree of Subprogram Calls 159
5.1.3 Factorials:

A Recursive Definition 160
5.1.4 Divide and Conquer:

The Towers of Hanoi 163

5.2 Principles of Recursion 170
5.2.1 Designing Recursive Algorithms 170
5.2.2 How Recursion Works 171
5.2.3 Tail Recursion 174
5.2.4 When Not to Use Recursion 176
5.2.5 Guidelines and Conclusions 180

Contents vii

5.3 Backtracking: Postponing the Work 183
5.3.1 Solving the Eight-Queens Puzzle 183
5.3.2 Example: Four Queens 184
5.3.3 Backtracking 185
5.3.4 Overall Outline 186
5.3.5 Refinement: The First Data Structure

and Its Methods 188
5.3.6 Review and Refinement 191
5.3.7 Analysis of Backtracking 194

5.4 Tree-Structured Programs:
Look-Ahead in Games 198
5.4.1 Game Trees 198
5.4.2 The Minimax Method 199
5.4.3 Algorithm Development 201
5.4.4 Refinement 203
5.4.5 Tic-Tac-Toe 204

Pointers and Pitfalls 209

Review Questions 210

References for Further Study 211

6 Lists and
Strings 212

6.1 List Definition 213
6.1.1 Method Specifications 214

6.2 Implementation of Lists 217
6.2.1 Class Templates 218
6.2.2 Contiguous Implementation 219
6.2.3 Simply Linked Implementation 221
6.2.4 Variation: Keeping the Current

Position 225
6.2.5 Doubly Linked Lists 227
6.2.6 Comparison of Implementations 230

6.3 Strings 233
6.3.1 Strings in C++ 233
6.3.2 Implementation of Strings 234
6.3.3 Further String Operations 238

6.4 Application: A Text Editor 242
6.4.1 Specifications 242
6.4.2 Implementation 243

6.5 Linked Lists in Arrays 251

6.6 Application:
Generating Permutations 260

Pointers and Pitfalls 265

Review Questions 266

References for Further Study 267

7 Searching 268
7.1 Searching:

Introduction and Notation 269

7.2 Sequential Search 271

7.3 Binary Search 278
7.3.1 Ordered Lists 278
7.3.2 Algorithm Development 280
7.3.3 The Forgetful Version 281
7.3.4 Recognizing Equality 284

7.4 Comparison Trees 286
7.4.1 Analysis for n = 10 287
7.4.2 Generalization 290
7.4.3 Comparison of Methods 294
7.4.4 A General Relationship 296

7.5 Lower Bounds 297

7.6 Asymptotics 302
7.6.1 Introduction 302
7.6.2 Orders of Magnitude 304
7.6.3 The Big-O

and Related Notations 310
7.6.4 Keeping the Dominant Term 311

Pointers and Pitfalls 314

Review Questions 315

References for Further Study 316

8 Sorting 317
8.1 Introduction and Notation 318

8.1.1 Sortable Lists 319

8.2 Insertion Sort 320
8.2.1 Ordered Insertion 320
8.2.2 Sorting by Insertion 321
8.2.3 Linked Version 323
8.2.4 Analysis 325

8.3 Selection Sort 329
8.3.1 The Algorithm 329
8.3.2 Contiguous Implementation 330
8.3.3 Analysis 331
8.3.4 Comparisons 332

8.4 Shell Sort 333

8.5 Lower Bounds 336

viii Contents

8.6 Divide-and-Conquer Sorting 339
8.6.1 The Main Ideas 339
8.6.2 An Example 340

8.7 Mergesort for Linked Lists 344
8.7.1 The Functions 345
8.7.2 Analysis of Mergesort 348

8.8 Quicksort for Contiguous Lists 352
8.8.1 The Main Function 352
8.8.2 Partitioning the List 353
8.8.3 Analysis of Quicksort 356
8.8.4 Average-Case Analysis of

Quicksort 358
8.8.5 Comparison with Mergesort 360

8.9 Heaps and Heapsort 363
8.9.1 Two-Way Trees as Lists 363
8.9.2 Development of Heapsort 365
8.9.3 Analysis of Heapsort 368
8.9.4 Priority Queues 369

8.10 Review: Comparison of Methods 372

Pointers and Pitfalls 375

Review Questions 376

References for Further Study 377

9 Tables and Information
Retrieval 379

9.1 Introduction:
Breaking the lg n Barrier 380

9.2 Rectangular Tables 381

9.3 Tables of Various Shapes 383
9.3.1 Triangular Tables 383
9.3.2 Jagged Tables 385
9.3.3 Inverted Tables 386

9.4 Tables: A New Abstract Data Type 388

9.5 Application: Radix Sort 391
9.5.1 The Idea 392
9.5.2 Implementation 393
9.5.3 Analysis 396

9.6 Hashing 397
9.6.1 Sparse Tables 397
9.6.2 Choosing a Hash Function 399
9.6.3 Collision Resolution with Open

Addressing 401
9.6.4 Collision Resolution by Chaining 406

9.7 Analysis of Hashing 411

9.8 Conclusions:
Comparison of Methods 417

9.9 Application:
The Life Game Revisited 418
9.9.1 Choice of Algorithm 418
9.9.2 Specification of Data Structures 419
9.9.3 The Life Class 421
9.9.4 The Life Functions 421

Pointers and Pitfalls 426

Review Questions 427

References for Further Study 428

10 Binary Trees 429
10.1 Binary Trees 430

10.1.1 Definitions 430
10.1.2 Traversal of Binary Trees 432
10.1.3 Linked Implementation

of Binary Trees 437

10.2 Binary Search Trees 444
10.2.1 Ordered Lists

and Implementations 446
10.2.2 Tree Search 447
10.2.3 Insertion into a Binary Search

Tree 451
10.2.4 Treesort 453
10.2.5 Removal from a Binary Search

Tree 455

10.3 Building a Binary Search Tree 463
10.3.1 Getting Started 464
10.3.2 Declarations

and the Main Function 465
10.3.3 Inserting a Node 466
10.3.4 Finishing the Task 467
10.3.5 Evaluation 469
10.3.6 Random Search Trees

and Optimality 470

10.4 Height Balance: AVL Trees 473
10.4.1 Definition 473
10.4.2 Insertion of a Node 477
10.4.3 Removal of a Node 484
10.4.4 The Height of an AVL Tree 485

10.5 Splay Trees:
A Self-Adjusting Data Structure 490
10.5.1 Introduction 490
10.5.2 Splaying Steps 491
10.5.3 Algorithm Development 495

Contents ix

10.5.4 Amortized Algorithm Analysis:
Introduction 505

10.5.5 Amortized Analysis
of Splaying 509

Pointers and Pitfalls 515

Review Questions 516

References for Further Study 518

11 Multiway
Trees 520

11.1 Orchards, Trees, and Binary Trees 521
11.1.1 On the Classification of

Species 521
11.1.2 Ordered Trees 522
11.1.3 Forests and Orchards 524
11.1.4 The Formal Correspondence 526
11.1.5 Rotations 527
11.1.6 Summary 527

11.2 Lexicographic Search Trees: Tries 530
11.2.1 Tries 530
11.2.2 Searching for a Key 530
11.2.3 C++ Algorithm 531
11.2.4 Searching a Trie 532
11.2.5 Insertion into a Trie 533
11.2.6 Deletion from a Trie 533
11.2.7 Assessment of Tries 534

11.3 External Searching: B-Trees 535
11.3.1 Access Time 535
11.3.2 Multiway Search Trees 535
11.3.3 Balanced Multiway Trees 536
11.3.4 Insertion into a B-Tree 537
11.3.5 C++ Algorithms:

Searching and Insertion 539
11.3.6 Deletion from a B-Tree 547

11.4 Red-Black Trees 556
11.4.1 Introduction 556
11.4.2 Definition and Analysis 557
11.4.3 Red-Black Tree Specification 559
11.4.4 Insertion 560
11.4.5 Insertion Method

Implementation 561
11.4.6 Removal of a Node 565

Pointers and Pitfalls 566

Review Questions 567

References for Further Study 568

12 Graphs 569
12.1 Mathematical Background 570

12.1.1 Definitions and Examples 570
12.1.2 Undirected Graphs 571
12.1.3 Directed Graphs 571

12.2 Computer Representation 572
12.2.1 The Set Representation 572
12.2.2 Adjacency Lists 574
12.2.3 Information Fields 575

12.3 Graph Traversal 575
12.3.1 Methods 575
12.3.2 Depth-First Algorithm 577
12.3.3 Breadth-First Algorithm 578

12.4 Topological Sorting 579
12.4.1 The Problem 579
12.4.2 Depth-First Algorithm 580
12.4.3 Breadth-First Algorithm 581

12.5 A Greedy Algorithm:
Shortest Paths 583
12.5.1 The Problem 583
12.5.2 Method 584
12.5.3 Example 585
12.5.4 Implementation 586

12.6 Minimal Spanning Trees 587
12.6.1 The Problem 587
12.6.2 Method 589
12.6.3 Implementation 590
12.6.4 Verification

of Prim’s Algorithm 593

12.7 Graphs as Data Structures 594

Pointers and Pitfalls 596

Review Questions 597

References for Further Study 597

13
Case Study:
The Polish
Notation 598

13.1 The Problem 599
13.1.1 The Quadratic Formula 599

13.2 The Idea 601
13.2.1 Expression Trees 601
13.2.2 Polish Notation 603

x Contents

13.3 Evaluation of Polish Expressions 604
13.3.1 Evaluation of an Expression

in Prefix Form 605
13.3.2 C++ Conventions 606
13.3.3 C++ Function

for Prefix Evaluation 607
13.3.4 Evaluation

of Postfix Expressions 608
13.3.5 Proof of the Program:

Counting Stack Entries 609
13.3.6 Recursive Evaluation

of Postfix Expressions 612

13.4 Translation from Infix Form
to Polish Form 617

13.5 An Interactive
Expression Evaluator 623
13.5.1 Overall Structure 623
13.5.2 Representation of the Data:

Class Specifications 625
13.5.3 Tokens 629
13.5.4 The Lexicon 631
13.5.5 Expressions: Token Lists 634
13.5.6 Auxiliary

Evaluation Functions 639
13.5.7 Graphing the Expression:

The Class Plot 640
13.5.8 A Graphics-Enhanced

Plot Class 643

References for Further Study 645

A Mathematical
Methods 647

A.1 Sums of Powers of Integers 647

A.2 Logarithms 650
A.2.1 Definition of Logarithms 651
A.2.2 Simple Properties 651
A.2.3 Choice of Base 652
A.2.4 Natural Logarithms 652
A.2.5 Notation 653
A.2.6 Change of Base 654
A.2.7 Logarithmic Graphs 654
A.2.8 Harmonic Numbers 656

A.3 Permutations, Combinations,
Factorials 657
A.3.1 Permutations 657
A.3.2 Combinations 657
A.3.3 Factorials 658

A.4 Fibonacci Numbers 659

A.5 Catalan Numbers 661
A.5.1 The Main Result 661
A.5.2 The Proof by One-to-One

Correspondences 662
A.5.3 History 664
A.5.4 Numerical Results 665

References for Further Study 665

B Random
Numbers 667

B.1 Introduction 667

B.2 Strategy 668

B.3 Program Development 669

References for Further Study 673

C Packages and
Utility Functions 674

C.1 Packages and C++ Translation Units 674

C.2 Packages in the Text 676

C.3 The Utility Package 678

C.4 Timing Methods 679

D Programming Precepts,
Pointers, and Pitfalls 681

D.1 Choice of Data Structures
and Algorithms 681
D.1.1 Stacks 681
D.1.2 Lists 681
D.1.3 Searching Methods 682
D.1.4 Sorting Methods 682
D.1.5 Tables 682
D.1.6 Binary Trees 683
D.1.7 General Trees 684
D.1.8 Graphs 684

D.2 Recursion 685

D.3 Design of Data Structures 686

D.4 Algorithm Design and Analysis 687

D.5 Programming 688

D.6 Programming with Pointer Objects 689

D.7 Debugging and Testing 690

D.8 Maintenance 690

Index 693

Preface

T HE APPRENTICE CARPENTER may want only a hammer and a saw, but a master
builder employs many precision tools. Computer programming likewise
requires sophisticated tools to cope with the complexity of real applications,
and only practice with these tools will build skill in their use. This book treats

structured problem solving, object-oriented programming, data abstraction, and
the comparative analysis of algorithms as fundamental tools of program design.
Several case studies of substantial size are worked out in detail, to show how all
the tools are used together to build complete programs.

Many of the algorithms and data structures we study possess an intrinsic el-
egance, a simplicity that cloaks the range and power of their applicability. Before
long the student discovers that vast improvements can be made over the naïve
methods usually used in introductory courses. Yet this elegance of method is tem-
pered with uncertainty. The student soon finds that it can be far from obvious which
of several approaches will prove best in particular applications. Hence comes an
early opportunity to introduce truly difficult problems of both intrinsic interest and
practical importance and to exhibit the applicability of mathematical methods to
algorithm verification and analysis.

Many students find difficulty in translating abstract ideas into practice. This
book, therefore, takes special care in the formulation of ideas into algorithms and in
the refinement of algorithms into concrete programs that can be applied to practical
problems. The process of data specification and abstraction, similarly, comes before
the selection of data structures and their implementations.

We believe in progressing from the concrete to the abstract, in the careful de-
velopment of motivating examples, followed by the presentation of ideas in a more
general form. At an early stage of their careers most students need reinforcement
from seeing the immediate application of the ideas that they study, and they require
the practice of writing and running programs to illustrate each important concept
that they learn. This book therefore contains many sample programs, both short

xi

xii Preface

functions and complete programs of substantial length. The exercises and pro-
gramming projects, moreover, constitute an indispensable part of the book. Many
of these are immediate applications of the topic under study, often requesting that
programs be written and run, so that algorithms may be tested and compared.
Some are larger projects, and a few are suitable for use by a small group of students
working together.

Our programs are written in the popular object-oriented language C++. We
take the view that many object-oriented techniques provide natural implemen-
tations for basic principles of data-structure design. In this way, C++ allows us
to construct safe, efficient, and simple implementations of data-structures. We
recognize that C++ is sufficiently complex that students will need to use the ex-
perience of a data structures courses to develop and refine their understanding
of the language. We strive to support this development by carefully introducing
and explaining various object-oriented features of C++ as we progress through the
book. Thus, we begin Chapter 1 assuming that the reader is comfortable with the
elementary parts of C++ (essentially, with the C subset), and gradually we add
in such object-oriented elements of C++ as classes, methods, constructors, inheri-
tance, dynamic memory management, destructors, copy constructors, overloaded
functions and operations, templates, virtual functions, and the STL. Of course, our
primary focus is on the data structures themselves, and therefore students with
relatively little familiarity with C++ will need to supplement this text with a C++
programming text.

SYNOPSIS

By working through the first large project (CONWAY’s game of Life), Chapter 1Programming
Principles expounds principles of object-oriented program design, top-down refinement, re-

view, and testing, principles that the student will see demonstrated and is expected
to follow throughout the sequel. At the same time, this project provides an oppor-
tunity for the student to review the syntax of elementary features of C++, the
programming language used throughout the book.

Chapter 2 introduces the first data structure we study, the stack. The chapterIntroduction to Stacks
applies stacks to the development of programs for reversing input, for modelling
a desk calculator, and for checking the nesting of brackets. We begin by utilizing
the STL stack implementation, and later develop and use our own stack imple-
mentation. A major goal of Chapter 2 is to bring the student to appreciate the
ideas behind information hiding, encapsulation and data abstraction and to apply
methods of top-down design to data as well as to algorithms. The chapter closes
with an introduction to abstract data types.

Queues are the central topic of Chapter 3. The chapter expounds several dif-Queues
ferent implementations of the abstract data type and develops a large application
program showing the relative advantages of different implementations. In this
chapter we introduce the important object-oriented technique of inheritance.

Chapter 4 presents linked implementations of stacks and queues. The chapterLinked Stacks and
Queues begins with a thorough introduction to pointers and dynamic memory manage-

ment in C++. After exhibiting a simple linked stack implementation, we discuss

Preface • Synopsis xiii

destructors, copy constructors, and overloaded assignment operators, all of which
are needed in the safe C++ implementation of linked structures.

Chapter 5 continues to elucidate stacks by studying their relationship to prob-Recursion
lem solving and programming with recursion. These ideas are reinforced by ex-
ploring several substantial applications of recursion, including backtracking and
tree-structured programs. This chapter can, if desired, be studied earlier in a course
than its placement in the book, at any time after the completion of Chapter 2.

More general lists with their linked and contiguous implementations provideLists and Strings
the theme for Chapter 6. The chapter also includes an encapsulated string im-
plementation, an introduction to C++ templates, and an introduction to algorithm
analysis in a very informal way.

Chapter 7, Chapter 8, and Chapter 9 present algorithms for searching, sorting,Searching
and table access (including hashing), respectively. These chapters illustrate the
interplay between algorithms and the associated abstract data types, data struc-Sorting
tures, and implementations. The text introduces the “big-O” and related notations
for elementary algorithm analysis and highlights the crucial choices to be made
regarding best use of space, time, and programming effort. These choices requireTables and

Information Retrieval that we find analytical methods to assess algorithms, and producing such analyses
is a battle for which combinatorial mathematics must provide the arsenal. At an
elementary level we can expect students neither to be well armed nor to possess the
mathematical maturity needed to hone their skills to perfection. Our goal, there-
fore, is to help students recognize the importance of such skills in anticipation of
later chances to study mathematics.

Binary trees are surely among the most elegant and useful of data structures.
Their study, which occupies Chapter 10, ties together concepts from lists, searching,Binary Trees
and sorting. As recursively defined data structures, binary trees afford an excellent
opportunity for the student to become comfortable with recursion applied both to
data structures and algorithms. The chapter begins with elementary topics and
progresses as far as such advanced topics as splay trees and amortized algorithm
analysis.

Chapter 11 continues the study of more sophisticated data structures, includingMultiway Trees
tries, B-trees, and red-black trees.

Chapter 12 introduces graphs as more general structures useful for problemGraphs
solving, and introduces some of the classical algorithms for shortest paths and
minimal spanning trees in graphs.

The case study in Chapter 13 examines the Polish notation in considerable
detail, exploring the interplay of recursion, trees, and stacks as vehicles for problemCase Study:

The Polish Notation solving and algorithm development. Some of the questions addressed can serve
as an informal introduction to compiler design. As usual, the algorithms are fully
developed within a functioning C++ program. This program accepts as input an
expression in ordinary (infix) form, translates the expression into postfix form, and
evaluates the expression for specified values of the variable(s). Chapter 13 may be
studied anytime after the completion of Section 10.1.

The appendices discuss several topics that are not properly part of the book’s
subject but that are often missing from the student’s preparation.

Appendix A presents several topics from discrete mathematics. Its final twoMathematical
Methods sections, Fibonacci numbers amd Catalan numbers, are more advanced and not

xiv Preface

needed for any vital purpose in the text, but are included to encourage combina-
torial interest in the more mathematically inclined.

Appendix B discusses pseudorandom numbers, generators, and applications,Random Numbers
a topic that many students find interesting, but which often does not fit anywhere
in the curriculum.

Appendix C catalogues the various utility and data-structure packages that arePackages and
Utility Functions developed and used many times throughout this book. Appendix C discusses dec-

laration and definition files, translation units, the utility package used throughout
the book, and a package for calculating CPU times.

Appendix D, finally, collects all the Programming Precepts and all the PointersProgramming
Precepts, Pointers,

and Pitfalls
and Pitfalls scattered through the book and organizes them by subject for conve-
nience of reference.

COURSE STRUCTURE

The prerequisite for this book is a first course in programming, with experienceprerequisite
using the elementary features of C++. However, since we are careful to introduce
sophisticated C++ techniques only gradually, we believe that, used in conjunction
with a supplementary C++ textbook and extra instruction and emphasis on C++
language issues, this text provides a data structures course in C++ that remains
suitable even for students whose programming background is in another language
such as C, Pascal, or Java.

A good knowledge of high school mathematics will suffice for almost all the
algorithm analyses, but further (perhaps concurrent) preparation in discrete math-
ematics will prove valuable. Appendix A reviews all required mathematics.

This book is intended for courses such as the ACM Course CS2 (Program Designcontent
and Implementation), ACM Course CS7 (Data Structures and Algorithm Analysis), or
a course combining these. Thorough coverage is given to most of the ACM/IEEE
knowledge units1 on data structures and algorithms. These include:

AL1 Basic data structures, such as arrays, tables, stacks, queues, trees, and graphs;

AL2 Abstract data types;

AL3 Recursion and recursive algorithms;

AL4 Complexity analysis using the big Oh notation;

AL6 Sorting and searching; and

AL8 Practical problem-solving strategies, with large case studies.

The three most advanced knowledge units, AL5 (complexity classes, NP-complete
problems), AL7 (computability and undecidability), and AL9 (parallel and dis-
tributed algorithms) are not treated in this book.

1 See Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force, ACM
Press, New York, 1990.

Preface • Supplementary Materials xv

Most chapters of this book are structured so that the core topics are presented
first, followed by examples, applications, and larger case studies. Hence, if time
allows only a brief study of a topic, it is possible, with no loss of continuity, to move
rapidly from chapter to chapter covering only the core topics. When time permits,
however, both students and instructor will enjoy the occasional excursion into the
supplementary topics and worked-out projects.

A two-term course can cover nearly the entire book, thereby attaining a satis-two-term course
fying integration of many topics from the areas of problem solving, data structures,
program development, and algorithm analysis. Students need time and practice to
understand general methods. By combining the studies of data abstraction, data
structures, and algorithms with their implementations in projects of realistic size,
an integrated course can build a solid foundation on which, later, more theoretical
courses can be built. Even if it is not covered in its entirety, this book will provide
enough depth to enable interested students to continue using it as a reference in
later work. It is important in any case to assign major programming projects and
to allow adequate time for their completion.

SUPPLEMENTARY MATERIALS

A CD-ROM version of this book is anticipated that, in addition to the entire contents
of the book, will include:

➥ All packages, programs, and other C++ code segments from the text, in a form
ready to incorporate as needed into other programs;

➥ Executable versions (for DOS or Windows) of several demonstration programs
and nearly all programming projects from the text;

➥ Brief outlines or summaries of each section of the text, suitable for use as a
study guide.

These materials will also be available from the publisher’s internet site. To reach
these files with ftp, log in as user anonymous to the site ftp.prenhall.com and
change to the directory

pub/esm/computer_science.s-041/kruse/cpp

Instructors teaching from this book may obtain, at no charge, an instructor’s
version on CD-ROM which, in addition to all the foregoing materials, includes:

➥ Brief teaching notes on each chapter;

➥ Full solutions to nearly all exercises in the textbook;

➥ Full source code to nearly all programming projects in the textbook;

➥ Transparency masters.

xvi Preface

BOOK PRODUCTION

This book and its supplements were written and produced with software called
PreTEX, a preprocessor and macro package for the TEX typesetting system.2 PreTEX,
by exploiting context dependency, automatically supplies much of the typesetting
markup required by TEX. PreTEX also supplies several tools that greatly simplify
some aspects of an author’s work. These tools include a powerful cross-reference
system, simplified typesetting of mathematics and computer-program listings, and
automatic generation of the index and table of contents, while allowing the pro-
cessing of the book in conveniently small files at every stage. Solutions, placed
with exercises and projects, are automatically removed from the text and placed in
a separate document.

For a book such as this, PreTEX’s treatment of computer programs is its most
important feature. Computer programs are not included with the main body of the
text; instead, they are placed in separate, secondary files, along with any desired
explanatory text, and with any desired typesetting markup in place. By placing
tags at appropriate places in the secondary files, PreTEX can extract arbitrary parts
of a secondary file, in any desired order, for typesetting with the text. Another
utility removes all the tags, text, and markup, producing as its output a program
ready to be compiled. The same input file thus automatically produces both type-
set program listings and compiled program code. In this way, the reader gains
increased confidence in the accuracy of the computer program listings appearing
in the text. In fact, with just two exceptions, all of the programs developed in this
book have been compiled and succesfully tested under the g++ and Borland C++
compilers (versions 2.7.2.1 and 5.0, respectively). The two exceptions are the first
program in Chapter 2 (which requires a compiler with a full ANSI C++ standard
library) and the last program of Chapter 13 (which requires a compiler with certain
Borland graphics routines).

ACKNOWLEDGMENTS

Over the years, the Pascal and C antecedents of this book have benefitted greatly
from the contributions of many people: family, friends, colleagues, and students,
some of whom are noted in the previous books. Many other people, while studying
these books or their translations into various languages, have kindly forwarded
their comments and suggestions, all of which have helped to make this a better
book.

We are happy to acknowledge the suggestions of the following reviewers,
who have helped in many ways to improve the presentation in this book: KEITH

VANDER LINDEN (Calvin College), JENS GREGOR (University of Tennessee), VICTOR

BERRY (Boston University), JEFFERY LEON (University of Illinois at Chicago), SUSAN

2 TEX was developed by DONALD E. KNUTH, who has also made many important research contri-
butions to data structures and algorithms. (See the entries under his name in the index.)

Preface • Acknowledgments xvii

HUTT (University of Missouri–Columbia), FRED HARRIS (University of Nevada), ZHI-
LI ZHANG (University of Minnesota), and ANDREW SUNG (New Mexico Institute of
Technology).

ALEX RYBA especially acknowledges the helpful suggestions and encouraging
advice he has received over the years from WIM RUITENBURG and JOHN SIMMS of
Marquette University, as well as comments from former students RICK VOGEL and
JUN WANG.

It is a special pleasure for ROBERT KRUSE to acknowledge the continuing advice
and help of PAUL MAILHOT of PreTEX, Inc., who was from the first an outstanding
student, then worked as a dependable research assistant, and who has now become
a valued colleague making substantial contributions in software development for
book production, in project management, in problem solving for the publisher, the
printer, and the authors, and in providing advice and encouragement in all aspects
of this work. The CD-ROM versions of this book, with all their hypertext features
(such as extensive cross-reference links and execution of demonstration programs
from the text), are entirely his accomplishment.

Without the continuing enthusiastic support, faithful encouragement, and pa-
tience of the editorial staff of Prentice Hall, especially ALAN APT, Publisher, LAURA

STEELE, Acquisitions Editor, and MARCIA HORTON, Editor in Chief, this project would
never have been started and certainly could never have been brought to comple-
tion. Their help, as well as that of the production staff named on the copyright
page, has been invaluable.

ROBERT L. KRUSE

ALEXANDER J. RYBA

Programming
Principles 1

T
HIS CHAPTER summarizes important principles of good programming, es-
pecially as applied to large projects, and introduces methods such as object-
oriented design and top-down design for discovering effective algorithms.
In the process we raise questions in program design and data-storage

methods that we shall address in later chapters, and we also review some of
the elementary features of the language C++ by using them to write programs.

1.1 Introduction 2

1.2 The Game of Life 4
1.2.1 Rules for the Game of Life 4
1.2.2 Examples 5
1.2.3 The Solution: Classes, Objects, and

Methods 7
1.2.4 Life: The Main Program 8

1.3 Programming Style 10
1.3.1 Names 10
1.3.2 Documentation and Format 13
1.3.3 Refinement and Modularity 15

1.4 Coding, Testing, and Further Refinement 20
1.4.1 Stubs 20
1.4.2 Definition of the Class Life 22
1.4.3 Counting Neighbors 23
1.4.4 Updating the Grid 24
1.4.5 Input and Output 25
1.4.6 Drivers 27
1.4.7 Program Tracing 28

1.4.8 Principles of Program Testing 29

1.5 Program Maintenance 34
1.5.1 Program Evaluation 34
1.5.2 Review of the Life Program 35
1.5.3 Program Revision and

Redevelopment 38

1.6 Conclusions and Preview 39
1.6.1 Software Engineering 39
1.6.2 Problem Analysis 40
1.6.3 Requirements Specification 41
1.6.4 Coding 41

Pointers and Pitfalls 45
Review Questions 46
References for Further Study 47

C++ 47
Programming Principles 47
The Game of Life 47
Software Engineering 48

1

1.1 INTRODUCTION

The greatest difficulties of writing large computer programs are not in deciding
what the goals of the program should be, nor even in finding methods that can
be used to reach these goals. The president of a business might say, “Let’s get a
computer to keep track of all our inventory information, accounting records, and

2

personnel files, and let it tell us when inventories need to be reordered and budget
lines are overspent, and let it handle the payroll.” With enough time and effort, a
staff of systems analysts and programmers might be able to determine how various
staff members are now doing these tasks and write programs to do the work in the
same way.

This approach, however, is almost certain to be a disastrous failure. While
interviewing employees, the systems analysts will find some tasks that can be put
on the computer easily and will proceed to do so. Then, as they move other workproblems of large

programs to the computer, they will find that it depends on the first tasks. The output from
these, unfortunately, will not be quite in the proper form. Hence they need more
programming to convert the data from the form given for one task to the form
needed for another. The programming project begins to resemble a patchwork
quilt. Some of the pieces are stronger, some weaker. Some of the pieces are carefully
sewn onto the adjacent ones, some are barely tacked together. If the programmers
are lucky, their creation may hold together well enough to do most of the routine
work most of the time. But if any change must be made, it will have unpredictable
consequences throughout the system. Later, a new request will come along, or an
unexpected problem, perhaps even an emergency, and the programmers’ efforts
will prove as effective as using a patchwork quilt as a safety net for people jumping
from a tall building.

The main purpose of this book is to describe programming methods and tools
that will prove effective for projects of realistic size, programs much larger than
those ordinarily used to illustrate features of elementary programming. Since a
piecemeal approach to large problems is doomed to fail, we must first of all adopt
a consistent, unified, and logical approach, and we must also be careful to observe
important principles of program design, principles that are sometimes ignored in
writing small programs, but whose neglect will prove disastrous for large projects.

The first major hurdle in attacking a large problem is deciding exactly what
the problem is. It is necessary to translate vague goals, contradictory requests,problem specification
and perhaps unstated desires into a precisely formulated project that can be pro-
grammed. And the methods or divisions of work that people have previously used
are not necessarily the best for use in a machine. Hence our approach must be to
determine overall goals, but precise ones, and then slowly divide the work into
smaller problems until they become of manageable size.

The maxim that many programmers observe, “First make your program work,program design
then make it pretty,” may be effective for small programs, but not for large ones.
Each part of a large program must be well organized, clearly written, and thor-
oughly understood, or else its structure will have been forgotten, and it can no
longer be tied to the other parts of the project at some much later time, perhaps by
another programmer. Hence we do not separate style from other parts of program
design, but from the beginning we must be careful to form good habits.2

Section 1.1 • Introduction 3

Even with very large projects, difficulties usually arise not from the inability to
find a solution but, rather, from the fact that there can be so many different methods
and algorithms that might work that it can be hard to decide which is best, which
may lead to programming difficulties, or which may be hopelessly inefficient. The
greatest room for variability in algorithm design is generally in the way in whichchoice of

data structures the data of the program are stored:

➥ How they are arranged in relation to each other.

➥ Which data are kept in memory.

➥ Which are calculated when needed.
➥ Which are kept in files, and how the files are arranged.

A second goal of this book, therefore, is to present several elegant, yet fundamen-
tally simple ideas for the organization and manipulation of data. Lists, stacks, and
queues are the first three such organizations that we study. Later, we shall develop
several powerful algorithms for important tasks within data processing, such as
sorting and searching.

When there are several different ways to organize data and devise algorithms,
it becomes important to develop criteria to recommend a choice. Hence we devote
attention to analyzing the behavior of algorithms under various conditions.analysis of algorithms

The difficulty of debugging a program increases much faster than its size. That
is, if one program is twice the size of another, then it will likely not take twice as
long to debug, but perhaps four times as long. Many very large programs (suchtesting and

verification as operating systems) are put into use still containing errors that the programmers
have despaired of finding, because the difficulties seem insurmountable. Some-
times projects that have consumed years of effort must be discarded because it is
impossible to discover why they will not work. If we do not wish such a fate for
our own projects, then we must use methods that will

➥ Reduce the number of errors, making it easier to spot those that remain.program correctness

➥ Enable us to verify in advance that our algorithms are correct.

➥ Provide us with ways to test our programs so that we can be reasonably con-
fident that they will not misbehave.

Development of such methods is another of our goals, but one that cannot yet be
fully within our grasp.

Even after a program is completed, fully debugged, and put into service, a
great deal of work may be required to maintain the usefulness of the program. Inmaintenance
time there will be new demands on the program, its operating environment will
change, new requests must be accommodated. For this reason, it is essential that a
large project be written to make it as easy to understand and modify as possible.

The programming language C++ is a particularly convenient choice to expressC++
the algorithms we shall encounter. The language was developed in the early 1980s,
by Bjarne Stroustrup, as an extension of the popular C language. Most of the new
features that Stroustrup incorporated into C++ facilitate the understanding and
implementation of data structures. Among the most important features of C++ for
our study of data structures are:

4 Chapter 1 • Programming Principles

➥ C++ allows data abstraction: This means that programmers can create new
types to represent whatever collections of data are convenient for their appli-
cations.

➥ C++ supports object-oriented design, in which the programmer-defined types
play a central role in the implementation of algorithms.

➥ Importantly, as well as allowing for object-oriented approaches, C++ allows
for the use of the top-down approach, which is familiar to C programmers.

➥ C++ facilitates code reuse, and the construction of general purpose libraries.
The language includes an extensive, efficient, and convenient standard library.

➥ C++ improves on several of the inconvenient and dangerous aspects of C.

➥ C++ maintains the efficiency that is the hallmark of the C language.

It is the combination of flexibility, generality and efficiency that has made C++ one
of the most popular choices for programmers at the present time.

We shall discover that the general principles that underlie the design of all
data structures are naturally implemented by the data abstraction and the object-
oriented features of C++. Therefore, we shall carefully explain how these aspects
of C++ are used and briefly summarize their syntax (grammar) wherever they first
arise in our book. In this way, we shall illustrate and describe many of the features
of C++ that do not belong to its small overlap with C. For the precise details of C++
syntax, consult a textbook on C++ programming—we recommend several such
books in the references at the end of this chapter.

1.2 THE GAME OF LIFE

If we may take the liberty to abuse an old proverb,

One concrete problem is worth a thousand unapplied abstractions.

Throughout this chapter we shall concentrate on one case study that, while not
large by realistic standards, illustrates both the principles of program design and
the pitfalls that we should learn to avoid. Sometimes the example motivates general
principles; sometimes the general discussion comes first; always it is with the view
of discovering general principles that will prove their value in a range of practical
applications. In later chapters we shall employ similar methods for larger projects.

3

The example we shall use is the game called Life, which was introduced by the
British mathematician J. H. CONWAY in 1970.

1.2.1 Rules for the Game of Life
Life is really a simulation, not a game with players. It takes place on an unbounded
rectangular grid in which each cell can either be occupied by an organism or not.
Occupied cells are called alive; unoccupied cells are called dead. Which cells aredefinitions
alive changes from generation to generation according to the number of neighbor-
ing cells that are alive, as follows:

Section 1.2 • The Game of Life 5

1. The neighbors of a given cell are the eight cells that touch it vertically, horizon-transition rules
tally, or diagonally.

2. If a cell is alive but either has no neighboring cells alive or only one alive, then
in the next generation the cell dies of loneliness.

3. If a cell is alive and has four or more neighboring cells also alive, then in the
next generation the cell dies of overcrowding.

4. A living cell with either two or three living neighbors remains alive in the next
generation.

5. If a cell is dead, then in the next generation it will become alive if it has exactly
three neighboring cells, no more or fewer, that are already alive. All other dead
cells remain dead in the next generation.

6. All births and deaths take place at exactly the same time, so that dying cells
can help to give birth to another, but cannot prevent the death of others by
reducing overcrowding; nor can cells being born either preserve or kill cells
living in the previous generation.

A particular arrangement of living and dead cells in a grid is called a configuration.configuration
The preceding rules explain how one configuration changes to another at each
generation.

1.2.2 Examples

As a first example, consider the configuration

The counts of living neighbors for the cells are as follows:

4

0 0 0 0 0 0

0 1 2 2 1 0

0 1 1 1 1 0

0 1 2 2 1 0

0 0 0 0 0 0

6 Chapter 1 • Programming Principles

By rule 2 both the living cells will die in the coming generation, and rule 5 showsmoribund example
that no cells will become alive, so the configuration dies out.

On the other hand, the configuration

0 0 0 0 0 0

0 1 2 2 1 0

0 2 3 3 2 0

0 2 3 3 2 0

0 0 0 0 0 0

0 1 2 2 1 0

has the neighbor counts as shown. Each of the living cells has a neighbor count ofstability
three, and hence remains alive, but the dead cells all have neighbor counts of two
or less, and hence none of them becomes alive.

The two configurations

0 0 0 0 0

1 2 3 2 1

1 1 2 1 1

1 2 3 2 1

0 0 0 0 0

0 1 1 1 0

0 2 1 2 0

0 3 2 3 0

0 2 1 2 0

0 1 1 1 0

and

continue to alternate from generation to generation, as indicated by the neighboralternation
counts shown.

It is a surprising fact that, from very simple initial configurations, quite compli-
cated progressions of Life configurations can develop, lasting many generations,
and it is usually not obvious what changes will happen as generations progress.
Some very small initial configurations will grow into large configurations; othersvariety
will slowly die out; many will reach a state where they do not change, or where
they go through a repeating pattern every few generations.

Not long after its invention, MARTIN GARDNER discussed the Life game in hispopularity
column in Scientific American, and, from that time on, it has fascinated many people,
so that for several years there was even a quarterly newsletter devoted to related
topics. It makes an ideal display for home microcomputers.

Our first goal, of course, is to write a program that will show how an initial
configuration will change from generation to generation.

Section 1.2 • The Game of Life 7

1.2.3 The Solution: Classes, Objects, and Methods
In outline, a program to run the Life game takes the form:

Set up a Life configuration as an initial arrangement of living and dead cells.algorithm

Print the Life configuration.

While the user wants to see further generations:
Update the configuration by applying the rules of the Life game.
Print the current configuration.

The important thing for us to study in this algorithm is the Life configuration. Inclass
C++, we use a class to collect data and the methods used to access or change the
data. Such a collection of data and methods is called an object belonging to theobject
given class. For the Life game, we shall call the class Life, so that configuration
becomes a Life object. We shall then use three methods for this object: initialize()
will set up the initial configuration of living and dead cells; print() will print out

5

the current configuration; and update() will make all the changes that occur in
moving from one generation to the next.

Every C++ class, in fact, consists of members that represent either variables orC++ classes
functions. The members that represent variables are called the data members; these
are used to store data values. The members that represent functions belonging to
a class are called the methods or member functions. The methods of a class aremethods
normally used to access or alter the data members.

Clients, that is, user programs with access to a particular class, can declare andclients
manipulate objects of that class. Thus, in the Life game, we shall declare a Life
object by:

Life configuration;

We can now apply methods to work with configuration, using the C++ operator
. (the member selection operator). For example, we can print out the data inmember selection

operator configuration by writing:

configuration.print();

It is important to realize that, while writing a client program, we can use a
C++ class so long as we know the specifications of each of its methods, that is,specifications
statements of precisely what each method does. We do not need to know how

6

the data are actually stored or how the methods are actually programmed. For
example, to use a Life object, we do not need to know exactly how the object is
stored, or how the methods of the class Life are doing their work. This is our firstinformation hiding
example of an important programming strategy known as information hiding.

When the time comes to implement the class Life, we shall find that more
goes on behind the scenes: We shall need to decide how to store the data, and
we shall need variables and functions to manipulate this data. All these variablesprivate and public
and functions, however, are private to the class; the client program does not need
to know what they are, how they are programmed, or have any access to them.
Instead, the client program only needs the public methods that are specified and
declared for the class.

8 Chapter 1 • Programming Principles

In this book, we shall always distinguish between methods and functions as
follows, even though their actual syntax (programming grammar) is the same:

Convention

Methods of a class are public.
Functions in a class are private.

1.2.4 Life: The Main Program

The preceding outline of an algorithm for the game of Life translates into the fol-
lowing C++ program.7

#include "utility.h"
#include "life.h"

int main() // Program to play Conway’s game of Life.
/* Pre: The user supplies an initial configuration of living cells.

Post: The program prints a sequence of pictures showing the changes in the
configuration of living cells according to the rules for the game of Life.

Uses: The class Life and its methods initialize(), print(), and update().
The functions instructions(), user_says_yes(). */

{
Life configuration;
instructions();
configuration.initialize();
configuration.print();
cout << "Continue viewing new generations? " << endl;
while (user_says_yes()) {

configuration.update();
configuration.print();
cout << "Continue viewing new generations? " << endl;

}
}

The program begins by including files that allow it to use the class Life and theutility package
standard C++ input and output libraries. The utility function user_says_yes() is
declared in utility.h, which we shall discuss presently. For our Life program,
the only other information that we need about the file utility.h is that it begins
with the instructions

#include <iostream>
using namespace std;

which allow us to use standard C++ input and output streams such as cin and cout.
(On older compilers an alternative directive #include <iostream.h> has the same
effect.)

Section 1.2 • The Game of Life 9

The documentation for our Life program begins with its specifications; that is,
precise statements of the conditions required to hold when the program begins andprogram specifications
the conditions that will hold after it finishes. These are called, respectively, the pre-
conditions and postconditions for the program. Including precise preconditions
and postconditions for each function not only explains clearly the purpose of the
function but helps us avoid errors in the interface between functions. Including
specifications is so helpful that we single it out as our first programming precept:

Programming Precept

Include precise preconditions and postconditions
with every program, function, and method that you write.

functions A third part of the specifications for our program is a list of the classes and functions
that it uses. A similar list should be included with every program, function, or
method.

action of the program The action of our main program is entirely straightforward. First, we read in
the initial situation to establish the first configuration of occupied cells. Then we
commence a loop that makes one pass for each generation. Within this loop we
simply update the Life configuration, print the configuration, and ask the user
whether we should continue. Note that the Life methods, initialize, update, and
print are simply called with the member selection operator.

In the Life program we still must write code to implement:

➥ The class Life.

➥ The method initialize() to initialize a Life configuration.

➥ The method print() to output a Life configuration.

➥ The method update() to change a Life object so that it stores the configuration
at the next generation.

➥ The function user_says_yes() to ask the user whether or not to go on to the next
generation.

➥ The function instructions() to print instructions for using the program.

The implementation of the class Life is contained in the two files life.h and
life.c. There are a number of good reasons for us to use a pair of files for the
implementation of any class or data structure: According to the principle of infor-
mation hiding, we should separate the definition of a class from the coding of its
methods. The user of the class only needs to look at the specification part and its
list of methods. In our example, the file life.h will give the specification of the
class Life.

Moreover, by dividing a class implementation between two files, we can adhere
to the standard practice of leaving function and variable definitions out of files with
a suffix .h. This practice allows us to compile the files, or compilation units, that
make up a program separately and then link them together.

10 Chapter 1 • Programming Principles

Each compilation unit ought to be able to include any particular .h file (for
example to use the associated data structure), but unless we omit function and
variable definitions from the .h file, this will not be legal. In our project, the
second file life.c must therefore contain the implementations of the methods of
the class Life and the function instructions().1

Another code file, utility.c, contains the definition of the function

user_says_yes().

We shall, in fact, soon develop several more functions, declarations, definitions,
and other instructions that will be useful in various applications. We shall put allutility package
of these together as a package. This package can be incorporated into any program
with the directive:

#include "utility.h"

whenever it is needed.
Just as we divided the Life class implementation between two files, we should

divide the utility package between the files utility.h and utility.c to allow for
its use in the various translation units of a large program. In particular, we should
place function and variable definitions into the file utility.c, and we place other
sorts of utility instructions, such as the inclusion of standard C++ library files, into
utility.h. As we develop programs in future chapters, we shall add to the utility
package. Appendix C lists all the code for the whole utility package.

Exercises 1.2 Determine by hand calculation what will happen to each of the configurations
shown in Figure 1.1 over the course of five generations. [Suggestion: Set up the
Life configuration on a checkerboard. Use one color of checkers for living cells
in the current generation and a second color to mark those that will be born or
die in the next generation.]

1.3 PROGRAMMING STYLE

Before we turn to implementing classes and functions for the Life game, let us pause
to consider several principles that we should be careful to employ in programming.

1.3.1 Names
In the story of creation (Genesis 2 : 19), the LORD brought all the animals to ADAM

to see what names he would give them. According to an old Jewish tradition, it
was only when ADAM had named an animal that it sprang to life. This story brings

1 On some compilers the file suffix .c has to be replaced by an alternative such as .C, .cpp, .cxx,
or .cc.

Section 1.3 • Programming Style 11

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(i)

(l)

(f)

Figure 1.1. Simple Life configurations

an important moral to computer programming: Even if data and algorithms exist

8

before, it is only when they are given meaningful names that their places in the
program can be properly recognized and appreciated, that they first acquire a life
of their own.

purpose of careful
naming

For a program to work properly it is of the utmost importance to know exactly
what each class and variable represents and to know exactly what each function
does. Documentation explaining the classes, variables, and functions should there-
fore always be included. The names of classes, variables, and functions should be
chosen with care so as to identify their meanings clearly and succinctly. Finding
good names is not always an easy task, but is important enough to be singled out
as our second programming precept:

9

Programming Precept

Always name your classes, variables and functions
with the greatest care, and explain them thoroughly.

C++ goes some distance toward enforcing this precept by requiring the declaration
of variables and allows us almost unlimited freedom in the choice of identifying

12 Chapter 1 • Programming Principles

names. Constants used in different places should be given names, and so should
different data types, so that the compiler can catch errors that might otherwise be
difficult to spot.

We shall see that types and classes play a fundamental role in C++ programs,
and it is particularly important that they should stand out to a reader of our pro-
grams. We shall therefore adopt a capitalization convention, which we have already
used in the Life program: We use an initial capital letter in the identifier of any class
or programmer defined type. In contrast, we shall use only lowercase letters for
the identifiers of functions, variables, and constants.

The careful choice of names can go a long way in clarifying a program and in
helping to avoid misprints and common errors. Some guidelines are

1. Give special care to the choice of names for classes, functions, constants, andguidelines
all global variables used in different parts of the program. These names should
be meaningful and should suggest clearly the purpose of the class, function,
variable, and the like.

2. Keep the names simple for variables used only briefly and locally. Mathemati-
cians usually use a single letter to stand for a variable, and sometimes, when
writing mathematical programs, it may be permissible to use a single-letter
name for a mathematical variable. However, even for the variable controlling
a for loop, it is often possible to find a short but meaningful word that better
describes the use of the variable.

3. Use common prefixes or suffixes to associate names of the same general cate-
gory. The files used in a program, for example, might be called

input_file transaction_file total_file out_file reject_file

4. Avoid deliberate misspellings and meaningless suffixes to obtain different
names. Of all the names

index indx ndex indexx index2 index3

only one (the first) should normally be used. When you are tempted to intro-
duce multiple names of this sort, take it as a sign that you should think harder
and devise names that better describe the intended use.

5. Avoid choosing cute names whose meaning has little or nothing to do with the
problem. The statements

do {
study();

} while (TV.in_hock());
if (!sleepy) play();
else nap();

may be funny but they are bad programming!

Section 1.3 • Programming Style 13

6. Avoid choosing names that are close to each other in spelling or otherwise easy
to confuse.

7. Be careful in the use of the letter “l” (small ell), “O” (capital oh), and “0” (zero).
Within words or numbers these usually can be recognized from the context
and cause no problem, but “l” and “O” should never be used alone as names.
Consider the examples

l = 1; x = 1; x = l; x = O; O = 0

1.3.2 Documentation and Format
Most students initially regard documentation as a chore that must be endured
after a program is finished, to ensure that the marker and instructor can read it,
so that no credit will be lost for obscurity. The author of a small program indeed
can keep all the details in mind, and so needs documentation only to explain the
program to someone else. With large programs (and with small ones after somethe purpose of

documentation months have elapsed), it becomes impossible to remember how every detail relates
to every other, and therefore to write large programs, it is essential that appropriate
documentation be prepared along with each small part of the program. A good
habit is to prepare documentation as the program is being written, and an even
better one, as we shall see later, is to prepare part of the documentation before
starting to write the program.

Not all documentation is appropriate. Almost as common as programs with
little documentation or only cryptic comments are programs with verbose docu-
mentation that adds little to understanding the program. Hence our third pro-
gramming precept:

10

Programming Precept

Keep your documentation concise but descriptive.

The style of documentation, as with all writing styles, is highly personal, and
many different styles can prove effective. There are, nonetheless, some commonly
accepted guidelines that should be respected:

1. Place a prologue at the beginning of each function includingguidelines

(a) Identification (programmer’s name, date, version number).2

(b) Statement of the purpose of the function and algorithm used.
(c) The changes the function makes and what data it uses.
(d) Reference to further documentation external to the program.

2. When each variable, constant, or class is declared, explain what it is and how
it is used. Better still, make this information evident from the name.

2 To save space, programs printed in this book do not include identification lines or some other
parts of the prologue, since the surrounding text gives the necessary information.

14 Chapter 1 • Programming Principles

3. Introduce each significant section (paragraph or function) of the program with
a comment stating briefly its purpose or action.

4. Indicate the end of each significant section if it is not otherwise obvious.

5. Avoid comments that parrot what the code does, such as

count++; // Increase counter by 1.

or that are meaningless jargon, such as

// Horse string length into correctitude.

(This example was taken directly from a systems program.)

6. Explain any statement that employs a trick or whose meaning is unclear. Better
still, avoid such statements.

7. The code itself should explain how the program works. The documentation
should explain why it works and what it does.

8. Whenever a program is modified, be sure that the documentation is corre-
spondingly modified.

format Spaces, blank lines, and indentation in a program are an important form of doc-
umentation. They make the program easy to read, allow you to tell at a glance
which parts of the program relate to each other, where the major breaks occur,
and precisely which statements are contained in each loop or each alternative of a
conditional statement. There are many systems (some automated) for indentation
and spacing, all with the goal of making it easier to determine the structure of the
program.

prettyprinting A prettyprinter is a system utility that reads a C++ program, moving the text
between lines and adjusting the indentation so as to improve the appearance of
the program and make its structure more obvious. If a prettyprinter is available
on your system, you might experiment with it to see if it helps the appearance of
your programs.

consistency Because of the importance of good format for programs, you should settle on
some reasonable rules for spacing and indentation and use your rules consistently
in all the programs you write. Consistency is essential if the system is to be useful in
reading programs. Many professional programming groups decide on a uniform
system and insist that all the programs they write conform. Some classes or student
programming teams do likewise. In this way, it becomes much easier for one
programmer to read and understand the work of another.

Programming Precept

The reading time for programs is much more than the writing time.
Make reading easy to do.

Section 1.3 • Programming Style 15

1.3.3 Refinement and Modularity

Computers do not solve problems; people do. Usually the most important part ofproblem solving
the process is dividing the problem into smaller problems that can be understood in
more detail. If these are still too difficult, then they are subdivided again, and so on.
In any large organization the top management cannot worry about every detail of
every activity; the top managers must concentrate on general goals and problems
and delegate specific responsibilities to their subordinates. Again, middle-level
managers cannot do everything: They must subdivide the work and send it to
other people. So it is with computer programming. Even when a project is smallsubdivision
enough that one person can take it from start to finish, it is most important to
divide the work, starting with an overall understanding of the problem, dividing
it into subproblems, and attacking each of these in turn without worrying about
the others.

Let us restate this principle with a classic proverb:

11

Programming Precept

Don’t lose sight of the forest for its trees.

This principle, called top-down refinement, is the real key to writing large programstop-down refinement
that work. The principle implies the postponement of detailed consideration, but
not the postponement of precision and rigor. It does not mean that the main pro-
gram becomes some vague entity whose task can hardly be described. On the
contrary, the main program will send almost all the work out to various classes,
data structures and functions, and as we write the main program (which we should
do first), we decide exactly how the work will be divided among them. Then, as wespecifications
later work on a particular class or function, we shall know before starting exactly
what it is expected to do.

It is often difficult to decide exactly how to divide the work into classes and
functions, and sometimes a decision once made must later be modified. Even so,
some guidelines can help in deciding how to divide the work:

Programming Precept

Use classes to model the fundamental concepts of the program.

For example, our Life program must certainly deal with the Life game and we
therefore create a class Life to model the game. We can often pick out the important
classes for an application by describing our task in words and assigning classes
for the different nouns that are used. The verbs that we use will often signify the
important functions.

Programming Precept

Each function should do only one task, but do it well.

16 Chapter 1 • Programming Principles

That is, we should be able to describe the purpose of a function succinctly. If you
find yourself writing a long paragraph to specify the preconditions or postcondi-
tions for a function, then either you are giving too much detail (that is, you are
writing the function before it is time to do so) or you should rethink the division of
work. The function itself will undoubtedly contain many details, but they should
not appear until the next stage of refinement.

Programming Precept

Each class or function should hide something.

Middle-level managers in a large company do not pass on everything they receive
from their departments to their superior; they summarize, collate, and weed out the
information, handle many requests themselves, and send on only what is needed
at the upper levels. Similarly, managers do not transmit everything they learn from
higher management to their subordinates. They transmit to their employees only
what they need to do their jobs. The classes and functions we write should do
likewise. In other words, we should practice information hiding.

One of the most important parts of the refinement process is deciding exactly
what the task of each function is, specifying precisely what its preconditions and
postconditions will be; that is, what its input will be and what result it will produce.

12

Errors in these specifications are among the most frequent program bugs and are
among the hardest to find. First, the parameters used in the function must be
precisely specified. These data are of three basic kinds:

➥ Input parameters are used by the function but are not changed by the function.parameters
In C++, input parameters are often passed by value. (Exception: Large objects
should be passed by reference.3 This avoids the time and space needed to make
a local copy. However, when we pass an input parameter by reference, we shall
prefix its declaration with the keyword const. This use of the type modifier
const is important, because it allows a reader to see that we are using an input
parameter, it allows the compiler to detect accidental changes to the parameter,
and occasionally it allows the compiler to optimize our code.)

➥ Output parameters contain the results of the calculations from the function. In
this book, we shall use reference variables for output parameters. In contrast,
C programmers need to simulate reference variables by passing addresses of
variables to utilize output parameters. Of course, the C approach is still avail-
able to us in C++, but we shall avoid using it.

➥ Inout parameters are used for both input and output; the initial value of the
parameter is used and then modified by the function. We shall pass inout
parameters by reference.

3 Consult a C++ textbook for discussion of call by reference and reference variables.

Section 1.3 • Programming Style 17

In addition to its parameters, a function uses other data objects that generally
fall into one of the following categories.

➥ Local variables are defined in the function and exist only while the functionvariables
is being executed. They are not initialized before the function begins and are
discarded when the function ends.

➥ Global variables are used in the function but not defined in the function. It can
be quite dangerous to use global variables in a function, since after the function
is written its author may forget exactly what global variables were used and
how. If the main program is later changed, then the function may mysteriously
begin to misbehave. If a function alters the value of a global variable, it is said
to cause a side effect. Side effects are even more dangerous than using globalside effects
variables as input to the function because side effects may alter the performance
of other functions, thereby misdirecting the programmer’s debugging efforts
to a part of the program that is already correct.

Programming Precept

Keep your connections simple. Avoid global variables whenever possible.

Programming Precept

Never cause side effects if you can avoid it.
If you must use global variables as input, document them thoroughly.

While these principles of top-down design may seem almost self-evident, the only
way to learn them thoroughly is by practice. Hence throughout this book we shall
be careful to apply them to the large programs that we write, and in a moment it
will be appropriate to return to our first example project.

Exercises 1.3 E1. What classes would you define in implementing the following projects? What
methods would your classes possess?
(a) A program to store telephone numbers.
(b) A program to play Monopoly.
(c) A program to play tic-tac-toe.
(d) A program to model the build up of queues of cars waiting at a busy

intersection with a traffic light.
E2. Rewrite the following class definition, which is supposed to model a deck of

playing cards, so that it conforms to our principles of style.

class a { // a deck of cards
int X; thing Y1[52]; /* X is the location of the top card in the deck. Y1 lists
the cards. */ public: a();
void Shuffle(); // Shuffle randomly arranges the cards.
thing d(); // deals the top card off the deck
}

;

18 Chapter 1 • Programming Principles

E3. Given the declarations

int a[n][n], i, j;

where n is a constant, determine what the following statement does, and rewrite
the statement to accomplish the same effect in a less tricky way.

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[i][j] = ((i + 1)/(j + 1)) * ((j + 1)/(i + 1));

E4. Rewrite the following function so that it accomplishes the same result in a less
tricky way.

void does_something(int &first, int &second)
{

first = second − first;
second = second − first;
first = second + first;

}

E5. Determine what each of the following functions does. Rewrite each function
with meaningful variable names, with better format, and without unnecessary
variables and statements.
(a) int calculate(int apple, int orange)

{ int peach, lemon;
peach = 0; lemon = 0; if (apple < orange)
peach = orange; else if (orange <= apple)
peach = apple; else { peach = 17;
lemon = 19; }
return(peach);
}

(b) For this part assume the declaration typedef float vector[max];

float figure (vector vector1)
{ int loop1, loop4; float loop2, loop3;
loop1 = 0; loop2 = vector1[loop1]; loop3 = 0.0;
loop4 = loop1; for (loop4 = 0;
loop4 < max; loop4++) { loop1 = loop1 + 1;
loop2 = vector1[loop1 − 1];
loop3 = loop2 + loop3; } loop1 = loop1 − 1;
loop2 = loop1 + 1;
return(loop2 = loop3/loop2); }

(c) int question(int &a17, int &stuff)
{ int another, yetanother, stillonemore;
another = yetanother; stillonemore = a17;
yetanother = stuff; another = stillonemore;
a17 = yetanother; stillonemore = yetanother;
stuff = another; another = yetanother;
yetanother = stuff; }

Section 1.3 • Programming Style 19

(d) int mystery(int apple, int orange, int peach)
{ if (apple > orange) if (apple > peach) if
(peach > orange) return(peach); else if (apple < orange)
return(apple); else return(orange); else return(apple); else
if (peach > apple) if (peach > orange) return(orange); else
return(peach); else return(apple); }

E6. The following statement is designed to check the relative sizes of three integers,
which you may assume to be different from each other:

if (x < z) if (x < y) if (y < z) c = 1; else c = 2; else
if (y < z) c = 3; else c = 4; else if (x < y)
if (x < z) c = 5; else c = 6; else if (y < z) c = 7; else
if (z < x) if (z < y) c = 8; else c = 9; else c = 10;

(a) Rewrite this statement in a form that is easier to read.
(b) Since there are only six possible orderings for the three integers, only six

of the ten cases can actually occur. Find those that can never occur, and
eliminate the redundant checks.

(c) Write a simpler, shorter statement that accomplishes the same result.

E7. The following C++ function calculates the cube root of a floating-point number
(by the Newton approximation), using the fact that, if y is one approximation
to the cube root of x , then

z = 2y + x/y2

3

is a closer approximation.cube roots

float function fcn(float stuff)
{ float april, tim, tiny, shadow, tom, tam, square; int flag;
tim = stuff; tam = stuff; tiny = 0.00001;
if (stuff != 0) do {shadow = tim + tim; square = tim * tim;
tom = (shadow + stuff/square); april = tom/3.0;
if (april*april * april − tam > −tiny) if (april*april*april − tam

< tiny) flag = 1; else flag = 0; else flag = 0;
if (flag == 0) tim = april; else tim = tam; } while (flag != 1);
if (stuff == 0) return(stuff); else return(april); }

(a) Rewrite this function with meaningful variable names, without the extra
variables that contribute nothing to the understanding, with a better layout,
and without the redundant and useless statements.

(b) Write a function for calculating the cube root of x directly from the mathe-
matical formula, by starting with the assignment y = x and then repeating

y = (2 * y + (x/(y * y)))/3

until abs(y * y * y − x) < 0.00001.
(c) Which of these tasks is easier?

20 Chapter 1 • Programming Principles

E8. The mean of a sequence of numbers is their sum divided by the count of num-
bers in the sequence. The (population) variance of the sequence is the mean
of the squares of all numbers in the sequence, minus the square of the meanstatistics
of the numbers in the sequence. The standard deviation is the square root of
the variance. Write a well-structured C++ function to calculate the standard
deviation of a sequence of n floating-point numbers, where n is a constant and
the numbers are in an array indexed from 0 to n− 1, which is a parameter to
the function. Use, then write, subsidiary functions to calculate the mean and
variance.

E9. Design a program that will plot a given set of points on a graph. The input
to the program will be a text file, each line of which contains two numbers
that are the x and y coordinates of a point to be plotted. The program will
use a function to plot one such pair of coordinates. The details of the function
involve the specific method of plotting and cannot be written since they dependplotting
on the requirements of the plotting equipment, which we do not know. Before
plotting the points the program needs to know the maximum and minimum
values of x and y that appear in its input file. The program should therefore
use another function bounds that will read the whole file and determine these
four maxima and minima. Afterward, another function is used to draw and
label the axes; then the file can be reset and the individual points plotted.
(a) Write the main program, not including the functions.
(b) Write the function bounds.
(c) Write the preconditions and postconditions for the remaining functions to-

gether with appropriate documentation showing their purposes and their
requirements.

1.4 CODING, TESTING, AND FURTHER REFINEMENT

The three processes in the section title go hand-in-hand and must be done together.
Yet it is important to keep them separate in our thinking, since each requires its own
approach and method. Coding, of course, is the process of writing an algorithm
in the correct syntax (grammar) of a computer language like C++, and testing is
the process of running the program on sample data chosen to find errors if they
are present. For further refinement, we turn to the functions not yet written and
repeat these steps.

1.4.1 Stubs
After coding the main program, most programmers will wish to complete the
writing and coding of the required classes and functions as soon as possible, to
see if the whole project will work. For a project as small as the Life game, thisearly debugging and

testing approach may work, but for larger projects, the writing and coding will be such a
large job that, by the time it is complete, many of the details of the main program
and the classes and functions that were written early will have been forgotten. In
fact, different people may be writing different functions, and some of those who

Section 1.4 • Coding, Testing, and Further Refinement 21

started the project may have left it before all functions are written. It is much easier
to understand and debug a program when it is fresh in your mind. Hence, for
larger projects, it is much more efficient to debug and test each class and function
as soon as it is written than it is to wait until the project has been completely coded.

Even for smaller projects, there are good reasons for debugging classes and
functions one at a time. We might, for example, be unsure of some point of C++
syntax that will appear in several places through the program. If we can compile
each function separately, then we shall quickly learn to avoid errors in syntax in
later functions. As a second example, suppose that we have decided that the major
steps of the program should be done in a certain order. If we test the main program
as soon as it is written, then we may find that sometimes the major steps are done
in the wrong order, and we can quickly correct the problem, doing so more easily
than if we waited until the major steps were perhaps obscured by the many details
contained in each of them.

To compile the main program correctly, there must be something in the place
of each function that is used, and hence we must put in short, dummy functions,stubs
called stubs. The simplest stubs are those that do little or nothing at all:

void instructions() { }
bool user_says_yes() { return(true); }

Note that in writing the stub functions we must at least pin down their associated

14

parameters and return types. For example, in designing a stub for user_says_yes(),
we make the decision that it should return a natural answer of true or false. This
means that we should give the function a return type bool. The type bool has only
recently been added to C++ and some older compilers do not recognize it, but we
can always simulate it with the following statements—which can conveniently be
placed in the utility package, if they are needed:

typedef int bool;
const bool false = 0;
const bool true = 1;

In addition to the stub functions, our program also needs a stub definition for
the class Life. For example, in the file life.h, we could define this class without
data members as follows:

class Life {
public:

void initialize();
void print();
void update();

};

We must also supply the following stubs for its methods in life.c:

void Life :: initialize() {}
void Life :: print() {}
void Life :: update() {}

22 Chapter 1 • Programming Principles

Note that these method definitions have to use the C++ scope resolution opera-
tor :: 4 to indicate that they belong to the scope of the class Life.

Even with these minimal stubs we can at least compile the program and make
sure that the definitions of types and variables are syntactically correct. Normally,
however, each stub function should print a message stating that the function was
invoked. When we execute the program, we find that it runs into an infinite loop,
because the function user_says_yes() always returns a value of true. However,
the main program compiles and runs, so we can go on to refine our stubs. For a
small project like the Life game, we can simply write each class or function in turn,
substitute it for its stub, and observe the effect on program execution.

1.4.2 Definition of the Class Life
Each Life object needs to include a rectangular array,5 which we shall call grid, to
store a Life configuration. We use an integer entry of 1 in the array grid to denote a1: living cell

0: dead cell living cell, and 0 to denote a dead cell. Thus to count the number of neighbors of a
particular cell, we just add the values of the neighboring cells. In fact, in updating
a Life configuration, we shall repeatedly need to count the number of living neigh-
bors of individual cells in the configuration. Hence, the class Life should include a

13

member function neighbor_count that does this task. Moreover, since the member
neighbor_count is not needed by client code, we shall give it private visibility. In
contrast, the earlier Life methods all need to have public visibility. Finally, we must
settle on dimensions for the rectangular array carried in a Life configuration. We
code these dimensions as global constants, so that a single simple change is all that
we need to reset grid sizes in our program. Note that constant definitions can be
safely placed in .h files.14

const int maxrow = 20, maxcol = 60; // grid dimensions

class Life {
public:

void initialize();
void print();
void update();

private:
int grid[maxrow + 2][maxcol + 2];

// allows for two extra rows and columns
int neighbor_count(int row, int col);

};

We can test the definition, without writing the member functions, by using our
earlier stub methods together with a similar stub for the private function neigh-
bor_count.

4 Consult a C++ textbook for discussion of the scope resolution operator and the syntax for class
methods.

5 An array with two indices is called rectangular. The first index determines the row in the array
and the second the column.

Section 1.4 • Coding, Testing, and Further Refinement 23

1.4.3 Counting Neighbors

Let us now refine our program further. The function that counts neighbors of the
cell with coordinates row, col requires that we look in the eight adjoining cells. Wefunction

neighbor_count shall use a pair of for loops to do this, one running from row−1 to row + 1 and
the other from col−1 to col + 1. We need only be careful, when row, col is on a
boundary of the grid, that we look only at legitimate cells in the grid. Rather than
using several if statements to make sure that we do not go outside the grid, wehedge
introduce a hedge around the grid: We shall enlarge the grid by adding two extra
rows, one before the first real row of the grid and one after the last, and two extra
columns, one before the first column and one after the last. In our definition of
the class Life, we anticipated the hedge by defining the member grid as an array
with maxrow + 2 rows and maxcol + 2 columns. The cells in the hedge rows and
columns will always be dead, so they will not affect the counts of living neighbors
at all. Their presence, however, means that the for loops counting neighbors need
make no distinction between rows or columns on the boundary of the grid and any
other rows or columns. See the examples in Figure 1.2.

15

hedge

hedge

hedge

0 1 2 …
maxcol

maxcol + 1

0

1

2

Color tint
shows

neighbors of
black cells.

hedge

maxrow

maxrow + 1

…

Figure 1.2. Life grid with a hedge

Another term often used instead of hedge is sentinel: A sentinel is an extra
entry put into a data structure so that boundary conditions need not be treated assentinel
a special case.

int Life :: neighbor_count(int row, int col)
/* Pre: The Life object contains a configuration, and the coordinates row and col

define a cell inside its hedge.
Post: The number of living neighbors of the specified cell is returned. */

24 Chapter 1 • Programming Principles

{
int i, j;
int count = 0;
for (i = row − 1; i <= row + 1; i++)

for (j = col − 1; j <= col + 1; j++)
count += grid[i][j]; // Increase the count if neighbor is alive.

count −= grid[row][col];
// Reduce count, since cell is not its own neighbor.

return count;
}

1.4.4 Updating the Grid
The action of the method to update a Life configuration is straightforward. We first
use the data stored in the configuration to calculate entries of a rectangular arraymethod update
called new_grid that records the updated configuration. We then copy new_grid,
entry by entry, back to the grid member of our Life object.

To set up new_grid we use a nested pair of loops on row and col that run
over all non-hedge entries in the rectangular array grid. The body of these nested
loops consists of the multiway selection statement switch. The function neigh-
bor_count(row, col) returns one of the values 0, 1, . . . , 8, and for each of these cases
we can take a separate action, or, as in our application, some of the cases may
lead to the same action. You should check that the action prescribed in each case
corresponds correctly to the rules 2, 3, 4, and 5 of Section 1.2.1.16

void Life :: update()
/* Pre: The Life object contains a configuration.

Post: The Life object contains the next generation of configuration. */
{

int row, col;
int new_grid[maxrow + 2][maxcol + 2];
for (row = 1; row <= maxrow; row++)

for (col = 1; col <= maxcol; col++)
switch (neighbor_count(row, col)) {
case 2:

new_grid[row][col] = grid[row][col]; // Status stays the same.
break;

case 3:
new_grid[row][col] = 1; // Cell is now alive.
break;

default:
new_grid[row][col] = 0; // Cell is now dead.

}
for (row = 1; row <= maxrow; row++)

for (col = 1; col <= maxcol; col++)
grid[row][col] = new_grid[row][col];

}

Section 1.4 • Coding, Testing, and Further Refinement 25

1.4.5 Input and Output

It now remains only to write the Life methods initialize() and print(), with the
functions user_says_yes() and instructions() that do the input and output for our
program. In computer programs designed to be used by many people, the functionscareful input and

output performing input and output are often the longest. Input to the program must be
fully checked to be certain that it is valid and consistent, and errors in input must be
processed in ways to avoid catastrophic failure or production of ridiculous results.
The output must be carefully organized and formatted, with considerable thought
to what should or should not be printed, and with provision of various alternatives
to suit differing circumstances.

Programming Precept

Keep your input and output as separate functions,
so they can be changed easily

and can be custom tailored to your computing system.

1. Instructions

The instructions() function is a simple exercise in use of the put to operator << and
the standard output stream called cout. Observe that we use the manipulator endlstream output

operators to end a line and flush the output buffer. The manipulator flush can be used instead
in situations where we just wish to flush the output buffer, without ending a line.
For the precise details of stream input and output in C++, consult a textbook on
C++.17

void instructions()
/* Pre: None.

Post: Instructions for using the Life program have been printed. */
{

cout << "Welcome to Conway′s game of Life." << endl;
cout << "This game uses a grid of size "

<< maxrow << " by " << maxcol << " in which" << endl;
cout << "each cell can either be occupied by an organism or not." << endl;
cout << "The occupied cells change from generation to generation" << endl;
cout << "according to the number of neighboring cells which are alive."

<< endl;
}

2. Initialization

The task that the Life method initialize() must accomplish is to set up an initial
configuration. To initialize a Life object, we could consider each possible coordinate
pair separately and request the user to indicate whether the cell is to be occupiedinput method
or not. This method would require the user to type in

maxrow * maxrow = 20 * 60 = 1200

26 Chapter 1 • Programming Principles

entries, which is prohibitive. Hence, instead, we input only those coordinate pairs
corresponding to initially occupied cells.18

void Life :: initialize()
/* Pre: None.

Post: The Life object contains a configuration specified by the user. */

{
int row, col;
for (row = 0; row <= maxrow + 1; row++)

for (col = 0; col <= maxcol + 1; col++)
grid[row][col] = 0;

cout << "List the coordinates for living cells." << endl;
cout << "Terminate the list with the the special pair −1 −1" << endl;
cin >> row >> col;

while (row != −1 || col != −1) {
if (row >= 1 && row <= maxrow)

if (col >= 1 && col <= maxcol)
grid[row][col] = 1;

else
cout << "Column " << col << " is out of range." << endl;

else
cout << "Row " << row << " is out of range." << endl;

cin >> row >> col;
}

}

output For the output method print() we adopt the simple method of writing out the entire
rectangular array at each generation, with occupied cells denoted by * and empty
cells by blanks.

void Life :: print()
/* Pre: The Life object contains a configuration.

Post: The configuration is written for the user. */

{
int row, col;
cout << "\nThe current Life configuration is:" << endl;
for (row = 1; row <= maxrow; row++) {

for (col = 1; col <= maxcol; col++)
if (grid[row][col] == 1) cout << ′*′;
else cout << ′ ′;

cout << endl;
}
cout << endl;

}

Section 1.4 • Coding, Testing, and Further Refinement 27

response from user Finally comes the function user_says_yes(), which determines whether the user
wishes to go on to calculate the next generation. The task of user_says_yes() is to
ask the user to respond yes or no. To make the program more tolerant of mistakes
in input, this request is placed in a loop that repeats until the user’s response is
acceptable. In our function, we use the standard input function get() to process

19

input characters one at a time. In C++, the function get() is actually just a method of
the class istream: In our application, we apply the method, cin.get(), that belongs
to the istream object cin.

bool user_says_yes()
{

int c;
bool initial_response = true;
do { // Loop until an appropriate input is received.

if (initial_response)
cout << " (y,n)? " << flush;

else
cout << "Respond with either y or n: " << flush;

do { // Ignore white space.
c = cin.get();

} while (c == ′\n′ || c == ′ ′ || c == ′\t′);
initial_response = false;

} while (c != ′y′ && c != ′Y′ && c != ′n′ && c != ′N′);
return (c == ′y′ || c == ′Y′);

}

At this point, we have all the functions for the Life simulation. It is time to pause
and check that it works.

1.4.6 Drivers
For small projects, each function is usually inserted in its proper place as soonseparate debugging
as it is written, and the resulting program can then be debugged and tested as
far as possible. For large projects, however, compilation of the entire project can
overwhelm that of a new function being debugged, and it can be difficult to tell,
looking only at the way the whole program runs, whether a particular function is
working correctly or not. Even in small projects the output of one function may be
used by another in ways that do not immediately reveal whether the information
transmitted is correct.

One way to debug and test a single function is to write a short auxiliary pro-
gram whose purpose is to provide the necessary input for the function, call it, and
evaluate the result. Such an auxiliary program is called a driver for the function.driver program
By using drivers, each function can be isolated and studied by itself, and thereby
errors can often be spotted quickly.

As an example, let us write drivers for the functions of the Life project. First, we
consider the method neighbor_count(). In our program, its output is used but has
not been directly displayed for our inspection, so we should have little confidence
that it is correct. To test neighbor_count() we shall supply a Life object configura-
tion, call neighbor_count for every cell of configuration, and write out the results.

28 Chapter 1 • Programming Principles

The resulting driver uses configuration.initialize() to set up the object and bears
some resemblance to the original main program. In order to call neighbor_count(),
from the driver, we need to adjust its visibility temporarily to become public in the
class Life.

20

int main () // driver for neighbor_count()
/* Pre: None.

Post: Verifies that the method neighbor_count() returns the correct values.
Uses: The class Life and its method initialize(). */

{
Life configuration;
configuration.initialize();
for (row = 1; row <= maxrow; row++){

for (col = 1; col <= maxrow; col++)
cout << configuration.neighbor_count(row, col) << " ";

cout << endl;
}

}

Sometimes two functions can be used to check each other. The easiest way, for
example, to check the Life methods initialize() and print() is to use a driver whose
action part is

configuration.initialize();
configuration.print();

Both methods can be tested by running this driver and making sure that the con-
figuration printed is the same as that given as input.

1.4.7 Program Tracing
After the functions have been assembled into a complete program, it is time to check
out the completed whole. One of the most effective ways to uncover hidden defects
is called a structured walkthrough. In this the programmer shows the completed
program to another programmer or a small group of programmers and explains
exactly what happens, beginning with an explanation of the main program fol-group discussion
lowed by the functions, one by one. Structured walkthroughs are helpful for three
reasons. First, programmers who are not familiar with the actual code can often
spot bugs or conceptual errors that the original programmer overlooked. Second,
the questions that other people ask can help you to clarify your own thinking and
discover your own mistakes. Third, the structured walkthrough often suggests
tests that prove useful in later stages of software production.

It is unusual for a large program to run correctly the first time it is executed
as a whole, and if it does not, it may not be easy to determine exactly where the
errors are. On many systems sophisticated trace tools are available to keep track of
function calls, changes of variables, and so on. A simple and effective debugging
tool, however, is to take snapshots of program execution by inserting printingprint statements for

debugging statements at key points in the main program; this strategy is often available as an
option in a debugger when one is available. A message can be printed each time a

Section 1.4 • Coding, Testing, and Further Refinement 29

function is called, and the values of important variables can be printed before and
after each function is called. Such snapshots can help the programmer converge
quickly on the particular location where an error is occurring.

Scaffolding is another term frequently used to describe code inserted into a
program to help with debugging. Never hesitate to put scaffolding into your pro-
grams as you write them; it will be easy to delete once it is no longer needed, andtemporary scaffolding
it may save you much grief during debugging.

When your program has a mysterious error that you cannot localize at all, then
it is very useful to put scaffolding into the main program to print the values of
important variables. This scaffolding should be put at one or two of the major
dividing points in the main program. (If you have written a program of any sig-
nificant size that does not subdivide its work into several major sections, then you
have already made serious errors in the design and structure of your program that
you should correct.) With printouts at the major dividing points, you should be
able to determine which section of the program is misbehaving, and then you can
concentrate on that section, introducing scaffolding into its subdivisions.

Another important method for detecting errors is to practice defensive pro-
gramming. Put if statements at the beginning of functions to check that the pre-defensive

programming conditions do in fact hold. If not, print an error message. In this way, you will
be alerted as soon as a supposedly impossible situation arises, and if it does not
arise, the error checking will be completely invisible to the user. It is, of course,
particularly important to check that the preconditions hold when the input to a
function comes from the user, or from a file, or from some other source outside the
program itself. It is, however, surprising how often checking preconditions will
reveal errors even in places where you are sure everything is correct.

For very large programs yet another tool is sometimes used. This is a staticstatic analyzer
analyzer, a program that examines the source program (as written in C++, for
example) looking for uninitialized or unused variables, sections of the code that
can never be reached, and other occurrences that are probably incorrect.

1.4.8 Principles of Program Testing
So far we have said nothing about the choice of data to be used to test programs
and functions. This choice, of course, depends intimately on the project under
development, so we can make only some general remarks. First we should note
the following:choosing test data

Programming Precept

The quality of test data is more important than its quantity.

Many sample runs that do the same calculations in the same cases provide no more

21

effective a test than one run.

Programming Precept

Program testing can be used to show the presence of bugs,
but never their absence.

30 Chapter 1 • Programming Principles

It is possible that other cases remain that have never been tested even after many
sample runs. For any program of substantial complexity, it is impossible to per-
form exhaustive tests, yet the careful choice of test data can provide substantial
confidence in the program. Everyone, for example, has great confidence that the
typical computer can add two floating-point numbers correctly, but this confidence
is certainly not based on testing the computer by having it add all possible floating-
point numbers and checking the results. If a double-precision floating-point num-
ber takes 64 bits, then there are 2128 distinct pairs of numbers that could be added.
This number is astronomically large: All computers manufactured to date have
performed altogether but a tiny fraction of this number of additions. Our confi-
dence that computers add correctly is based on tests of each component separately;
that is, by checking that each of the 64 digits is added correctly and that carrying
from one place to another is done correctly.

There are at least three general philosophies that are used in the choice of testtesting methods
data.

1. The Black-Box Method
Most users of a large program are not interested in the details of its functioning;
they only wish to obtain answers. That is, they wish to treat the program as a black
box; hence the name of this method. Similarly, test data should be chosen according
to the specifications of the problem, without regard to the internal details of the
program, to check that the program operates correctly. At a minimum the test data
should be selected in the following ways:

1. Easy values. The program should be debugged with data that are easy todata selection
check. More than one student who tried a program only for complicated data,
and thought it worked properly, has been embarrassed when the instructor
tried a trivial example.

2. Typical, realistic values. Always try a program on data chosen to represent
how the program will be used. These data should be sufficiently simple so that
the results can be checked by hand.

3. Extreme values. Many programs err at the limits of their range of applications.
It is very easy for counters or array bounds to be off by one.

4. Illegal values. “Garbage in, garbage out” is an old saying in computer circles
that should not be respected. When a good program has garbage coming in,
then its output should at least be a sensible error message. Indeed, the program
should provide some indication of the likely errors in input and perform any
calculations that remain possible after disregarding the erroneous input.

2. The Glass-Box Method
The second approach to choosing test data begins with the observation that a pro-
gram can hardly be regarded as thoroughly tested if there are some parts of its
code that, in fact, have never been executed. In the glass-box method of testing,
the logical structure of the program is examined, and for each alternative that may
occur, test data are devised that will lead to that alternative. Thus care is takenpath testing
to choose data to check each possibility in every switch statement, each clause of

Section 1.4 • Coding, Testing, and Further Refinement 31

every if statement, and the termination condition of each loop. If the program has
several selection or iteration statements, then it will require different combinations
of test data to check all the paths that are possible. Figure 1.3 shows a short program
segment with its possible execution paths.

22

a == 1 a == 3a == 2

b == 0

x = 3; x = 2; x = 4; while (c > 0)

switch a {
a == 1

a == 2

a == 3

b == 0 b != 0

x = 3; x = 2; x = 4; while (c > 0)

Path 1 Path 2 Path 3 Path 4

a == 2

b != 0

case 1: x = 3;

case 2: if (b == 0)
x = 2;

else
x = 4;

case 3: while (c > 0)
process (c);

process (c);

process (c);

break ;

break ;

break ;
}

Figure 1.3. The execution paths through a program segment

For a large program the glass-box approach is clearly not practicable, but for
a single small module, it is an excellent debugging and testing method. In a well-
designed program, each module will involve few loops and alternatives. Hence
only a few well-chosen test cases will suffice to test each module on its own.

modular testing In glass-box testing, the advantages of modular program design become evi-
dent. Let us consider a typical example of a project involving 50 functions, each
of which can involve 5 different cases or alternatives. If we were to test the whole
program as one, we would need 550 test cases to be sure that each alternative was
tested. Each module separately requires only 5 (easier) test cases, for a total of
5× 50 = 250. Hence a problem of impossible size has been reduced to one that, for
a large program, is of quite modest size.

comparison Before you conclude that glass-box testing is always the preferable method,
we should comment that, in practice, black-box testing is usually more effective
in uncovering errors. Perhaps one reason is that the most subtle programming
errors often occur not within a function but in the interface between functions, ininterface errors

32 Chapter 1 • Programming Principles

misunderstanding of the exact conditions and standards of information interchange
between functions. It would therefore appear that a reasonable testing philosophy
for a large project would be to apply glass-box methods to each small module as it
is written and use black-box test data to test larger sections of the program when
they are complete.

3. The Ticking-Box Method
To conclude this section, let us mention one further philosophy of program testing,
a philosophy that is, unfortunately, quite widely used. This might be called the
ticking-box method. It consists of doing no testing at all after the project is fairly
well debugged, but instead turning it over to the customer for trial and acceptance.
The result, of course, is a time bomb.

Exercises 1.4 E1. If you suspected that the Life program contained errors, where would be a
good place to insert scaffolding into the main program? What information
should be printed out?

E2. Take your solution to Section 1.3, Exercise E9 (designing a program to plot a
set of points), and indicate good places to insert scaffolding if needed.

E3. Find suitable black-box test data for each of the following:
(a) A function that returns the largest of its three parameters, which are float-

ing-point numbers.
(b) A function that returns the square root of a floating-point number.
(c) A function that returns the least common multiple of its two parameters,

which must be positive integers. (The least common multiple is the small-
est integer that is a multiple of both parameters. Examples: The least
common multiple of 4 and 6 is 12, of 3 and 9 is 9, and of 5 and 7 is 35.)

(d) A function that sorts three integers, given as its parameters, into ascending
order.

(e) A function that sorts an array a containing n integers indexed from 0 to
n − 1 into ascending order, where a and n are both parameters.

E4. Find suitable glass-box test data for each of the following:
(a) The statement

if (a < b) if (c > d) x = 1; else if (c == d) x = 2;
else x = 3; else if (a == b) x = 4; else if (c == d) x = 5;
else x = 6;

(b) The Life method neighbor_count(row, col).

Programming
Projects 1.4

P1. Enter the Life program of this chapter on your computer and make sure that it
works correctly.

P2. Test the Life program with the examples shown in Figure 1.1.

P3. Run the Life program with the initial configurations shown in Figure 1.4. Sev-
eral of these go through many changes before reaching a configuration that
remains the same or has predictable behavior.

Section 1.4 • Coding, Testing, and Further Refinement 33

R Pentomino

Cheshire Cat

Tumbler

Virus

Harvester

The Glider Gun

Barber Pole

Figure 1.4. Life configurations
23

34 Chapter 1 • Programming Principles

1.5 PROGRAM MAINTENANCE

Small programs written as exercises or demonstrations are usually run a few times
and then discarded, but the disposition of large practical programs is quite different.
A program of practical value will be run many times, usually by many different
people, and its writing and debugging mark only the beginning of its use. They
also mark only the beginning of the work required to make and keep the program
useful. It is necessary to review and analyze the program to ensure that it meets the
requirements specified for it, adapt it to changing environments, and modify it to
make it better meet the needs of its users.

Maintenance of a computer program encompasses all this work done to a
program after it has been fully debugged, tested, and put into use. With time and
experience, the expectations for a computer program will generally change. The
operating and hardware environment will change; the needs and expectations of
users will change; the interface with other parts of the software system will change.
Hence, if a program is to have continued usefulness, continuing attention must be
given to keep it up to date. In fact, surveys show the following:

24

Programming Precept

For a large and important program, more than half the work
comes in the maintenance phase,

after it has been completely debugged, tested, and put into use.

1.5.1 Program Evaluation

The first step of program maintenance is to begin the continuing process of review,
analysis, and evaluation. There are several useful questions we may ask about any
program. The first group of questions concerns the use and output of the program
(thus continuing what is started with black-box testing).

1. Does the program solve the problem that is requested, following the problem
specifications exactly?

2. Does the program work correctly under all conditions?

3. Does the program have a good user interface? Can it receive input in forms
convenient and easy for the user? Is its output clear, useful, and attractively
presented? Does the program provide alternatives and optional features to
facilitate its use? Does it include clear and sufficient instructions and other
information for the user?

The remaining questions concern the structure of the program (continuing the
process begun in glass-box testing).

Section 1.5 • Program Maintenance 35

4. Is the program logically and clearly written, with convenient classes and short
functions as appropriate to do logical tasks? Are the data structured into classes
that accurately reflect the needs of the program?

5. Is the program well documented? Do the names accurately reflect the use
and meaning of variables, functions, types, and methods? Are precise pre-
and postconditions given as appropriate? Are explanations given for major
sections of code or for any unusual or difficult code?

6. Does the program make efficient use of time and of space? By changing the
underlying algorithm, could the program’s performance be improved?

Some of these criteria will be closely studied for the programs we write. Others
will not be mentioned explicitly, but not because of any lack of importance. These
criteria, rather, can be met automatically if sufficient thought and effort are invested
in every stage of program design. We hope that the examples we study will reveal
such care.

1.5.2 Review of the Life Program

Let us illustrate these program-evaluation criteria by reconsidering the program
for the Life game. Doing so, in one sense, is really overkill, since a toy project like
the Life game is not, in itself, worth the effort. In the process, however, we shall
consider programming methods important for many other applications. Let us
consider each of the preceding questions in turn.

1. Problem Specification
If we go back to review the rules for the Life game in Section 1.2.1, we will find that
we have not, in fact, been solving the Life game as it was originally described. The
rules make no mention of the boundaries of the grid containing the cells. In ourproblem:

the boundary program, when a moving colony gets sufficiently close to a boundary, then room
for neighbors disappears, and the colony will be distorted by the very presence of
the boundary. That is not supposed to be. Hence our program violates the rules.

It is of course true that in any computer simulation there are absolute bounds on
the values that may appear, but certainly the use of a 20 by 60 grid in our program
is highly restrictive and arbitrary. It is possible to write a Life program without
restricting the size of the grid, but before we can do so, we must develop several
sophisticated data structures. Only after we have done so can we, in Section 9.9,
write a general Life program without restrictions on the size of the grid.

On a first try, however, it is quite reasonable to restrict the problem being solved,
and hence, for now, let us continue studying Life on a grid of limited size. It is,
nevertheless, very important to say exactly what we are doing:

25

Programming Precept

Be sure you understand your problem completely.
If you must change its terms, explain exactly what you have done.

36 Chapter 1 • Programming Principles

2. Program Correctness

Since program testing can show the presence of errors but not their absence, we
need other methods to prove beyond doubt that a program is correct. Constructing
formal proofs that a program is correct is often difficult but sometimes it can be
done, as we shall do for some of the sophisticated algorithms developed in later
chapters. For the Life game, let us be content with more informal reasons why our
program is correct.

First, we ask which parts of the program need verification. The Life configura-
tion is changed only by the method update, and only update and neighbor_count
involve any calculation that might turn out to be wrong. Hence we should concen-
trate on the correctness of these two methods.

The method neighbor_count looks only at the cell given as its parameters andcorrectness of
neighbor_count at the neighbors of that cell. There are only a limited number of possibilities for

the status of the cell and its neighbors, so glass-box testing of these possibilities is
feasible, using a driver program for neighbor_count. Such testing would quickly
convince us of the correctness of neighbor_count.

For update, we should first examine the cases in the switch statement to makecorrectness of update
sure that their actions correspond exactly to the rules in Section 1.2.1. Next, we
can note that the action for each cell depends only on the status of the cell and
it neighbor count. Hence, as for neighbor_count, we can construct a limited set
of glass-box test data that verify that update performs the correct action in each
possible case.

3. User Interface

In running the Life program, you will have likely found that the poor method forproblem: input
input of the initial configuration is a major inconvenience. It is unnatural for a
person to calculate and type in the numerical coordinates of each living cell. The
form of input should instead reflect the same visual imagery that we use to print a
configuration. At a minimum, the program should allow the user to type each row
of the configuration as a line of blanks (for dead cells) and non-blank characters
(for living cells).

Life configurations can be quite complicated. For easier input, the program
should be able to read its initial configuration from a file. To allow stopping thefile input and output
program to be resumed later, the program should also be able to store the final
configuration in a file that can be read again later.

Another option would be to allow the user to edit a configuration at any gen-editing
eration.

The output from the program can also be improved. Rather than rewriting the
entire configuration at each generation, direct cursor addressing should be usedoutput improvements
to change only the cells whose status has changed. Color or other features can be
used to make the output both much more attractive and more useful. For example,
cells that have newly become alive might be one color and those continuing alive
other colors depending on how long they have been alive.

To make the program more self-contained, it would also be useful to have anhelp screen
optional display of a short description of the Life game and its rules, perhaps as a
pop-up screen.

Section 1.5 • Program Maintenance 37

In general, designing a program to have an attractive appearance and feel to
the user is very important, and in large programs a great deal of importance is given
to the user interface, often more than to all other parts of the program combined.

25

Programming Precept

Design the user interface with the greatest care possible.
A program’s success depends greatly on its attractiveness and ease of use.

4. Modularity and Structure
We have already addressed these issues in the original design. The decisions al-
ready made will continue to serve us well.

5. Documentation
Again, we have previously addressed issues of documentation, which need not be
repeated here.

6. Efficiency
Where does the Life program spend most of its time? Surely it is not in the input
phase, since that is done only once. The output too is generally quite efficient.
The bulk of the calculation is in method update and in neighbor_count, which it
invokes.

At every generation, update recalculates the neighbor counts of every possible
cell. In a typical configuration, perhaps only five percent of the cells are living,
often localized in one area of the grid. Hence update spends a great deal of time
laboriously establishing that many dead cells, with no living neighbors, indeed
have neighbor counts of 0 and will remain dead in the next generation. If 95
percent of the cells are dead, this constitutes a substantial inefficiency in the use of
computer time.

But is this inefficiency of any importance? Generally, it is not, since the cal-
culations are done so quickly that, to the user, each generation seems to appear
instantaneously. On the other hand, if you run the Life program on a very slow
machine or on a busy time-sharing system, you may find the program’s speed
somewhat disappointing, with a noticeable pause between printing one genera-poor speed
tion and starting to print the next. In this case, it might be worthwhile to try saving
computer time, but, generally speaking, optimization of the Life program is not
needed even though it is very inefficient.

Programming Precept

Do not optimize your code unless it is necessary to do so.
Do not start to optimize code until it is complete and correct.

Most programs spend 90 percent of their time
doing 10 percent of their instructions.

Find this 10 percent, and concentrate your efforts for efficiency there.

38 Chapter 1 • Programming Principles

Another reason to think carefully before commencing optimization of a program
is that optimizations often produce more complicated code. This code will then be
harder to debug and to modify when necessary.

Programming Precept

Keep your algorithms as simple as you can.
When in doubt, choose the simple way.

1.5.3 Program Revision and Redevelopment

As we continue to evaluate a program, asking whether it meets its objectives and
the needs of its users, we are likely to continue discovering both deficiencies in its
current design and new features that could make it more useful. Hence program
review leads naturally to program revision and redevelopment.

As we review the Life program, for example, we find that it meets some of the
criteria quite well, but it has several deficiencies in regard to other criteria. The most
serious of these is that, by limiting the grid size, it fails to satisfy its specifications.
Its user interface leaves much to be desired. Finally, its computations are inefficient,
but this is probably not important.

With some thought, we can easily improve the user interface for the Life pro-
gram, and several of the projects propose such improvements. To revise the pro-
gram to remove the limits on grid size, however, will require that we use data
structures and algorithms that we have not yet developed, and hence we shall re-
visit the Life program in Section 9.9. At that time, we shall find that the algorithm
we develop also addresses the question of efficiency. Hence the new program will
both meet more general requirements and be more efficient in its calculations.

Programming Precept

Sometimes postponing problems simplifies their solution.

Exercises 1.5 E1. Sometimes the user might wish to run the Life game on a grid smaller than
20×60. Determine how it is possible to make maxrow and maxcol into variables
that the user can set when the program is run. Try to make as few changes in
the program as possible.

E2. One idea for speeding up the function Life :: neighbor_count(row, col) is to
delete the hedge (the extra rows and columns that are always dead) from the ar-
rays grid and new_grid. Then, when a cell is on the boundary, neighbor_count
will look at fewer than the eight neighboring cells, since some of these are out-
side the bounds of the grid. To do this, the function will need to determine
whether or not the cell (row, col) is on the boundary, but this can be done out-
side the nested loops, by determining, before the loops commence, the lower
and upper bounds for the loops. If, for example, row is as small as allowed,

Section 1.6 • Conclusions and Preview 39

then the lower bound for the row loop is row; otherwise, it is row − 1. Deter-
mine, in terms of the size of the grid, approximately how many statements are
executed by the original version of neighbor_count and by the new version.
Are the changes proposed in this exercise worth making?

Programming
Projects 1.5

P1. Modify the Life function initialize so that it sets up the initial Life :: grid con-
figuration by accepting occupied positions as a sequence of blanks and x’s in
appropriate rows, rather than requiring the occupied positions to be entered
as numerical coordinate pairs.

P2. Add a feature to the function initialize so that it can, at the user’s option, either
read its initial configuration from the keyboard or from a file. The first line of the
file will be a comment giving the name of the configuration. Each remaining
line of the file will correspond to a row of the configuration. Each line will
contain x in each living position and a blank in each dead position.

P3. Add a feature to the Life program so that, at termination, it can write the final
configuration to a file in a format that can be edited by the user and that can
be read in to restart the program (using the feature of Project P2).

P4. Add a feature to the Life program so, at any generation, the user can edit the
current configuration by inserting new living cells or by deleting living cells.

P5. Add a feature to the Life program so, if the user wishes at any generation, it
will display a help screen giving the rules for the Life game and explaining
how to use the program.

P6. Add a step mode to the Life program, so it will explain every change it makes
while going from one generation to the next.

P7. Use direct cursor addressing (a system-dependent feature) to make the Life
method print update the configuration instead of completely rewriting it at
each generation.

P8. Use different colors in the Life output to show which cells have changed in the
current generation and which have not.

1.6 CONCLUSIONS AND PREVIEW

This chapter has surveyed a great deal of ground, but mainly from a bird’s-eye view.
Some themes we shall treat in much greater depth in later chapters; others must be
postponed to more advanced courses; still others are best learned by practice.

This section recapitulates and expands some of the principles we have been
studying.

1.6.1 Software Engineering
Software engineering is the study and practice of methods helpful for the con-
struction and maintenance of large software systems. Although small by realistic
standards, the program we have studied in this chapter illustrates many aspects of
software engineering.

40 Chapter 1 • Programming Principles

Software engineering begins with the realization that it is a very long process26
to obtain good software. It begins before any programs are coded and continues as
maintenance for years after the programs are put into use. This continuing process
is known as the life cycle of software. This life cycle can be divided into phases as
follows:

1. Analyze the problem precisely and completely. Be sure to specify all necessaryphases of life cycle
user interface with care.

2. Build a prototype and experiment with it until all specifications can be finalized.

3. Design the algorithm, using the tools of data structures and of other algorithms
whose function is already known.

4. Verify that the algorithm is correct, or make it so simple that its correctness is
self-evident.

5. Analyze the algorithm to determine its requirements and make sure that it meets
the specifications.

6. Code the algorithm into the appropriate programming language.

7. Test and evaluate the program on carefully chosen test data.

8. Refine and repeat the foregoing steps as needed for additional classes and func-
tions until the software is complete and fully functional.

9. Optimize the code to improve performance, but only if necessary.

10. Maintain the program so that it will meet the changing needs of its users.

Most of these topics have been discussed and illustrated in various sections of this
and the preceding chapter, but a few further remarks on the first phase, problem
analysis and specification, are in order.

1.6.2 Problem Analysis
Analysis of the problem is often the most difficult phase of the software life cycle.
This is not because practical problems are conceptually more difficult than are27

computing science exercises—the reverse is often the case—but because users and
programmers tend to speak different languages. Here are some questions on which
the analyst and user must reach an understanding:

1. What form will the input and output data take? How much data will there be?specifications

2. Are there any special requirements for the processing? What special occur-
rences will require separate treatment?

3. Will these requirements change? How? How fast will the demands on the
system grow?

4. What parts of the system are the most important? Which must run most effi-
ciently?

5. How should erroneous data be treated? What other error processing is needed?

6. What kinds of people will use the software? What kind of training will they
have? What kind of user interface will be best?

Section 1.6 • Conclusions and Preview 41

7. How portable must the software be, so that it can move to new kinds of equip-
ment? With what other software and hardware systems must the project be
compatible?

8. What extensions or other maintenance are anticipated? What is the history of
previous changes to software and hardware?

1.6.3 Requirements Specification
For a large project, the phase of problem analysis and experimentation should even-
tually lead to a formal statement of the requirements for the project. This statement
becomes the primary way in which the user and the software engineer attempt to
understand each other and establishes the standard by which the final project will
be judged. Among the contents of this specification will be the following:

28

1. Functional requirements for the system: what it will do and what commands
will be available to the user.

2. Assumptions and limitations on the system: what hardware will be used for the
system, what form must the input take, what is the maximum size of input,
what is the largest number of users, and so on.

3. Maintenance requirements: anticipated extensions of the system, changes in
hardware, changes in user interface.

4. Documentation requirements: what kind of explanatory material is required for
what kinds of users.

The requirements specifications state what the software will do, not how it will be
done. These specifications should be understandable both to the user and to the
programmer. If carefully prepared, they will form the basis for the subsequent
phases of design, coding, testing, and maintenance.

1.6.4 Coding
In a large software project it is necessary to do the coding at the right time, not
too soon and not too late. Most programmers err by starting to code too soon.
If coding is begun before the specifications are made precise, then unwarrantedspecifications complete
assumptions about the specifications will inevitably be made while coding, and
these assumptions may render different classes and functions incompatible with
each other or make the programming task much more difficult than it need be.29

Programming Precept

Never code until the specifications are precise and complete.

Programming Precept

Act in haste and repent at leisure.
Program in haste and debug forever.

42 Chapter 1 • Programming Principles

It is possible but unlikely, on the other hand, to delay coding too long. Just astop-down coding
we design from the top down, we should code from the top down. Once the
specifications at the top levels are complete and precise, we should code the classes
and functions at these levels and test them by including appropriate stubs. If we
then find that our design is flawed, we can modify it without paying an exorbitant
price in low-level functions that have been rendered useless.

The same thought can be expressed somewhat more positively:

Programming Precept

Starting afresh is often easier than patching an old program.

A good rule of thumb is that, if more than ten percent of a program must be
modified, then it is time to rewrite the program completely. With repeated patches
to a large program, the number of bugs tends to remain constant. That is, the
patches become so complicated that each new patch tends to introduce as many
new errors as it corrects.

An excellent way to avoid having to rewrite a large project from scratch is
to plan from the beginning to write two versions. Before a program is running,
it is often impossible to know what parts of the design will cause difficulty or
what features need to be changed to meet the needs of the users. Engineers have
known for many years that it is not possible to build a large project directly from
the drawing board. For large projects engineers always build prototypes; that
is, scaled-down models that can be studied, tested, and sometimes even used for
limited purposes. Models of bridges are built and tested in wind tunnels; pilot
plants are constructed before attempting to use new technology on the assembly
line.

Prototyping is especially helpful for computer software, since it can ease thesoftware prototypes
communication between users and designers early in a project, thereby reducing
misunderstandings and helping to settle the design to everyone’s satisfaction. In
building a software prototype the designer can use programs that are already writ-
ten for input-output, for sorting, or for other common requirements. The building
blocks can be assembled with as little new programming as possible to make a
working model that can do some of the intended tasks. Even though the prototype
may not function efficiently or do everything that the final system will, it provides
an excellent laboratory for the user and designer to experiment with alternative
ideas for the final design.

Programming Precept

Always plan to build a prototype and throw it away.
You’ll do so whether you plan to or not.

Section 1.6 • Conclusions and Preview 43

Programming
Projects 1.6

P1. A magic square is a square array of integers such that the sum of every row,
the sum of every column, and sum of each of the two diagonals are all equal.
Two magic squares are shown in Figure 1.5.6

24

5

6

12

18

1

7

13

19

25

8

14

20

21

2

15

16

22

3

9

sum = 34 sum = 65

17

23

4

10

11

Figure 1.5. Two magic squares

(a) Write a program that reads a square array of integers and determines
whether or not it is a magic square.

(b) Write a program that generates a magic square by the following method.
This method works only when the size of the square is an odd number. Start
by placing 1 in the middle of the top row. Write down successive integers
2, 3, . . .along a diagonal going upward and to the right. When you reach
the top row (as you do immediately since 1 is in the top row), continue
to the bottom row as though the bottom row were immediately above the
top row. When you reach the rightmost column, continue to the leftmost
column as though it were immediately to the right of the rightmost one.
When you reach a position that is already occupied, instead drop straight
down one position from the previous number to insert the new one. The
5× 5 magic square constructed by this method is shown in Figure 1.5.

P2. One-Dimensional Life takes place on a straight line instead of a rectangular
grid. Each cell has four neighboring positions: those at distance one or two
from it on each side. The rules are similar to those of two-dimensional Life
except (1) a dead cell with either two or three living neighbors will become
alive in the next generation, and (2) a living cell dies if it has zero, one, or three
living neighbors. (Hence a dead cell with zero, one, or four living neighbors
stays dead; a living cell with two or four living neighbors stays alive.) The
progress of sample communities is shown in Figure 1.6. Design, write, and test
a program for one-dimensional Life.

6 The magic square on the left appears as shown here in the etching Melancolia by ALBRECHT DÜRER.
Note the inclusion of the date of the etching, 1514.

44 Chapter 1 • Programming Principles

Dies out Oscillates

Glides to the right Repeats in six generations

Figure 1.6. One-dimensional Life configurations

P3. (a) Write a program that will print the calendar of the current year.

(b) Modify the program so that it will read a year number and print the calen-
dar for that year. A year is a leap year (that is, February has 29 instead of
28 days) if it is a multiple of 4, except that century years (multiples of 100)
are leap years only when the year is divisible by 400. Hence the year 1900
is not a leap year, but the year 2000 is a leap year.

(c) Modify the program so that it will accept any date (day, month, year) and
print the day of the week for that date.

(d) Modify the program so that it will read two dates and print the number of
days from one to the other.

(e) Using the rules on leap years, show that the sequence of calendars repeats
exactly every 400 years.

Chapter 1 • Pointers and Pitfalls 45

(f) What is the probability (over a 400-year period) that the 13th of a month is
a Friday? Why is the 13th of the month more likely to be a Friday than any
other day of the week? Write a program to calculate how many Friday the
13ths occur in this century.

POINTERS AND PITFALLS

1. To improve your program, review the logic. Don’t optimize code based on a
poor algorithm.

30

2. Never optimize a program until it is correct and working.

3. Don’t optimize code unless it is absolutely necessary.

4. Keep your functions short; rarely should any function be more than a page
long.

5. Be sure your algorithm is correct before starting to code.

6. Verify the intricate parts of your algorithm.

7. Keep your logic simple.

8. Be sure you understand your problem before you decide how to solve it.

9. Be sure you understand the algorithmic method before you start to program.

10. In case of difficulty, divide a problem into pieces and think of each part sepa-
rately.

11. The nouns that arise in describing a problem suggest useful classes for its
solution; the verbs suggest useful functions.

12. Include careful documentation (as presented in Section 1.3.2) with each func-
tion as you write it.

13. Be careful to write down precise preconditions and postconditions for every
function.

14. Include error checking at the beginning of functions to check that the precon-
ditions actually hold.

15. Every time a function is used, ask yourself why you know that its preconditions
will be satisfied.

16. Use stubs and drivers, black-box and glass-box testing to simplify debugging.

17. Use plenty of scaffolding to help localize errors.

18. In programming with arrays, be wary of index values that are off by 1. Always
use extreme-value testing to check programs that use arrays.

19. Keep your programs well formatted as you write them—it will make debug-
ging much easier.

46 Chapter 1 • Programming Principles

20. Keep your documentation consistent with your code, and when reading a
program make sure that you debug the code and not just the comments.

21. Explain your program to somebody else: Doing so will help you understand
it better yourself.

REVIEW QUESTIONS

Most chapters of this book conclude with a set of questions designed to help
you review the main ideas of the chapter. These questions can all be answered
directly from the discussion in the book; if you are unsure of any answer, refer
to the appropriate section.

1. When is it appropriate to use one-letter variable names?1.3

2. Name four kinds of information that should be included in program documen-
tation.

3. What is the difference between external and internal documentation?

4. What are pre- and postconditions?

5. Name three kinds of parameters. How are they processed in C++?

6. Why should side effects of functions be avoided?

7. What is a program stub?1.4

8. What is the difference between stubs and drivers, and when should each be
used?

9. What is a structured walkthrough?

10. What is scaffolding in a program, and when is it used?

11. Name a way to practice defensive programming.

12. Give two methods for testing a program, and discuss when each should be
used.

13. If you cannot immediately picture all details needed for solving a problem,
what should you do with the problem?

14. What are preconditions and postconditions of a subprogram?

15. When should allocation of tasks among functions be made?

16. How long should coding be delayed?1.6

17. What is program maintenance?

18. What is a prototype?

19. Name at least six phases of the software life cycle and state what each is.

20. Define software engineering.

21. What are requirements specifications for a program?

Chapter 1 • References for Further Study 47

REFERENCES FOR FURTHER STUDY

C++
The programming language C++ was devised by BJARNE STROUSTRUP, who first
published its description in 1984. The standard reference manual is

B. STROUSTRUP, The C++ Programming Language, third edition, Addison-Wesley,
Reading, Mass., 1997.

Many good textbooks provide a more leisurely description of C++, too many books
to list here. These textbooks also provide many examples and applications.

For programmers who already know the language, an interesting book about
how to use C++ effectively is

SCOTT MEYERS, Effective C++, second edition, Addison-Wesley, Reading, Mass., 1997.

Programming Principles
Two books that contain many helpful hints on programming style and correctness,
as well as examples of good and bad practices, are

BRIAN KERNIGHAN and P. J. PLAUGER, The Elements of Programming Style, second edi-
tion, McGraw-Hill, New York, 1978, 168 pages.

DENNIE VAN TASSEL, Program Style, Design, Efficiency, Debugging, and Testing, second
edition, Prentice Hall, Englewood Cliffs, N.J., 1978, 323 pages.

EDSGER W. DIJKSTRA pioneered the movement known as structured programming,
which insists on taking a carefully organized top-down approach to the design
and writing of programs, when in March 1968 he caused some consternation by
publishing a letter entitled “Go To Statement Considered Harmful” in the Commu-
nications of the ACM (vol. 11, pages 147–148). DIJKSTRA has since published several
papers and books that are most instructive in programming method. One book of
special interest is

EDSGER W. DIJKSTRA, A Discipline of Programming, Prentice Hall, Englewood Cliffs,
N.J., 1976, 217 pages.

A full treatment of object oriented design is provided by
GRADY BOOCH, Object-Oriented Analysis and Design with Applications, Benjamin/
Cummings, Redwood City, Calif., 1994.

The Game of Life
The prominent British mathematician J. H. CONWAY has made many original con-
tributions to subjects as diverse as the theory of finite simple groups, logic, and
combinatorics. He devised the game of Life by starting with previous technical
studies of cellular automata and devising reproduction rules that would make it
difficult for a configuration to grow without bound, but for which many config-
urations would go through interesting progressions. CONWAY, however, did not
publish his observations, but communicated them to MARTIN GARDNER. The popu-
larity of the game skyrocketed when it was discussed in

48 Chapter 1 • Programming Principles

MARTIN GARDNER, “Mathematical Games” (regular column), Scientific American 223,
no. 4 (October 1970), 120–123; 224, no. 2 (February 1971), 112–117.

The examples at the end of Sections 1.2 and 1.4 are taken from these columns. These
columns have been reprinted with further results in

MARTIN GARDNER, Wheels, Life and Other Mathematical Amusements, W. H. Freeman,
New York and San Francisco, 1983, pp. 214–257.

This book also contains a bibliography of articles on Life. A quarterly newsletter,
entitled Lifeline, was even published for a few years to keep the real devotees up
to date on current developments in Life and related topics.

Software Engineering
A thorough discussion of many aspects of structured programming is found in

EDWARD YOURDON, Techniques of Program Structure and Design, Prentice-Hall, Engle-
wood Cliffs, N. J., 1975, 364 pages.

A perceptive discussion (in a book that is also enjoyable reading) of the many
problems that arise in the construction of large software systems is provided in

FREDERICK P. BROOKS, JR., The Mythical Man–Month: Essays on Software Engineering,
Addison-Wesley, Reading, Mass., 1975, 195 pages.

A good textbook on software engineering is
IAN SOMMERVILLE, Software Engineering, Addison-Wesley, Wokingham, England,
1985, 334 pages.

algorithm verification Two books concerned with proving programs and with using assertions and in-
variants to develop algorithms are

DAVID GRIES, The Science of Programming, Springer-Verlag, New York, 1981, 366
pages.

SUAD ALAGIĆ and MICHAEL A. ARBIB, The Design of Well-Structured and Correct Pro-
grams, Springer-Verlag, New York, 1978, 292 pages.

Keeping programs so simple in design that they can be proved to be correct is not
easy, but is very important. C. A. R. HOARE (who invented the quicksort algorithm
that we shall study in Chapter 8) writes: “There are two ways of constructing
a software design: One way is to make it so simple that there are obviously no
deficiencies, and the other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.” This quotation is from the 1980
Turing Award Lecture: “The emperor’s old clothes,” Communications of the ACM
24 (1981), 75–83.

Two books concerned with methods of problem solving are
GEORGE PÓLYA, How to Solve It, second edition, Doubleday, Garden City, N.Y., 1957,problem solving
253 pages.

WAYNE A. WICKELGREN, How to Solve Problems, W. H. Freeman, San Francisco, 1974,
262 pages.

The programming project on one-dimensional Life is taken from
JONATHAN K. MILLER, “One-dimensional Life,” Byte 3 (December, 1978), 68–74.

Introduction to
Stacks 2

T
HIS CHAPTER introduces the study of stacks, one of the simplest but most
important of all data structures. The application of stacks to the reversal of
data is illustrated with a program that calls on the standard-library stack
implementation. A contiguous implementation of a stack data structure is

then developed and used to implement a reverse Polish calculator and a bracket-
checking program. The chapter closes with a discussion of the general principles
of abstract data types and data structures.

2.1 Stack Specifications 50
2.1.1 Lists and Arrays 50
2.1.2 Stacks 50
2.1.3 First Example: Reversing a List 51
2.1.4 Information Hiding 54
2.1.5 The Standard Template Library 55

2.2 Implementation of Stacks 57
2.2.1 Specification of Methods for Stacks 57
2.2.2 The Class Specification 60
2.2.3 Pushing, Popping, and Other

Methods 61
2.2.4 Encapsulation 63

2.3 Application: A Desk Calculator 66

2.4 Application: Bracket Matching 69

2.5 Abstract Data Types and Their
Implementations 71
2.5.1 Introduction 71
2.5.2 General Definitions 73
2.5.3 Refinement of Data Specification 74

Pointers and Pitfalls 76
Review Questions 76
References for Further Study 77

49

2.1 STACK SPECIFICATIONS

2.1.1 Lists and Arrays

Soon after the introduction of loops and arrays, every elementary programming
class attempts some programming exercise like the following:

Read an integer n, which will be at most 25, then read a list of n numbers, and print
the list in reverse order.

This simple exercise will probably cause difficulty for some students. Most will
realize that they need to use an array, but some will attempt to set up the array to
have n entries and will be confused by the error message resulting from attempting
to use a variable rather than a constant to declare the size of the array. Other
students will say, “I could solve the problem if I knew that there were 25 numbers,
but I don’t see how to handle fewer.” Or “Tell me before I write the program how
large n is, and then I can do it.”

The difficulties of these students come not from stupidity, but from thinking
logically. A beginning course sometimes does not draw enough distinction be-
tween two quite different concepts. First is the concept of a list of n numbers,lists and arrays
a list whose size is variable; that is, a list for which numbers can be inserted or
deleted, so that, if n = 3, then the list contains only 3 numbers, and if n = 19, then
it contains 19 numbers. Second is the programming feature called an array or a
vector, which contains a constant number of positions, that is, whose size is fixed
when the program is compiled. A list is a dynamic data structure because its size
can change, while an array is a static data structure because it has a fixed size.

The concepts of a list and an array are, of course, related in that a list of variableimplementation
size can be implemented in a computer as occupying part of an array of fixed
size, with some of the entries in the array remaining unused. We shall later find,
however, that there are several different ways to implement lists, and therefore we
should not confuse implementation decisions with more fundamental decisions on
choosing and specifying data structures.

2.1.2 Stacks

A stack is a version of a list that is particularly useful in applications involving
reversing, such as the problem of Section 2.1.1. In a stack data structure, all inser-33

tions and deletions of entries are made at one end, called the top of the stack. A
helpful analogy (see Figure 2.1) is to think of a stack of trays or of plates sitting on
the counter in a busy cafeteria. Throughout the lunch hour, customers take trays
off the top of the stack, and employees place returned trays back on top of the stack.
The tray most recently put on the stack is the first one taken off. The bottom tray
is the first one put on, and the last one to be used.

50

Section 2.1 • Stack Specifications 51

Figure 2.1. Stacks

Sometimes this picture is described with plates or trays on a spring-loaded
device so that the top of the stack stays near the same height. This imagery is poor
and should be avoided. If we were to implement a computer stack in this way,
it would mean moving every item in the stack whenever one item was inserted
or deleted. It is far better to think of the stack as resting on a firm counter or
floor, so that only the top item is moved when it is added or deleted. The spring-
loaded imagery, however, has contributed a pair of colorful words that are firmly
embedded in computer jargon and that we shall use to name the fundamental
operations on a stack. When we add an item to a stack, we say that we push itpush and pop
onto the stack, and when we remove an item, we say that we pop it from the stack.
See Figure 2.2. Note that the last item pushed onto a stack is always the first that
will be popped from the stack. This property is called last in, first out, or LIFO for
short.

2.1.3 First Example: Reversing a List

As a simple example of the use of stacks, let us write a program to solve the problem
of Section 2.1.1. Our program must read an integer n, followed by n floating-point
numbers. It then writes them out in reverse order. We can accomplish this task by
pushing each number onto a stack as it is read. When the input is finished, we pop
numbers off the stack, and they will come off in the reverse order.

52 Chapter 2 • Introduction to Stacks

34 Push box Q onto empty stack:

Push box A onto stack:

Pop a box from stack:

Pop a box from stack:

Push box R onto stack:

Push box D onto stack:

Push box M onto stack:

Pop a box from stack:

Push box Q onto stack:

Push box S onto stack:

(empty)

Q

A

Q A

Q

R

D

M

D
M

Q

S

Figure 2.2. Pushing and popping a stack

In our program we shall rely on the standard template library of C++ (usuallystandard template
library called the STL) to provide a class that implements stacks.1 The STL is part of

the standard library of C++. This standard library contains all kinds of useful
information, functions, and classes. The STL is the part of the standard library that

1 If the STL stack implementation is not available, the stack class that we implement in the next
section can be used in its place.

Section 2.1 • Stack Specifications 53

provides convenient implementations for many common data structures, including
almost all the data structures we shall study in this book.

We can include the STL stack implementation into our programs with the direc-

35

tive#include <stack> (or, on some older, pre-ANSI compilers, the directive#include
<stack.h>). Once the library is included, we can define initially empty stack ob-
jects, and apply methods called push, pop, top, and empty. We will discuss these
methods and the STL itself in more detail later, but its application in the following
program is quite straightforward.

36

#include <stack>

int main()
/* Pre: The user supplies an integer n and n decimal numbers.

Post: The numbers are printed in reverse order.
Uses: The STL class stack and its methods */

{
int n;
double item;
stack<double> numbers; // declares and initializes a stack of numbers

cout << " Type in an integer n followed by n decimal numbers." << endl
<< " The numbers will be printed in reverse order." << endl;

cin >> n;

for (int i = 0; i < n; i++) {
cin >> item;
numbers.push(item);

}

cout << endl << endl;
while (!numbers.empty()) {

cout << numbers.top() << " ";
numbers.pop();

}
cout << endl;

}

In this number-reversing program, we have used not only the methods push(),
top(), and pop() of the stack called numbers, but we have made crucial use ofinitialization
the implicit initialization of numbers as an empty stack. That is, when the stack
called numbers is created, it is automatically initialized to be empty. Just as with
the standard-library classes, whenever we construct a class we shall be careful to
ensure that it is automatically initialized, in contrast to variables and arrays, whose
initialization must be given explicitly.

We remark that, like the atomic classes int, float, and so on, the C++ library
class stack has an identifier that begins with a lowercase letter. As we decided incapitalization
Section 1.3, however, the classes that we shall create will have identifiers with an
initial capital letter.

54 Chapter 2 • Introduction to Stacks

One important feature of the STL stack implementation is that the user can
specify the type of entries to be held in a particular stack. For example, in the
reversing program, we create a stack of elements of type double with the definition
stack<double> numbers, whereas, if we had required a stack of integers, we would
have declared stack<int> numbers. The standard library uses a C++ construction
known as a template to achieve this flexibility. Once we are familiar with more basictemplate
implementations of data structures, we shall practice the construction and use of
our own templates, starting in Chapter 6.

2.1.4 Information Hiding

We have been able to write our program for reversing a line of input without
any consideration of how a stack is actually implemented. In this way, we have an
example of information hiding: The methods for handling stacks are implemented
in the C++ standard library, and we can use them without needing to know the
details of how stacks are kept in memory or of how the stack operations are actually
done.

As a matter of fact, we have already been practicing information hiding in the
programs we have previously written, without thinking about it. Whenever we
have written a program using an array or a structure, we have been content tobuilt-in structures
use the operations on these structures without considering how the C++ compiler
actually represents them in terms of bits or bytes in the computer memory or the
machine-language steps it follows to look up an index or select a member.

One important difference between practicing information hiding with regard to
arrays and practicing information hiding with regard to stacks is that C++ provides
just one built-in implementation of arrays, but the STL has several implementations
of stacks. Although the code in a client program that uses stacks should not de-
pend on a particular choice of stack implementation, the performance of the final
program may very much depend on the choice of implementation. In order to
make an informed decision about which stack implementation should be used in
a given application, we need to appreciate the different features and behaviors of
the different implementations. In the coming chapters, we shall see that for stacksalternative

implementations (as for almost all the data types we shall study) there are several different ways to
represent the data in the computer memory, and there are several different ways
to do the operations. In some applications, one implementation is better, while in
other applications another implementation proves superior.

Even in a single large program, we may first decide to represent stacks one way
and then, as we gain experience with the program, we may decide that another way
is better. If the instructions for manipulating a stack have been written out every
time a stack is used, then every occurrence of these instructions will need to be
changed. If we have practiced information hiding by using separate functions forchange of

implementation manipulating stacks, then only the declarations will need to be changed.
Another advantage of information hiding shows up in programs that use stacks

where the very appearance of the words push and pop immediately alert a personclarity of program
reading the program to what is being done, whereas the instructions themselves

Section 2.1 • Stack Specifications 55

might be more obscure. We shall find that separating the use of data structures
from their implementation will help us improve the top-down design of both ourtop-down design
data structures and our programs.

2.1.5 The Standard Template Library

The standard C++ library is available in implementations of ANSI C++. This li-
brary provides all kinds of system-dependent information, such as the maximum
exponent that can be stored in a floating-point type, input and output facilities,
and other functions whose optimal implementation depends on the system. In
addition, the standard library provides an extensive set of data structures and their
methods for use in writing programs. In fact, the standard library contains imple-library of data

structures mentations of almost all the data structures that we consider in this text, including
stacks, queues, deques, lists, strings, and sets, among others.

To be able to use these library implementations appropriately and efficiently, it
is essential that we learn the principles and the alternative implementations of the
data structures represented in the standard library. We shall therefore give only
a very brief introduction to the standard library, and then we return to our main
goal, the study of the data structures themselves. In one sense, however, most of

35 this book can be regarded as an introduction to the STL of C++, since our goal
is to learn the basic principles and methods of data structures, knowledge that is
essential to the discerning use of the STL.

As we have already noted, the STL stack implementation is a class template,
and therefore a programmer can choose exactly what sort of items will be placed
in a stack, by specifying its template parameters between < > symbols. In fact,template parameter
a programmer can also utilize a second template parameter to control what sort of
stack implementation will be used. This second parameter has a default value, so
that a programmer who is unsure of which implementation to use will get a stack
constructed from a default implementation; in fact, it will come from a deque—
a data structure that we will introduce in Chapter 3. A programmer can choose
instead to use a vector-based or a list-based implementation of a stack. In order toalternative

implementations choose among these implementations wisely, a programmer needs to understand
their relative advantages, and this understanding can only come from the sort of
general study of data structures that we undertake in this book.

Regardless of the chosen implementation, however, the STL does guarantee
that stack methods will be performed efficiently, operating in constant time, inde-
pendent of the size of the stack. In Chapter 7, we shall begin a systematic studyalgorithm performance
of the time used by various algorithms, and we shall continue this study in later
chapters. As it happens, the constant-time operation of standard stack methods is
guaranteed only in an averaged sense known as amortized performance. We shall
study the amortized analysis of programs in Section 10.5.

The STL provides implementations of many other standard data structures,
and, as we progress through this book, we shall note those implementations that
correspond to topics under discussion. In general, these library implementations
are highly efficient, convenient, and designed with enough default options to allow
programmers to use them easily.

56 Chapter 2 • Introduction to Stacks

Exercises 2.1 E1. Draw a sequence of stack frames like Figure 2.2 showing the progress of each of
the following segments of code, each beginning with an empty stack s. Assume
the declarations

#include <stack>
stack<char> s;
char x, y, z;

(a) s.push(′a′);
s.push(′b′);
s.push(′c′);
s.pop();
s.pop();
s.pop();

(b) s.push(′a′);
s.push(′b′);
s.push(′c′);
x = s.top();
s.pop();
y = s.top();
s.pop();
s.push(x);
s.push(y);
s.pop();

(c) s.push(′a′);
s.push(′b′);
s.push(′c′);
while (!s.empty())

s.pop();

(d) s.push(′a′);
s.push(′b′);
while (!s.empty()) {

x = s.top();
s.pop();

}
s.push(′c′);
s.pop();
s.push(′a′);
s.pop();
s.push(′b′);
s.pop();

E2. Write a program that makes use of a stack to read in a single line of text and
write out the characters in the line in reverse order.

E3. Write a program that reads a sequence of integers of increasing size and prints
the integers in decreasing order of size. Input terminates as soon as an integer
that does not exceed its predecessor is read. The integers are then printed in
decreasing order.

E4. A stack may be regarded as a railway switching network like the one in
Figure 2.3. Cars numbered 1, 2, . . . , n are on the line at the left, and it is
desired to rearrange (permute) the cars as they leave on the right-hand track.stack permutations
A car that is on the spur (stack) can be left there or sent on its way down the
right track, but it can never be sent back to the incoming track. For example,
if n = 3, and we have the cars 1, 2, 3 on the left track, then 3 first goes to the
spur. We could then send 2 to the spur, then on its way to the right, then send
3 on the way, then 1, obtaining the new order 1, 3, 2.

(a) For n = 3, find all possible permutations that can be obtained.
(b) For n = 4, find all possible permutations that can be obtained.
(c) [Challenging] For general n, find how many permutations can be obtained

by using this stack.

Section 2.2 • Implementation of Stacks 57

Figure 2.3. Switching network for stack permutations

2.2 IMPLEMENTATION OF STACKS

We now turn to the problem of the construction of a stack implementation in C++.
We will produce a contiguous Stack implementation, meaning that the entries arecontiguous

implementation stored next to each other in an array. In Chapter 4, we shall study a linked imple-
mentation using pointers in dynamic memory.

In these and all the other implementations we construct, we shall be careful
always to use classes to implement the data structures. Thus, we shall now developclasses
a class Stack whose data members represent the entries of a stack. Before we
implement any class, we should decide on specifications for its methods.

2.2.1 Specification of Methods for Stacks

The methods of our class Stack must certainly include the fundamental operations
called empty(), top(), push(), and pop(). Only one other operation will be essen-stack methods
tial: This is an initialization operation to set up an empty stack. Without such an
initialization operation, client code would have to deal with stacks made up of ran-
dom and probably illegal data, whatever happened beforehand to be in the storage
area occupied by the stack.

1. Constructors

The C++ language allows us to define special initialization methods for any class.
These methods are called constructors for the class. Each constructor is a function
with the same name as the corresponding class. A constructor has no return type.
Constructors are applied automatically whenever we declare an object of the class.
For example, the standard library implementation of a stack includes a construc-
tor that initializes each newly created stack as empty: In our earlier program for
reversing a line of input, such an initialization was crucial. Naturally, we shall

37

create a similar Stack constructor for the class that we develop. Thus, whenever
one of our clients declares a Stack object, that object is automatically initialized as
empty. The specification of our Stack constructor follows.

58 Chapter 2 • Introduction to Stacks

Stack :: Stack();initialization

precondition: None.

postcondition: The Stack exists and is initialized to be empty.

2. Entry Types, Generics
The declarations for the fundamental methods of a stack depend on the type of en-
tries that we intend to store in the stack. To keep as much generality as we can, let us
use Stack_entry for the type of entries in our Stack. For one application, Stack_entryentry type
might be int, for another it might be char. A client can select an appropriate entry
type with a definition such as

37

typedef char Stack_entry;

By keeping the type Stack_entry general, we can use the same stack implementation
for many different applications.

The ability to use the same underlying data structure and operations for dif-
ferent entry types is called generics. Our use of a typedef statement to choose thegenerics
type of entry in our Stack is a simple way to achieve generic data structures in
C++. For complex applications, ones that need stacks with different entry types in
a single program, the more sophisticated template treatment, which is used in thetemplates
standard library class stack, is more appropriate. After we have gained some ex-
perience with simple data structures, we shall also choose to work with templates,
beginning with the programs in Chapter 6.

3. Error Processing
In deciding on the parameters and return types of the fundamental Stack methods,
we must recognize that a method might be applied illegally by a client. For example,
a client might try to pop an empty stack. Our methods will signal any such problemserror codes
with diagnostic error codes. In this book, we shall use a single enumerated type
called Error_code to report errors from all of our programs and functions.

The enumerated type Error_code will be part of our utility package, described
in Appendix C. In implementing the Stack methods, we shall make use of three
values of an Error_code, namely:

38

success, overflow, underflow

If a method is able to complete its work normally, it will return success as its Er-
ror_code; otherwise, it will return a code to indicate what went wrong. Thus, astack error codes
client that tries to pop from an empty Stack will get back an Error_code of under-
flow. However, any other application of the pop method is legitimate, and it will
result in an Error_code of success.

This provides us with a first example of error handling, an important safeguarderror handling
that we should build into our data structures whenever possible. There are several
different ways that we could decide to handle error conditions that are detected in a
method of a data structure. We could decide to handle the error directly, by printing

Section 2.2 • Implementation of Stacks 59

out an error message or by halting the execution of the program. Alternatively, since
methods are always called from a client program, we can decide to return an error
code back to the client and let it decide how to handle the error. We take the view
that the client is in the best position to judge what to do when errors are detected;
we therefore adopt the second course of action. In some cases, the client code might
react to an error code by ceasing operation immediately, but in other cases it might
be important to ignore the error condition.

Programming Precept

After a client uses a class method,
it should decide whether to check the resulting error status.

Classes should be designed to allow clients to decide
how to respond to errors.

We remark that C++ does provide a more sophisticated technique known as ex-exception handling
ception handling: When an error is detected an exception can be thrown. This
exception can then be caught by client code. In this way, exception handling con-
forms to our philosophy that the client should decide how to respond to errors
detected in a data structure. The standard library implementations of stacks and
other classes use exception handling to deal with error conditions. However, we
shall opt instead for the simplicity of returning error codes in all our implementa-
tions in this text.

4. Specification for Methods

Our specifications for the fundamental methods of a Stack come next.Stack methods

Error_code Stack :: pop();

precondition: None.

postcondition: If the Stack is not empty, the top of the Stack is removed. If the
Stack is empty, an Error_code of underflow is returned and the
Stack is left unchanged.

39

Error_code Stack :: push(const Stack_entry &item);

precondition: None.

postcondition: If the Stack is not full, item is added to the top of the Stack. If
the Stack is full, an Error_code of overflow is returned and the
Stack is left unchanged.

The parameter item that is passed to push is an input parameter, and this is indicated
by its declaration as a const reference. In contrast, the parameter for the next
method, top, is an output parameter, which we implement with call by reference.

60 Chapter 2 • Introduction to Stacks

Error_code Stack :: top(Stack_entry &item) const;

precondition: None.

postcondition: The top of a nonempty Stack is copied to item. A code of fail is
returned if the Stack is empty.

The modifier const that we have appended to the declaration of this method indi-
cates that the corresponding Stack object is not altered by, or during, the method.
Just as it is important to specify input parameters as constant, as information for
the reader and the compiler, it is important for us to indicate constant methods with
this modifier. The last Stack method, empty, should also be declared as a constant
method.

bool Stack :: empty() const;

precondition: None.

postcondition: A result of true is returned if the Stack is empty, otherwise false
is returned.

2.2.2 The Class Specification

For a contiguous Stack implementation, we shall set up an array that will hold the
entries in the stack and a counter that will indicate how many entries there are. We
collect these data members together with the methods in the following definitionstack type
for a class Stack containing items of type Stack_entry. This definition constitutes
the file stack.h.

40

const int maxstack = 10; // small value for testing

class Stack {
public:

Stack();
bool empty() const;
Error_code pop();
Error_code top(Stack_entry &item) const;
Error_code push(const Stack_entry &item);

private:
int count;
Stack_entry entry[maxstack];

};

As we explained in Section 1.2.4, we shall place this class definition in a header file
with extension .h, in this case the file stack.h. The corresponding code file, with
the method implementations that we shall next develop, will be called stack.c.
The code file can then be compiled separately and linked to client code as needed.

Section 2.2 • Implementation of Stacks 61

2.2.3 Pushing, Popping, and Other Methods
The stack methods are implemented as follows. We must be careful of the extreme
cases: We might attempt to pop an entry from an empty stack or to push an entry
onto a full stack. These conditions must be recognized and reported with the return
of an error code.42

Error_code Stack :: push(const Stack_entry &item)
/* Pre: None.

Post: If the Stack is not full, item is added to the top of the Stack. If the Stack
is full, an Error_code of overflow is returned and the Stack is left un-
changed. */

{
Error_code outcome = success;
if (count >= maxstack)

outcome = overflow;
else

entry[count++] = item;
return outcome;

}

Error_code Stack :: pop()
/* Pre: None.

Post: If the Stack is not empty, the top of the Stack is removed. If the Stack is
empty, an Error_code of underflow is returned. */

{
Error_code outcome = success;
if (count == 0)

outcome = underflow;
else −−count;
return outcome;

}

We note that the data member count represents the number of items in a Stack.
Therefore, the top of a Stack occupies entry[count − 1], as shown in Figure 2.4.43

Error_code Stack :: top(Stack_entry &item) const
/* Pre: None.

Post: If the Stack is not empty, the top of the Stack is returned in item. If the
Stack is empty an Error_code of underflow is returned. */

{
Error_code outcome = success;
if (count == 0)

outcome = underflow;
else

item = entry[count − 1];
return outcome;

}

62 Chapter 2 • Introduction to Stacks

41

(a) Stack is empty.

[0]

0

count entry

[1] [2] [maxstack – 1]

(b) Push the first entry.

[0]

1 *

count entry

[1] [2] [maxstack – 1]

…

…

(c) n items on the stack

[0]

n *

count entry

[1] [2]
* *

[n – 1]
* *

[n] [maxstack – 1]

…
*

Figure 2.4. Representation of data in a contiguous stack

bool Stack :: empty() const
/* Pre: None.

Post: If the Stack is empty, true is returned. Otherwise false is returned. */
{

bool outcome = true;
if (count > 0) outcome = false;
return outcome;

}

The other method of our Stack is the constructor. The purpose of the constructorconstructor
is to initialize any new Stack object as empty.

Stack :: Stack()
/* Pre: None.

Post: The stack is initialized to be empty. */
{

count = 0;
}

Section 2.2 • Implementation of Stacks 63

2.2.4 Encapsulation

Notice that our stack implementation forces client code to make use of information
hiding. Our declaration of private visibility for the data makes it is impossible for
a client to access the data stored in a Stack except by using the official methods
push(), pop(), and top(). One important result of this data privacy is that a Stackdata integrity
can never contain illegal or corrupted data. Every Stack object will be initialized
to represent a legitimate empty stack and can only be modified by the official
Stack methods. So long as our methods are correctly implemented, we have a
guarantee that correctly initialized objects must continue to stay free of any data
corruption.

We summarize this protection that we have given our Stack objects by saying
that they are encapsulated. In general, data is said to be encapsulated if it can onlyencapsulation
be accessed by a controlled set of functions.

The small extra effort that we make to encapsulate the data members of a C++
class pays big dividends. The first advantage of using an encapsulated class shows
up when we specify and program the methods: For an encapsulated class, we need
never worry about illegal data values. Without encapsulation, the operations on
a data structure almost always depend on a precondition that the data members
have been correctly initialized and have not been corrupted. We can and should
use encapsulation to avoid such preconditions. For our encapsulated class Stack,
all of the methods have precondition specifications of None. This means that a
client does not need to check for any special situations, such as an uninitialized
stack, before applying a public Stack method. Since we think of data structures
as services that will be written once and used in many different applications, it is
particularly appropriate that the clients should be spared extra work where possi-
ble.

Programming Precept

The public methods for a data structure
should be implemented without preconditions.

The data members should be kept private.

40

We shall omit the precondition section from public method specifications in all our
encapsulated C++ classes.

The private member functions of a data structure cannot be used by clients,
so there is no longer a strong case for writing these functions without precondi-
tions. We shall emphasize the distinction between public and private member
functions of a data structure, by reserving the term method for the former cate-
gory.

64 Chapter 2 • Introduction to Stacks

Exercises 2.2 E1. Assume the following definition file for a contiguous implementation of an
extended stack data structure.

class Extended_stack {
public:

Extended_stack();
Error_code pop();
Error_code push(const Stack_entry &item);
Error_code top(Stack_entry &item) const;
bool empty() const;

void clear(); // Reset the stack to be empty.
bool full() const ; // If the stack is full, return true; else return false.
int size() const; // Return the number of entries in the stack.

private:
int count;
Stack_entry entry[maxstack];

};

Write code for the following methods. [Use the private data members in your
code.]

(a) clear (b) full (c) size

E2. Start with the stack methods, and write a function copy_stack with the follow-
ing specifications:

Error_code copy_stack(Stack &dest, Stack &source);

precondition: None.

postcondition: Stack dest has become an exact copy of Stack source; source
is unchanged. If an error is detected, an appropriate code is
returned; otherwise, a code of success is returned.

Write three versions of your function:

(a) Simply use an assignment statement: dest = source;

(b) Use the Stack methods and a temporary Stack to retrieve entries from the
Stack source and add each entry to the Stack dest and restore the Stack
source.

(c) Write the function as a friend2 to the class Stack. Use the private data
members of the Stack and write a loop that copies entries from source to
dest.

2 Friend functions have access to all members of a C++ class, even private ones.

Section 2.2 • Implementation of Stacks 65

Which of these is easiest to write? Which will run most quickly if the stack is
nearly full? Which will run most quickly if the stack is nearly empty? Which
would be the best method if the implementation might be changed? In which
could we pass the parameter source as a constant reference?

E3. Write code for the following functions. [Your code must use Stack methods,
but you should not make any assumptions about how stacks or their methods
are actually implemented. For some functions, you may wish to declare and
use a second, temporary Stack object.]
(a) Function bool full(Stack &s) leaves the Stack s unchanged and returns a

value of true or false according to whether the Stack s is or is not full.
(b) Function Error_code pop_top(Stack &s, Stack_entry &t) removes the top en-

try from the Stack s and returns its value as the output parameter t.
(c) Function void clear(Stack &s) deletes all entries and returns s as an empty

Stack.
(d) Function int size(Stack &s) leaves the Stack s unchanged and returns a count

of the number of entries in the Stack.
(e) Function void delete_all(Stack &s, Stack_entry x) deletes all occurrences (if

any) of x from s and leaves the remaining entries in s in the same relative
order.

E4. Sometimes a program requires two stacks containing the same type of entries.
If the two stacks are stored in separate arrays, then one stack might overflowtwo coexisting stacks
while there was considerable unused space in the other. A neat way to avoid
this problem is to put all the space in one array and let one stack grow from
one end of the array and the other stack start at the other end and grow in the
opposite direction, toward the first stack. In this way, if one stack turns out to
be large and the other small, then they will still both fit, and there will be no
overflow until all the space is actually used. Define a new class Double_stack
that includes (as private data members) the array and the two indices top_a
and top_b, and write code for the methods Double_stack(), push_a(), push_b(),
pop_a(), and pop_b() to handle the two stacks within one Double_stack.

top_btop_a

...

Programming
Projects 2.2

P1. Assemble the appropriate declarations from the text into the files stack.h and
stack.c and verify that stack.c compiles correctly, so that the class Stack can
be used by future client programs.

P2. Write a program that uses a Stack to read an integer and print all its prime
divisors in descending order. For example, with the integer 2100 the output
should beprime divisors

7 5 5 3 2 2.

[Hint: The smallest divisor greater than 1 of any integer is guaranteed to be a
prime.]

66 Chapter 2 • Introduction to Stacks

2.3 APPLICATION: A DESK CALCULATOR

This section outlines a program to imitate the behavior of a simple calculator that
does addition, subtraction, multiplication, division, and perhaps some other op-
erations. There are many kinds of calculators available, and we could model our
program after any of them. To provide a further illustration of the use of stacks,
however, let us choose to model what is often called a reverse Polish calculator.reverse Polish

calculations In such a calculator, the operands (numbers, usually) are entered before an oper-
ation is specified. The operands are pushed onto a stack. When an operation is
performed, it pops its operands from the stack and pushes its result back onto the
stack.

We shall write ? to denote an instruction to read an operand and push it onto
the stack; + , −, * , and / represent arithmetic operations; and = is an instruction
to print the top of the stack (but not pop it off). Further, we write a, b, c, and
d to denote numerical values such as 3.14 or −7. The instructions ? a ? b + =examples

mean read and store the numbers a and b, calculate and store their sum, and
then print the sum. The instructions ? a ? b + ? c ? d + * = request four numer-
ical operands, and the result printed is the value of (a + b) * (c + d). Similarly,
the instructions ? a ? b ? c − = * ? d + = mean push the numbers a, b, c onto the
stack, replace the pair b, c by b − c and print its value, calculate a * (b − c), push
d onto the stack, and finally calculate and print (a * (b − c)) + d. The advantage of
a reverse Polish calculator is that any expression, no matter how complicated, canno parentheses needed
be specified without the use of parentheses.

If you have access to a UNIX system, you can experiment with a reverse Polish
calculator with the command dc.

Polish notation is useful for compilers as well as for calculators, and its study
forms the major topic of Chapter 13. For the present, however, a few minutes’
practice with a reverse Polish calculator will make you quite comfortable with its
use.

It is clear that we should use a stack in an implementation of a reverse Polish
calculator. After this decision, the task of the calculator program becomes sim-
ple. The main program declares a stack of entries of type double, accepts new
commands, and performs them as long as desired.

In the program, we shall apply our generic Stack implementation. We begin
with a typedef statement to set the type of Stack_entry. We then include the Stack
definition file stack.h.

44

typedef double Stack_entry;
#include "stack.h"

int main()
/* Post: The program has executed simple arithmetic commands entered by the

user.
Uses: The class Stack and the functions introduction, instructions, do_command,

and get_command. */

Section 2.3 • Application: A Desk Calculator 67

{
Stack stored_numbers;
introduction();
instructions();
while (do_command(get_command(), stored_numbers));

}

The auxiliary function get_command obtains a command from the user, checking
that it is valid and converting it to lowercase by using the string function tolower()
that is declared in the standard header file cctype. (The file cctype, or its older in-
carnation ctype.h, can be automatically included via our standard utility package;
see Appendix C.)

In order to implement get_command, let us make the decision to representuser commands
the commands that a user can type by the characters ? , = , + , −, * , /, where
? requests input of a numerical value from the user, = prints the result of an
operation, and the remaining symbols denote addition, subtraction, multiplication,
and division, respectively.

45

char get_command()
{

char command;
bool waiting = true;
cout << "Select command and press < Enter > :";

while (waiting) {
cin >> command;
command = tolower(command);
if (command == ′?′ || command == ′=′ || command == ′+′ ||

command == ′− ′|| command == ′*′ || command == ′/′ ||
command == ′q′) waiting = false;

else {
cout << "Please enter a valid command:" << endl

<< "[?]push to stack [=]print top" << endl
<< "[+] [−] [*] [/] are arithmetic operations" << endl
<< "[Q]uit." << endl;

}
}
return command;

}

The work of selecting and performing the commands, finally, is the task of the
function do_command. We present here an abbreviated form of the function
do_command, in which we have coded only a few of the possible commands in itsDo a user command
main switch statement.

68 Chapter 2 • Introduction to Stacks

46

bool do_command(char command, Stack &numbers)
/* Pre: The first parameter specifies a valid calculator command.

Post: The command specified by the first parameter has been applied to the
Stack of numbers given by the second parameter. A result of true is re-
turned unless command == ′q′.

Uses: The class Stack. */
{

double p, q;
switch (command) {
case ′?′:

read cout << "Enter a real number: " << flush;
cin >> p;
if (numbers.push(p) == overflow)

cout << "Warning: Stack full, lost number" << endl;
break;

case ′=′:
print if (numbers.top(p) == underflow)

cout << "Stack empty" << endl;
else

cout << p << endl;
break;

case ′+′:
add if (numbers.top(p) == underflow)

cout << "Stack empty" << endl;
else {

numbers.pop();
if (numbers.top(q) == underflow) {

cout << "Stack has just one entry" << endl;
numbers.push(p);

}
else {

numbers.pop();
if (numbers.push(q + p) == overflow)

cout << "Warning: Stack full, lost result" << endl;
}

}
break;

// Add options for further user commands.

case ′q′:
quit cout << "Calculation finished.\n";

return false;
}
return true;

}

Section 2.4 • Application: Bracket Matching 69

In calling this function, we must pass the Stack parameter by reference, because
its value might need to be modified. For example, if the command parameter is +,
then we normally pop two values off the Stack numbers and push their sum back
onto it: This should certainly change the Stack.

The function do_command allows for an additional user command, q, that
quits the program.

Exercises 2.3 E1. If we use the standard library class stack in our calculator, the method top()
returns the top entry off the stack as its result. Then the function do_command
can then be shortened considerably by writing such statements as

case ′− ′: numbers.push(numbers.pop() − numbers.pop());

(a) Assuming that this statement works correctly, explain why it would still
be bad programming style.

(b) It is possible that two different C++ compilers, both adhering strictly to
standard C++, would translate this statement in ways that would give
different answers when the program runs. Explain how this could happen.

E2. Discuss the steps that would be needed to make the calculator process complex
numbers.

Programming
Projects 2.3

P1. Assemble the functions developed in this section and make the necessary
changes in the code so as to produce a working calculator program.

P2. Write a function that will interchange the top two numbers on the stack, and
include this capability as a new command.

P3. Write a function that will add all the numbers on the stack together, and include
this capability as a new command.

P4. Write a function that will compute the average of all numbers on the stack, and
include this capability as a new command.

2.4 APPLICATION: BRACKET MATCHING

Programs written in C++ contain several different types of brackets. For example,
brackets are used to enclose expressions, function arguments, array indices, and
blocks of code. As we know, the brackets used within a program must pair off.

70 Chapter 2 • Introduction to Stacks

For example, the following string

{a = (1 + v(b[3 + c[4]]));

cannot possibly have matched brackets, because it has five opening brackets and
only four closing brackets: Like the first drafts of many C++ programs, it is missing
a final brace. The string

47

{ a = (b[0) + 1]; }

has equal numbers of opening and closing brackets, but we can see that it has
unmatched brackets, because its first closing bracket) does not correspond to the
most recent opening bracket [. On the other hand, the bracket sequence

{()[()]}

is matched, although it is not a legitimate part of any C++ program.
In this section we shall implement a program to check that brackets are correctly

matched in an input text file. For simplicity, we will limit our attention to thespecifications
brackets { , }, (,), [, and]. Moreover, we shall just read a single line of characters,
and ignore all input other than bracket characters. In checking the bracketing of
an actual C++ program, we would need to apply special rules for brackets within
comments and strings, and we would have to recognize that the symbols <, > can
also denote brackets (for example, in the declaration stack<double> numbers; that
we used in the program of Section 2.1.3).

If we formalize the rules for pairing brackets, we quickly obtain the following
algorithm: Read the program file character by character. Each opening bracket (, [,algorithm
or { that is encountered is considered as unmatched and is stored until a matching
bracket can be found. Any closing bracket),], or } must correspond, in bracket
style, to the last unmatched opening bracket, which should now be retrieved and
removed from storage. Finally, at the end of the program, we must check that no
unmatched opening brackets are left over.

We see that a program to test the matching of brackets needs to process an
input file character by character, and, as it works its way through the input, it
needs some way to remember any currently unmatched brackets. These bracketsdata structure: stack
must be retrieved in the exact reverse of their input order, and therefore a Stack
provides an attractive option for their storage.

Once we have made this decision, our program need only loop over the input
characters, until either a bracketing error is detected or the input file ends. When-
ever a bracket is found, an appropriate Stack operation is applied. We thus obtain
the following program.

48

int main()
/* Post: The program has notified the user of any bracket mismatch in the standard

input file.
Uses: The class Stack. */

Section 2.5 • Abstract Data Types and Their Implementations 71

{
Stack openings;
char symbol;
bool is_matched = true;
while (is_matched && (symbol = cin.get()) != ′\n′) {

if (symbol == ′{′ || symbol == ′(′ || symbol == ′[′)
openings.push(symbol);

if (symbol == ′}′ || symbol == ′)′ || symbol == ′]′) {
if (openings.empty()) {

cout << "Unmatched closing bracket " << symbol
<< " detected." << endl;

is_matched = false;
}
else {

char match;
openings.top(match);
openings.pop();
is_matched = (symbol == ′}′ && match == ′{′)

|| (symbol == ′)′ && match == ′(′)
|| (symbol == ′]′ && match == ′[′);

if (!is_matched)
cout << "Bad match " << match << symbol << endl;

}
}

}
if (!openings.empty())

cout << "Unmatched opening bracket(s) detected." << endl;
}

Programming
Projects 2.4

P1. Modify the bracket checking program so that it reads the whole of an input
file.

P2. Modify the bracket checking program so that input characters are echoed to
output, and individual unmatched closing brackets are identified in the output
file.

P3. Incorporate C++ comments and character strings into the bracket checking
program, so that any bracket within a comment or character string is ignored.

2.5 ABSTRACT DATA TYPES AND THEIR IMPLEMENTATIONS

2.5.1 Introduction
In any of our applications of stacks, we could have used an array and counter in
place of the stack. This would entail replacing each stack operation by a group

72 Chapter 2 • Introduction to Stacks

of array and counter manipulations. For example, the bracket checking program
might use statements such as:

if (counter < max) {
openings[counter] = symbol;
counter++;

}

In some ways, this may seem like an easy approach, since the code is straightfor-
ward, simpler in many ways than setting up a class and declaring all its methods.

A major drawback to this approach, however, is that the writer (and any reader)
of the program must spend considerable effort verifying the details of array index
manipulations every time the stack is used, rather than being able to concentrate
on the ways in which the stack is actually being used. This unnecessary effort is a
direct result of the programmer’s failure to recognize the general concept of a stack
and to distinguish between this general concept and the particular implementation
needed for a given application.

Another application might include the following instructions instead of a sim-
ple stack operation:

if ((xxt == mxx) || (xxt > mxx))
try_again();

else {
xx[xxt] = wi;
xxt++;

}

In isolation, it may not even be clear that this section of code has essentially the
same function as the earlier one. Both segments are intended to push an item onto
the top of a stack.

Researchers working in different subjects frequently have ideas that are funda-
mentally similar but are developed for different purposes and expressed in different
language. Often years will pass before anyone realizes the similarity of the work,
but when the observation is made, insight from one subject can help with the other.analogies
In computer science, even so, the same basic idea often appears in quite different
disguises that obscure the similarity. But if we can discover and emphasize the
similarities, then we may be able to generalize the ideas and obtain easier ways to
meet the requirements of many applications.

The way in which an underlying structure is implemented can have substantialimplementation
effects on program development and on the capabilities and usefulness of the re-
sult. Sometimes these effects can be subtle. The underlying mathematical concept
of a real number, for example, is usually (but not always) implemented by com-
puter as a floating-point number with a certain degree of precision, and the inherent
limitations in this implementation often produce difficulties with round-off error.
Drawing a clear separation between the logical structure of our data and its im-
plementation in computer memory will help us in designing programs. Our first
step is to recognize the logical connections among the data and embody these con-

Section 2.5 • Abstract Data Types and Their Implementations 73

nections in a logical data structure. Later we can consider our data structures and
decide what is the best way to implement them for efficiency of programming and
execution. By separating these decisions they both become easier, and we avoid
pitfalls that attend premature commitment.

To help us clarify this distinction and achieve greater generality, let us now
consider data structures from as general a perspective as we can.

2.5.2 General Definitions

1. Mathematical Concepts
Mathematics is the quintessence of generalization and therefore provides the lan-
guage we need for our definitions. We start with the definition of a type:

Definition A type is a set, and the elements of the set are called the values of the type.

We may therefore speak of the type integer, meaning the set of all integers, the type
real, meaning the set of all real numbers, or the type character, meaning the set of
symbols that we wish to manipulate with our algorithms.

Notice that we can already draw a distinction between an abstract type and

49

its implementation: The C++ type int, for example, is not the set of all integers; it
consists only of the set of those integers directly represented in a particular com-
puter, the largest of which depends on the word size of the computer. Similarly, the
C++ types float and double generally mean certain sets of floating-point numbers
(separate mantissa and exponent) that are only small subsets of the set of all real
numbers.

2. Atomic and Structured Types
Types such as int, float, and char are called atomic types because we think of their
values as single entities only, not something we wish to subdivide. Computer
languages like C++, however, provide tools such as arrays, classes, and pointers
with which we can build new types, called structured types. A single value of a
structured type (that is, a single element of its set) is a structured object such as
a contiguous stack. A value of a structured type has two ingredients: It is made
up of component elements, and there is a structure, a set of rules for putting the
components together.

For our general point of view we shall use mathematical tools to provide the
rules for building up structured types. Among these tools are sets, sequences, and
functions. For the study of lists of various kinds the one that we need is the finitebuilding types
sequence, and for its definition we use mathematical induction.3 A definition by
induction (like a proof by induction) has two parts: First is an initial case, and
second is the definition of the general case in terms of preceding cases.

Definition A sequence of length 0 is empty. A sequence of length n ≥ 1 of elements from
a set T is an ordered pair (Sn−1, t) where Sn−1 is a sequence of length n− 1 of
elements from T , and t is an element of T .

3 See Appendix A for samples of proof by induction.

74 Chapter 2 • Introduction to Stacks

From this definition we can build up longer and longer sequences, starting with
the empty sequence and adding on new elements from T , one at a time.

From now on we shall draw a careful distinction between the word sequential,
meaning that the elements form a sequence, and the word contiguous, which we
take to mean that the elements have adjacent addresses in memory. Hence we shallsequential versus

contiguous be able to speak of a sequential list in a contiguous implementation.

3. Abstract Data Types
The definition of a finite sequence immediately makes it possible for us to attempt adefinition of

list definition of a list: a list of items of a type T is simply a finite sequence of elements
of the set T .

Next we would like to define a stack, but if you consider the definitions, you
will realize that there will be nothing regarding the sequence of items to distin-

50

guish these structures from a list. The primary characteristic of a stack is the set
of operations or methods by which changes or accesses can be made. Including a
statement of these operations with the structural rules defining a finite sequence,
we obtain

Definition A stack of elements of type T is a finite sequence of elements of T , together
with the following operations:

1. Create the stack, leaving it empty.

2. Test whether the stack is Empty.

3. Push a new entry onto the top of the stack, provided the stack is not full.

4. Pop the entry off the top of the stack, provided the stack is not empty.

5. Retrieve the Top entry from the stack, provided the stack is not empty.

Note that this definition makes no mention of the way in which the abstract data
type stack is to be implemented. In the coming chapters we will study several
different implementations of stacks, and this new definition fits any of these im-
plementations equally well. This definition produces what is called an abstract
data type, often abbreviated as ADT. The important principle is that the definitionabstract data type
of any abstract data type involves two parts: First is a description of the way in
which the components are related to each other, and second is a statement of the
operations that can be performed on elements of the abstract data type.

2.5.3 Refinement of Data Specification
Now that we have obtained such a general definition of an abstract data type, it
is time to begin specifying more detail, since the objective of all this work is to
find general principles that will help with designing programs, and we need more
detail to accomplish this objective.

There is, in fact, a close analogy between the process of top-down refinement
of algorithms and the process of top-down specification of data structures that we
have now begun. In algorithm design we begin with a general but precise statementtop-down specification
of the problem and slowly specify more detail until we have developed a complete

Section 2.5 • Abstract Data Types and Their Implementations 75

program. In data specification we begin with the selection of the mathematical
concepts and abstract data types required for our problem and slowly specify more
detail until finally we can implement our data structures as classes.

The number of stages required in this specification process depends on thestages of refinement
application. The design of a large software system will require many more decisions
than will the design of a single small program, and these decisions should be

51 taken in several stages of refinement. Although different problems will require
different numbers of stages of refinement, and the boundaries between these stages
sometimes blur, we can pick out four levels of the refinement process.

1. On the abstract level we decide how the data are related to each other and whatconceptual
operations are needed, but we decide nothing concerning how the data will
actually be stored or how the operations will actually be done.

2. On the data structures level we specify enough detail so that we can analyzealgorithmic
the behavior of the methods and make appropriate choices as dictated by our
problem. This is the level, for example, at which we might choose a contiguous
structure where data is stored in an array.

3. On the implementation level we decide the details of how the data structuresprogramming
will be represented in computer memory.

4. On the application level we settle all details required for our particular appli-
cation, such as names for variables or special requirements for the operations
imposed by the application.

The first two levels are often called conceptual because at these levels we are more
concerned with problem solving than with programming. The middle two levels
can be called algorithmic because they concern precise methods for representing
data and operating with it. The last two levels are specifically concerned with
programming.

Our task in implementing a data structure in C++ is to begin with conceptual
information, often the definition of an ADT, and refine it to obtain an implemen-
tation as a C++ class. The methods of the C++ class correspond naturally to the
operations of the ADT, while the data members of the C++ class correspond to
the physical data structure that we choose to represent our ADT. In this way, the
process of moving from an abstract ADT, to a data structure, and then on to an
implementation leads directly to a C++ class definition.

Let us conclude this section by restating its most important principles as pro-
gramming precepts:

Programming Precept

Let your data structure your program.
Refine your algorithms and data structures at the same time.

Programming Precept

Once your data are fully structured,
your algorithms should almost write themselves.

76 Chapter 2 • Introduction to Stacks

Exercises 2.5 E1. Give a formal definition of the term extended stack as used in Exercise E1 of
Section 2.2.

E2. In mathematics the Cartesian product of sets T1, T2, . . . , Tn is defined as the set
of all n-tuples (t1, t2, . . . , tn), where ti is a member of Ti for all i,1 ≤ i ≤ n.
Use the Cartesian product to give a precise definition of a class.

POINTERS AND PITFALLS

1. Use data structures to clarify the logic of your programs.
52

2. Practice information hiding and encapsulation in implementing data struc-
tures: Use functions to access your data structures, and keep these in classes
separate from your application program.

3. Postpone decisions on the details of implementing your data structures as long
as you can.

4. Stacks are among the simplest kind of data structures; use stacks when possible.

5. In any problem that requires a reversal of data, consider using a stack to store
the data.

6. Avoid tricky ways of storing your data; tricks usually will not generalize to
new situations.

7. Be sure to initialize your data structures.

8. In designing algorithms, always be careful about the extreme cases and handle
them gracefully. Trace through your algorithm to determine what happens in
extreme cases, particularly when a data structure is empty or full.

9. Before choosing implementations, be sure that all the data structures and their
associated operations are fully specified on the abstract level.

REVIEW QUESTIONS

1. What is the standard library?2.1

2. What are the methods of a stack?

3. What are the advantages of writing the operations on a data structure as meth-
ods?

4. What are the differences between information hiding and encapsulation?2.2

5. Describe three different approaches to error handling that could be adopted by
a C++ class.

6. Give two different ways of implementing a generic data structure in C++.

Chapter 2 • References for Further Study 77

7. What is the reason for using the reverse Polish convention for calculators?2.3

8. What two parts must be in the definition of any abstract data type?2.5

9. In an abstract data type, how much is specified about implementation?

10. Name (in order from abstract to concrete) four levels of refinement of data
specification.

REFERENCES FOR FURTHER STUDY

For many topics concerning data structures, such as stacks, the best source for
additional information, historical notes, and mathematical analysis is the followingstacks
series of books, which can be regarded almost like an encyclopædia for the aspects
of computing science that they discuss:

DONALD E. KNUTH, The Art of Computer Programming, published by Addison-Wesley,encyclopædic
reference: KNUTH Reading, Mass.

Three volumes have appeared to date:

1. Fundamental Algorithms, second edition, 1973, 634 pages.

2. Seminumerical Algorithms, second edition, 1980, 700 pages.

53

3. Sorting and Searching, 1973, 722 pages.

In future chapters we shall often give references to this series of books, and for
convenience we shall do so by specifying only the name KNUTH together with the
volume and page numbers. The algorithms are written both in English and in
an assembler language, where KNUTH calculates detailed counts of operations to
compare various algorithms.

A detailed description of the standard library in C++ occupies a large part of
the following important reference:

BJARNE STROUSTRUP, The C++ Programming Language, third edition, Addison-Wesley,
Reading, Mass., 1997.

The Polish notation is so natural and useful that one might expect its discovery to
be hundreds of years ago. It may be surprising to note that it is a discovery of the
twentieth century:

JAN ŁUKASIEWICZ, Elementy Logiki Matematyczny, Warsaw, 1929; English translation:
Elements of Mathematical Logic, Pergamon Press, 1963.

Queues 3

A
QUEUE is a data structure modeled after a line of people waiting to

be served. Along with stacks, queues are one of the simplest kinds of
data structures. This chapter develops properties of queues, studies
how they are applied, and examines different implementations. The

implementations illustrate the use of derived classes in C++ and the important
object-oriented technique of class inheritance.

3.1 Definitions 79
3.1.1 Queue Operations 79
3.1.2 Extended Queue Operations 81

3.2 Implementations of Queues 84

3.3 Circular Implementation of Queues in
C++ 89

3.4 Demonstration and Testing 93

3.5 Application of Queues:
Simulation 96
3.5.1 Introduction 96

3.5.2 Simulation of an Airport 96
3.5.3 Random Numbers 99
3.5.4 The Runway Class Specification 99
3.5.5 The Plane Class Specification 100
3.5.6 Functions and Methods of the

Simulation 101
3.5.7 Sample Results 107

Pointers and Pitfalls 110
Review Questions 110
References for Further Study 111

78

3.1 DEFINITIONS

In ordinary English, a queue is defined as a waiting line, like a line of people
waiting to purchase tickets, where the first person in line is the first person served.
For computer applications, we similarly define a queue to be a list in which all
additions to the list are made at one end, and all deletions from the list are made
at the other end. Queues are also called first-in, first-out lists, or FIFO for short.
See Figure 3.1.

55

Figure 3.1. A queue

Applications of queues are, if anything, even more common than are appli-applications
cations of stacks, since in performing tasks by computer, as in all parts of life, it
is often necessary to wait one’s turn before having access to something. Within a
computer system there may be queues of tasks waiting for the printer, for access
to disk storage, or even, with multitasking, for use of the CPU. Within a single
program, there may be multiple requests to be kept in a queue, or one task may
create other tasks, which must be done in turn by keeping them in a queue.

The entry in a queue ready to be served, that is, the first entry that will befront and rear
removed from the queue, is called the front of the queue (or, sometimes, the head
of the queue). Similarly, the last entry in the queue, that is, the one most recently
added, is called the rear (or the tail) of the queue.

3.1.1 Queue Operations

To complete the definition of our queue ADT, we specify all the operations that itoperations
permits. We shall do so by giving the method name for each operation, together
with the postconditions that complete its specification. As you read these speci-

79

80 Chapter 3 • Queues

fications, you should note the similarity with the corresponding operations for a
stack. As in our treatment of stacks, we shall implement queues whose entries
have a generic type, which we call Queue_entry.

The first step we must perform in working with any queue is to use a constructor
to initialize it for further use:

56

Queue :: Queue();

postcondition: The Queue has been created and is initialized to be empty.

The declarations for the fundamental operations on a queue come next.

Error_code Queue :: append(const Queue_entry &x);

postcondition: If there is space, x is added to the Queue as its rear. Otherwise
an Error_code of overflow is returned.

Error_code Queue :: serve();

postcondition: If the Queue is not empty, the front of the Queue has been re-
moved. Otherwise an Error_code of underflow is returned.

Error_code Queue :: retrieve(Queue_entry &x) const;

postcondition: If the Queue is not empty, the front of the Queue has been
recorded as x. Otherwise an Error_code of underflow is re-
turned.

bool Queue :: empty() const;

postcondition: Return true if the Queue is empty, otherwise return false.

The names append and serve are used for the fundamental operations on a queue to
indicate clearly what actions are performed and to avoid confusion with the terms
we shall use for other data types. Other names, however, are also often used foralternative names:

insert, delete,
enqueue, dequeue

these operations, terms such as insert and delete or the coined words enqueue and
dequeue.

Section 3.1 • Definitions 81

Note that error codes are generated by any attempt to append an entry onto a
full Queue or to serve an entry from an empty Queue. Thus our queues will use
the same enumerated Error_code declaration as stacks, including the codes

success, underflow, overflow.

The Queue method specifications show that our C++ class definition is based on
the following skeleton.

class Queue {
public:

Queue();
bool empty() const;
Error_code append(const Queue_entry &x);
Error_code serve();
Error_code retrieve(Queue_entry &x) const;

// Additional members will represent queue data.
};

The standard template library provides a template for a class queue. The oper-
ations that we have called empty, append, serve, and retrieve are known in the
standard library as empty, push, pop, and front. However, since the operations
behave very differently from those of a stack, we prefer to use operation names
that highlight these differences. The standard library queue implementation also
provides operations called back and size that examine the last entry (that is, the one
most recently appended) and the total number of entries in a queue, respectively.

3.1.2 Extended Queue Operations

In addition to the fundamental methods append, serve, retrieve, and empty there
are other queue operations that are sometimes helpful. For example, it can be
convenient to have a queue method full that checks whether the queue is completely
full.

There are three more operations that are very useful for queues. The firstreinitialization
is clear, which takes a queue that has already been created and makes it empty.
Second is the function size, which returns the number of entries in the queue. Thequeue size
third is the function serve_and_retrieve, which combines the effects of serve and
retrieve.

We could choose to add these functions as additional methods for our basic class
Queue. However, in object-oriented languages like C++, we can create new classes
that reuse the methods and implementations of old classes. In this case, we shall
create a new class called an Extended_queue that allows new methods in addition
to the basic methods of a Queue. We shall say that the class Extended_queue is
derived from the class Queue.

82 Chapter 3 • Queues

Derived classes provide a simple way of defining classes by adding methodsderived classes
to an existing class. The ability of a derived class to reuse the members of a base
class is known as inheritance. Inheritance is one of the features that is fundamentalinheritance

to object-oriented programming.
We illustrate the relationship between the class Queue and the derived class

Extended_queue with a hierarchy diagram, as shown in part (a) of Figure 3.2. An
arrow in a hierarchy diagram points up from a derived class to the base class from
which it is derived. Part (b) of Figure 3.2 illustrates how the methods of a base class

58

are inherited by a derived class, which then may also include additional methods.

methods:
Queue (constructor)
append
serve
retrieve
empty

inheritance

data members

Base class

class Queue

methods:

data members
additional data members

Extended_queue (constructor)
append

inherited

inherited

serve
retrieve
empty
size
clear
full
serve_and_retrieve

Derived class

class Extended_queue

class Queue

class Extended_queue

(a) Hierarchy diagram (b) Derived class Extended_queue from base class Queue

Figure 3.2. Inheritance and derived classes

In C++ we use the : operator (colon) to define a derived class. The definition
of the class Extended_queue is as follows.Extended_queue

class

class Extended_queue: public Queue {
public:

bool full() const;
int size() const;
void clear();
Error_code serve_and_retrieve(Queue_entry &item);

};

The keyword public in the first line of the class definition indicates that each inher-

57

ited member of an Extended_queue has exactly the same visibility (to clients) as it
would have as a member of a Queue.

Section 3.1 • Definitions 83

The new operations for our class Extended_queue have the following specifi-
cations.

bool Extended_queue :: full() const;status

postcondition: Return true if the Extended_queue is full; return false otherwise.

void Extended_queue :: clear();other operations

postcondition: All entries in the Extended_queue have been removed; it is now
empty.

int Extended_queue :: size() const;

postcondition: Return the number of entries in the Extended_queue.

Error_code Extended_queue :: serve_and_retrieve(Queue_entry &item);

postcondition: Return underflow if the Extended_queue is empty. Otherwise
remove and copy the item at the front of the Extended_queue to
item and return success.

The relationship between the class Extended_queue and the class Queue is oftenis-a relationship
called an is-a relationship. This is because every Extended_queue object “is a”
Queue object with other features—namely, the methods serve_and_retrieve, full,
size, and clear. Whenever a verbal description of the relationship between two
ADTs A and B includes the phrase “Every A is a B ‘’, we should consider imple-
menting a class to represent A as derived from a class representing B.

As another illustration of the is-a relationship between classes, consider C++
classes that might be used in a program to manage a university budget. Someexample
of these classes are University, Student, University_president, and Person. Every
student is a person, and therefore we might create the class Student as derived
from the class Person to reflect the is-a relationship between the corresponding
concepts. The class University_president could also be implemented as a derived
class of Person to reflect another obvious is-a relationship. The classes University
and University_president do not reflect an is-a relationship, however the classes are
related, because every university does have a president. We shall say that these
classes reflect a has-a relationship, and in an implementation we would make thishas-a relationship
relationship clear by layering the classes, that is, by including a data member oflayering
type University_president in the definition of the class University.

84 Chapter 3 • Queues

Exercises 3.1 E1. Suppose that q is a Queue that holds characters and that x and y are character
variables. Show the contents of q at each step of the following code segments.

(a) Queue q;
q.append(′a′);
q.serve();
q.append(′b′);
q.serve();
q.append(′c′);
q.append(′d′);
q.serve();

(b) Queue q;
q.append(′a′);
q.append(′b′);
q.retrieve(x);
q.serve();
q.append(′c′);
q.append(x);
q.serve();
q.serve();

(c) Queue q;
q.append(′a′);
x = ′b′;
q.append(′x′);
q.retrieve(y);
q.serve();
q.append(x);
q.serve();
q.append(y);

E2. Suppose that you are a financier and purchase 100 shares of stock in Company
X in each of January, April, and September and sell 100 shares in each of June
and November. The prices per share in these months wereaccounting

Jan Apr Jun Sep Nov
$10 $30 $20 $50 $30

Determine the total amount of your capital gain or loss using (a) FIFO (first-
in, first-out) accounting and (b) LIFO (last-in, first-out) accounting [that is,
assuming that you keep your stock certificates in (a) a queue or (b) a stack].
The 100 shares you still own at the end of the year do not enter the calculation.

E3. Use the methods for stacks and queues developed in the text to write functions
that will do each of the following tasks. In writing each function, be sure to
check for empty and full structures as appropriate. Your functions may declare
other, local structures as needed.

(a) Move all the entries from a Stack into a Queue.
(b) Move all the entries from a Queue onto a Stack.
(c) Empty one Stack onto the top of another Stack in such a way that the entries

that were in the first Stack keep the same relative order.
(d) Empty one Stack onto the top of another Stack in such a way that the entries

that were in the first Stack are in the reverse of their original order.
(e) Use a local Stack to reverse the order of all the entries in a Queue.
(f) Use a local Queue to reverse the order of all the entries in a Stack.

3.2 IMPLEMENTATIONS OF QUEUES

Now that we have considered definitions of queues and their methods, let us change
our point of view and consider how queues can be implemented with computer
storage and as a C++ class.

Section 3.2 • Implementations of Queues 85

1. The Physical Model

As we did for stacks, we can easily create a queue in computer storage by setting up
an ordinary array to hold the entries. Now, however, we must keep track of both
the front and the rear of the queue. One strategy would be to keep the front of the
queue always in the first location of the array. Then an entry could be appended
to the queue simply by increasing the counter showing the rear, in exactly the
same way as we added an entry to a stack. To remove an entry from the queue,
however, would be very expensive indeed, since after the first entry was served,fault:

many moves all the remaining entries would need to be moved one position up the queue to
fill in the vacancy. With a long queue, this process would be prohibitively slow.
Although this method of storage closely models a queue of people waiting to be
served, it is a poor choice for use in computers.

2. Linear Implementation

For efficient processing of queues, we shall therefore need two indices so that we
can keep track of both the front and the rear of the queue without moving any
entries. To append an entry to the queue, we simply increase the rear by one and
put the entry in that position. To serve an entry, we take it from the position at the
front and then increase the front by one. This method, however, still has a major
defect: Both the front and rear indices are increased but never decreased. Even
if there are never more than two entries in the queue, an unbounded amount offault:

discarded space storage will be needed for the queue if the sequence of operations is

append, append, serve, append, serve, append, serve, append,

The problem, of course, is that, as the queue moves down the array, the storage
space at the beginning of the array is discarded and never used again. Perhaps the
queue can be likened to a stretchable snake crawling through storage. Sometimes
the snake is longer, sometimes shorter, but if it always keeps crawling in a straight
line, then it will soon reach the end of the storage space.

Note, however, that for applications where the queue is regularly emptied
(such as when a series of requests is allowed to build up to a certain point, andadvantage
then a task is initiated that clears all the requests before returning), then at a time
when the queue is empty, the front and rear can both be reset to the beginning
of the array, and the simple scheme of using two indices and straight-line storage
becomes a very efficient implementation.

3. Circular Arrays

In concept, we can overcome the inefficient use of space simply by thinking of the
array as a circle rather than a straight line. See Figure 3.3. In this way, as entries are
added and removed from the queue, the head will continually chase the tail around
the array, so that the snake can keep crawling indefinitely but stay in a confined
circuit. At different times, the queue will occupy different parts of the array, but
we never need worry about running out of space unless the array is fully occupied,
in which case we truly have overflow.

86 Chapter 3 • Queues

59

Circular
queue

Unwinding

front rear

2

1 0

210

front rear
Linear

implementation

occupied

occupied

empty

occupied

0

1
2

front rear

max − 2

max − 1

max − 2

max − 1

max − 2

max − 1

Figure 3.3. Queue in a circular array

4. Implementation of Circular Arrays
Our next problem is to implement a circular array as an ordinary linear (that is,
straight-line) array. To do so, we think of the positions around the circle as num-
bered from 0 to max − 1, where max is the total number of entries in the circular
array, and to implement the circular array, we use the same-numbered entries of a
linear array. Then moving the indices is just the same as doing modular arithmetic:
When we increase an index past max − 1, we start over again at 0. This is like doingmodular arithmetic
arithmetic on a circular clock face; the hours are numbered from 1 to 12, and if we
add four hours to ten o’clock, we obtain two o’clock.

A very rough analogy of this linear representation is that of a priest serving
communion to people kneeling at the front of a church. The communicants do not
move until the priest comes by and serves them. When the priest reaches the end
of the row, he returns to the beginning and starts again, since by this time a new
row of people have come forward.

Section 3.2 • Implementations of Queues 87

5. Circular Arrays in C++
In C++, we can increment an index i of a circular array by using the ternary operator
? : and writingternary operator ? :

i = ((i + 1) == max) ? 0 : (i + 1);

This use of the rarely seen ternary operator ? : of C++ has the same meaning as
60

if ((i + 1) == max) i = 0; else i = i + 1;

Or we can use the modulus operator and write

i = (i + 1) % max

(You should check to verify that the result of the latter expression is always between
0 and max−1.)

6. Boundary Conditions
Before writing formal algorithms to add to and remove from a queue, let us consider
the boundary conditions, that is, the indicators that a queue is empty or full. If
there is exactly one entry in the queue, then the front index will equal the rearempty or full?
index. When this one entry is removed, then the front will be increased by 1, so
that an empty queue is indicated when the rear is one position before the front.
Now suppose that the queue is nearly full. Then the rear will have moved well
away from the front, all the way around the circle, and when the array is full the
rear will be exactly one position before the front. Thus we have another difficulty:
The front and rear indices are in exactly the same relative positions for an empty
queue and for a full queue! There is no way, by looking at the indices alone, to tell
a full queue from an empty one. This situation is illustrated in Figure 3.4.

Queue
containing
one item

rear front

Remove the item.

Empty
queue

rear front

Queue
with one

empty
position rear front

Full
queue

rear front

Insert an item.

Figure 3.4. Empty and full queues

88 Chapter 3 • Queues

7. Possible Solutions

There are at least three essentially different ways to resolve this problem. One is to1. empty position
insist on leaving one empty position in the array, so that the queue is considered
full when the rear index has moved within two positions of the front. A second
method is to introduce a new variable. This can be a Boolean flag that is set as2. flag
true when the rear comes just before the front to indicate that the queue is full (a
flag to indicate emptiness would be just as good) or an integer variable that counts
the number of entries in the queue. The third method is to set one or both of the3. special values
indices to some value(s) that would otherwise never occur in order to indicate an
empty (or full) queue. For example, an empty queue could be indicated by setting
the rear index to −1.

8. Summary of Implementations

To summarize the discussion of queues, let us list all the methods we have discussed
for implementing queues.61

➥ The physical model: a linear array with the front always in the first position and
all entries moved up the array whenever the front is removed. This is generally
a poor method for use in computers.

➥ A linear array with two indices always increasing. This is a good method if the
queue can be emptied all at once.

➥ A circular array with front and rear indices and one position left vacant.

➥ A circular array with front and rear indices and a flag to indicate fullness (or
emptiness).

➥ A circular array with front and rear indices and an integer variable counting
entries.

➥ A circular array with front and rear indices taking special values to indicate
emptiness.

In the next chapter, we shall consider yet one more way to implement queues, by
using a linked structure. The most important thing to remember from this list of
implementations is that, with so many variations in implementation, we should
always keep questions concerning the use of data structures like queues separatepostpone

implementation
decisions

from questions concerning their implementation; and, in programming we should
always consider only one of these categories of questions at a time. After we have
considered how queues will be used in our application, and after we have written
the client code employing queues, we will have more information to help us choose
the best implementation of queues suited to our application.

Programming Precept

Practice information hiding:
Separate the application of data structures from their implementation.

Section 3.3 • Circular Implementation of Queues in C++ 89

3.3 CIRCULAR IMPLEMENTATION OF QUEUES IN C++

Next, let us write formal methods to implement queues and extended queues. It
is clear from the last section that a great many implementations are possible, some
of which are but slight variations on others. Let us therefore concentrate on only
one implementation, leaving the others as exercises.

The implementation in a circular array which uses a counter to keep track of
the number of entries in the queue both illustrates techniques for handling circular
arrays and simplifies the programming of some of the extended-queue operations.
Let us therefore work only with this implementation.

We shall take the queue as stored in an array indexed with the range

62

0 to (maxqueue − 1)

and containing entries of a type called Queue_entry. The Queue data members
front and rear will record appropriate indices of the array. The data member count
is used to keep track of the number of entries in the Queue. The class definition for
a Queue thus takes the formclass Queue

definition

const int maxqueue = 10; // small value for testing

class Queue {
public:

Queue();
bool empty() const;
Error_code serve();
Error_code append(const Queue_entry &item);
Error_code retrieve(Queue_entry &item) const;

protected:
int count;
int front, rear;
Queue_entry entry[maxqueue];

};

Notice that we have given the data members of a Queue protected rather than
private visibility. For client code, protected visibility has the same meaning as pri-protected visibility
vate visibility, so that our class Queue is still encapsulated. However, the member
functions of derived classes are allowed to access protected members of a base
class. Thus, when we write methods for the derived class Extended_queue, our
code will be able to make use of the data members of the class Queue. Without this
access, the implementations of some of the methods of an Extended_queue would
be very inefficient. The class specification for extended queues is already given in
Section 3.1.2.

We begin coding the methods of a Queue with initialization.

90 Chapter 3 • Queues

Queue :: Queue()
/* Post: The Queue is initialized to be empty. */
{

count = 0;
rear = maxqueue − 1;
front = 0;

}

bool Queue :: empty() const
/* Post: Return true if the Queue is empty, otherwise return false. */
{

return count == 0;
}

The methods for adding to and removing from a Queue follow our preceding
discussion closely. Notice that we return an Error_code whenever necessary.

63

Error_code Queue :: append(const Queue_entry &item)
/* Post: item is added to the rear of the Queue. If the Queue is full return an

Error_code of overflow and leave the Queue unchanged. */
{

if (count >= maxqueue) return overflow;
count++;
rear = ((rear + 1) == maxqueue) ? 0 : (rear + 1);
entry[rear] = item;
return success;

}

Error_code Queue :: serve()
/* Post: The front of the Queue is removed. If the Queue is empty return an

Error_code of underflow. */
{

if (count <= 0) return underflow;
count−−;
front = ((front + 1) == maxqueue) ? 0 : (front + 1);
return success;

}

Error_code Queue :: retrieve(Queue_entry &item) const
/* Post: The front of the Queue retrieved to the output parameter item. If the

Queue is empty return an Error_code of underflow. */
{

if (count <= 0) return underflow;
item = entry[front];
return success;

}

Section 3.3 • Circular Implementation of Queues in C++ 91

We leave the methods empty and retrieve as exercises and consider one of the
methods for extended queues. The method giving the size of the extended queue
is particularly easy to write in our implementation.

int Extended_queue :: size() const
/* Post: Return the number of entries in the Extended_queue. */
{

return count;
}

Note that in writing the method size, we have used the protected Queue member
count. If the data members in the class Queue had had private visibility, then
they would have been unavailable to this function, and our code for the method
size would have required a complicated set of calls to the public Queue methods
serve, retrieve and append. The other Extended_queue methods, full, clear, and
serve_and_retrieve, have similar implementations and are left as exercises.

Exercises 3.3 E1. Write the remaining methods for queues as implemented in this section:

(a) empty (b) retrieve

E2. Write the remaining methods for extended queues as implemented in this sec-
tion:

(a) full (b) clear (c) serve_and_retrieve

E3. Write the methods needed for the implementation of a queue in a linear array
when it can be assumed that the queue can be emptied when necessary.

E4. Write the methods to implement queues by the simple but slow technique of
keeping the front of the queue always in the first position of a linear array.

E5. Write the methods to implement queues in a linear array with two indices front
and rear, such that, when rear reaches the end of the array, all the entries are
moved to the front of the array.

E6. Write the methods to implement queues, where the implementation does not
keep a count of the entries in the queue but instead uses the special conditions

rear = −1 and front = 0

to indicate an empty queue.

92 Chapter 3 • Queues

E7. Rewrite the methods for queue processing from the text, using a flag to indicate
a full queue instead of keeping a count of the entries in the queue.

E8. Write methods to implement queues in a circular array with one unused entry
in the array. That is, we consider that the array is full when the rear is two
positions before the front; when the rear is one position before, it will always
indicate an empty queue.

The word deque (pronounced either “deck” or “DQ”) is a shortened form ofdeque
double-ended queue and denotes a list in which entries can be added or re-
moved from either the first or the last position of the list, but no changes can
be made elsewhere in the list. Thus a deque is a generalization of both a stack
and a queue. The fundamental operations on a deque are append_front, ap-
pend_rear, serve_front, serve_rear, retrieve_front, and retrieve_rear.

E9. Write the class definition and the method implementations needed to imple-
ment a deque in a linear array.

E10. Write the methods needed to implement a deque in a circular array. Consider
the class Deque as derived from the class Queue. (Can you hide the Queue
methods from a client?)

E11. Is it more appropriate to implement a deque in a linear array or in a circular
array? Why?

E12. Note from Figure 2.3 that a stack can be represented pictorially as a spur track
on a straight railway line. A queue can, of course, be represented simply as a
straight track. Devise and draw a railway switching network that will represent
a deque. The network should have only one entrance and one exit.

E13. Suppose that data items numbered 1, 2, 3, 4, 5, 6 come in the input stream in
this order. That is, 1 comes first, then 2, and so on. By using (1) a queue and (2)
a deque, which of the following rearrangements can be obtained in the output
order? The entries also leave the deque in left-to-right order.

(a) 1 2 3 4 5 6 (b) 2 4 3 6 5 1 (c) 1 5 2 4 3 6
(d) 4 2 1 3 5 6 (e) 1 2 6 4 5 3 (f) 5 2 6 3 4 1

Programming
Project 3.3

P1. Write a function that will read one line of input from the terminal. The input
is supposed to consist of two parts separated by a colon ′:′. As its result, your
function should produce a single character as follows:

N No colon on the line.
L The left part (before the colon) is longer than the right.
R The right part (after the colon) is longer than the left.
D The left and right parts have the same length but are different.
S The left and right parts are exactly the same.

Section 3.4 • Demonstration and Testing 93

Examples: Input Output
Sample Sample N
Left:Right R
Sample:Sample S

Use either a queue or an extended queue to keep track of the left part of the
line while reading the right part.

3.4 DEMONSTRATION AND TESTING

After we have written a collection of methods and functions for processing a data
structure, we should immediately test the implementation to make sure that every
part of it works correctly. One of the simplest ways to do this is to write a menu-menu-driven

demonstration driven demonstration program that will set up the data structure and allow a user to
perform all possible operations on the data structure in any desired order, printing
out the results whenever the user wishes. Let us now develop such a program
for our extended queues. This program will then serve as the basis for similar
programs for further data structures throughout the book.

We can make the entries in the extended queue have any type we wish, so for
simplicity let us use a queue of characters. Hence the entries will be single letters,
digits, punctuation marks, and such.

At each iteration of its main loop, the demonstration program will ask the user
to choose an operation. It will then (if possible) perform that operation on the data
structure and print the results.

Hence the main program is:

64

int main()
/* Post: Accepts commands from user as a menu-driven demonstration program

for the class Extended_queue.
Uses: The class Extended_queue and the functions introduction, get_command,

and do_command. */

{
Extended_queue test_queue;
introduction();
while (do_command(get_command(), test_queue));

}

94 Chapter 3 • Queues

In this demonstration program, the user will enter a single character to select a com-
mand. The meanings of the commands together with the corresponding characters
are explained by the help function, which can itself be activated by the appropriate
command:

65

void help()
/* Post: A help screen for the program is printed, giving the meaning of each

command that the user may enter. */

{
cout << endl
<< "This program allows the user to enter one command" << endl
<< "(but only one) on each input line." << endl
<< "For example, if the command S is entered, then" << endl
<< "the program will serve the front of the queue." << endl
<< endl

<< " The valid commands are:" << endl
<< "A − Append the next input character to the extended queue" << endl
<< "S − Serve the front of the extended queue" << endl
<< "R − Retrieve and print the front entry." << endl
<< "# − The current size of the extended queue" << endl
<< "C − Clear the extended queue (same as delete)" << endl
<< "P − Print the extended queue" << endl
<< "H − This help screen" << endl
<< "Q − Quit" << endl

<< "Press < Enter > to continue." << flush;

char c;
do {

cin.get(c);
} while (c != ′\n′);

}

There is also an introduction function, which is activated only once at the start of
the program. The purpose of this function is to explain briefly what the program
does and to show the user how to begin. Further instructions that the user may
need will come either from help or from get_command.

The function get_command prints the menu and obtains a command from the
user. It is but a slight variation on the corresponding function from Section 2.3, so
we leave its implementation as a project.

The work of selecting and performing commands, finally, is the task of the
function do_command. This function just runs the appropriate case of a switch
statement. We give a partial version of the function that has an abbreviated form
of this switch statement.

Section 3.4 • Demonstration and Testing 95

66
bool do_command(char c, Extended_queue &test_queue)
/* Pre: c represents a valid command.

Post: Performs the given command c on the Extended_queue test_queue. Re-
turns false if c == ′q′, otherwise returns true.

Uses: The class Extended_queue. */

{
bool continue_input = true;
Queue_entry x;
switch (c) {
case ′r′:

if (test_queue.retrieve(x) == underflow)
cout << "Queue is empty." << endl;

else
cout << endl

<< "The first entry is: " << x
<< endl;

break;
case ′q′:

cout << "Extended queue demonstration finished." << endl;
continue_input = false;
break;

// Additional cases will cover other commands.

}
return continue_input;

}

You should note that, in all our testing functions, we have been careful to maintain
the principles of data abstraction. The Extended_queue specification and methods
are in files, so, if we wish, we can replace our particular Extended_queue imple-
mentation with another, and the program will work with no further change.

We have also written the testing functions so we can use the program to test
other data structures later, changing almost nothing other than the valid operations
and the introduction and help screens.

Programming
Projects 3.4

P1. Complete the menu-driven demonstration program for manipulating an Ex-
tended_queue of characters, by implementing the function get_command and
completing the function do_command.

P2. Write a menu-driven demonstration program for manipulating a deque of
characters, similar to the Extended_queue demonstration program.

96 Chapter 3 • Queues

3.5 APPLICATION OF QUEUES: SIMULATION

3.5.1 Introduction

Simulation is the use of one system to imitate the behavior of another system.simulation
Simulations are often used when it would be too expensive or dangerous to exper-
iment with the real system. There are physical simulations, such as wind tunnels
used to experiment with designs for car bodies and flight simulators used to train
airline pilots. Mathematical simulations are systems of equations used to describe
some system, and computer simulations use the steps of a program to imitate the
behavior of the system under study.

In a computer simulation, the objects being studied are usually represented
as data, often as data structures given by classes whose members describe thecomputer simulation
properties of the objects. Actions being studied are represented as methods of
the classes, and the rules describing these actions are translated into computer
algorithms. By changing the values of the data or by modifying these algorithms,
we can observe the changes in the computer simulation, and then we can draw
worthwhile inferences concerning the behavior of the actual system.

While one object in a system is involved in some action, other objects and
actions will often need to be kept waiting. Hence queues are important data struc-
tures for use in computer simulations. We shall study one of the most common
and useful kinds of computer simulations, one that concentrates on queues as its
basic data structure. These simulations imitate the behavior of systems (often, in
fact, called queueing systems) in which there are queues of objects waiting to be
served by various processes.

3.5.2 Simulation of an Airport

As a specific example, let us consider a small but busy airport with only one runway
(see Figure 3.5). In each unit of time, one plane can land or one plane can take off,
but not both. Planes arrive ready to land or to take off at random times, so at any
given moment of time, the runway may be idle or a plane may be landing or taking
off, and there may be several planes waiting either to land or take off.

In simulating the airport, it will be useful to create a class Plane whose objects
represent individual planes. This class will definitely need an initialization methodclass Plane
and methods to represent takeoff and landing. Moreover, when we write the main
program for the simulation, the need for other Plane methods will become apparent.
We will also use a class Runway to hold information about the state and operation
of the runway. This class will maintain members representing queues of planes
waiting to land and take off.

We shall need one other class in our simulation, a class Random to encapsulateclass Random
the random nature of plane arrivals and departures from the runway. We shall
discuss this class in more detail in Section 3.5.3. In our main program, we use a

Section 3.5 • Application of Queues: Simulation 97

Landing queue

Plane landing

Runway

Takeoff queue

Figure 3.5. An airport

single method, called poisson, from the class Random. This method uses a floating-

67

point parameter (representing an average outcome) and it returns an integer value.
Although the returned value is random, it has the property that over the course
of many repeated method calls, the average of the returned values will match our
specified parameter.

In our simulation, we shall be especially concerned with the amounts of time
that planes need to wait in queues before taking off or landing. Therefore, the
measurement of time will be of utmost importance to our program. We shall divide
the time period of our simulation into units in such a way that just one plane can
use the runway, either to land or take off, in any given unit of time.

The precise details of how we handle the landing and takeoff queues will be
dealt with when we program the Runway class. Similarly, the precise methods
describing the operation of a Plane are not needed by our main program.68

int main() // Airport simulation program
/* Pre: The user must supply the number of time intervals the simulation is to run,

the expected number of planes arriving, the expected number of planes
departing per time interval, and the maximum allowed size for runway
queues.

Post: The program performs a random simulation of the airport, showing the
status of the runway at each time interval, and prints out a summary of
airport operation at the conclusion.

Uses: Classes Runway, Plane, Random and functions run_idle, initialize. */

98 Chapter 3 • Queues

{
int end_time; // time to run simulation
int queue_limit; // size of Runway queues
int flight_number = 0;
double arrival_rate, departure_rate;
initialize(end_time, queue_limit, arrival_rate, departure_rate);
Random variable;
Runway small_airport(queue_limit);
for (int current_time = 0; current_time < end_time; current_time++) {

// loop over time intervals
int number_arrivals = variable.poisson(arrival_rate);

// current arrival requests
for (int i = 0; i < number_arrivals; i++) {

Plane current_plane(flight_number++, current_time, arriving);
if (small_airport.can_land(current_plane) != success)

current_plane.refuse();
}
int number_departures = variable.poisson(departure_rate);

// current departure requests
for (int j = 0; j < number_departures; j++) {

Plane current_plane(flight_number++, current_time, departing);
if (small_airport.can_depart(current_plane) != success)

current_plane.refuse();
}

Plane moving_plane;
switch (small_airport.activity(current_time, moving_plane)) {

// Let at most one Plane onto the Runway at current_time.
case land:

moving_plane.land(current_time);
break;

case takeoff:
moving_plane.fly(current_time);
break;

case idle:
run_idle(current_time);

}
}
small_airport.shut_down(end_time);

}

In this program, we begin with a call to the function initialize that prints instructions
to the user and gathers information about how long the user wishes the simulation
to run and how busy the airport is to be. We then enter a for loop, in which
current_time ranges from 0 to the user specified value end_time. In each time unit,
we process random numbers of arriving and departing planes; these planes are
declared and initialized as the objects called current_plane. In each cycle, we also
allow one moving plane to use the runway. If there is no plane to use the runway,

Section 3.5 • Application of Queues: Simulation 99

we apply the function run_idle. Note that if our class Runway is unable to add an
incoming flight to the landing Queue (presumably because the Queue is full), we
apply a method called refuse to direct the Plane to another airport. Similarly, we
sometimes have to refuse a Plane permission to take off.

3.5.3 Random Numbers

A key step in our simulation is to decide, at each time unit, how many new planes
become ready to land or take off. Although there are many ways in which these
decisions can be made, one of the most interesting and useful is to make a random
decision. When the program is run repeatedly with random decisions, the results
will differ from run to run, and with sufficient experimentation, the simulation may
display a range of behavior not unlike that of the actual system being studied. The
Random method poisson in the preceding main program returns a random number
of planes arriving ready to land or ready to take off in a particular time unit.

Appendix B studies numbers, called pseudorandom, for use in computer pro-pseudorandom
number grams. Several different kinds of pseudorandom numbers are useful for different

applications. For the airport simulation, we need one of the more sophisticated
kinds, called Poisson random numbers.

To introduce the idea, let us note that saying that an average family has 2.6
children does not mean that each family has 2 children and 0.6 of a third. Instead,
it means that, averaged over many families, the mean number of children is 2.6.
Hence, for five families with 4, 1, 0, 3, 5 children the mean number is 2.6. Similarly,
if the number of planes arriving to land in ten time units is 2, 0, 0, 1, 4, 1, 0, 0, 0, 1,
then the mean number of planes arriving in one unit is 0.9.

Let us now start with a fixed number called the expected value v of the randomexpected value,
Poisson distribution numbers. Then to say that a sequence of nonnegative integers satisfies a Poisson

distribution with expected value v implies that, over long subsequences, the mean
value of the integers in the sequence approaches v . Appendix B describes a C++
class that generates random integers according to a Poisson distribution with a
given expected value, and this is just what we need for the airport simulation.

3.5.4 The Runway Class Specification

The Runway class needs to maintain two queues of planes, which we shall call
landing and takeoff, to hold waiting planes. It is better to keep a plane waiting onrules
the ground than in the air, so a small airport allows a plane to take off only if there
are no planes waiting to land. Hence, our Runway method activity, which controls
access to the Runway, will first service the head of the Queue of planes waiting to
land, and only if the landing Queue is empty will it allow a Plane to take off.

One aim of our simulation is to gather data about likely airport use. It is natural

69

to use the class Runway itself to keep statistics such the number of planes processed,
the average time spent waiting, and the number of planes (if any) refused service.
These details are reflected in the various data members of the following Runway
class definition.

100 Chapter 3 • Queues

enum Runway_activity {idle, land, takeoff};

Runway definition class Runway {
public:

Runway(int limit);
Error_code can_land(const Plane ¤t);
Error_code can_depart(const Plane ¤t);
Runway_activity activity(int time, Plane &moving);
void shut_down(int time) const;

private:
Extended_queue landing;
Extended_queue takeoff;
int queue_limit;
int num_land_requests; // number of planes asking to land
int num_takeoff_requests; // number of planes asking to take off
int num_landings; // number of planes that have landed
int num_takeoffs; // number of planes that have taken off
int num_land_accepted; // number of planes queued to land
int num_takeoff_accepted; // number of planes queued to take off
int num_land_refused; // number of landing planes refused
int num_takeoff_refused; // number of departing planes refused
int land_wait; // total time of planes waiting to land
int takeoff_wait; // total time of planes waiting to take off
int idle_time; // total time runway is idle

};

Note that the class Runway has two queues among its members. The implemen-
tation reflects the has-a relationships in the statement that a runway has a landing
queue and has a takeoff queue.

3.5.5 The Plane Class Specification

The class Plane needs to maintain data about particular Plane objects. This data
must include a flight number, a time of arrival at the airport system, and a Plane
status as either arriving or departing. Since we do not wish a client to be able to
change this information, we shall keep it in private data members. When we declare
a Plane object in the main program, we shall wish to initialize these three pieces of
information as the object is constructed. Hence we need a Plane class constructor
that has three parameters. Other times, however, we shall wish to construct a Plane
object without initializing this information, because either its values are irrelevant
or will otherwise be determined. Hence we really need two constructors for the
Plane class, one with three parameters and one with none.

Section 3.5 • Application of Queues: Simulation 101

The C++ language provides exactly the feature we need; it allows us to use
the same identifier to name as many different functions as we like, even within amultiple versions of

functions single block of code, so long as no two of these functions have identically typed
parameter lists. When the function is invoked, the C++ compiler can figure out
which version of the function to use, by looking at the number of actual parameters
and their types. It simply determines which set of formal parameters match the
actual parameters in number and types.

When we use a single name for several different functions, we say that the
name is overloaded. Inside the scope of the class Plane, we are able to overload thefunction overloading
two plane constructors, because the first uses an empty parameter list, whereas the
second uses a parameter list of three integer variables.

From now on, class specifications will often contain two constructors, one with
parameters for initializing data members, and one without parameters.

Finally, the Plane class must contain the methods refuse, land, and fly that
are explicitly used by the main program. We will also need each Plane to be able
to communicate its time of arrival at the airport to the class Runway, so a final
method called started is included with this purpose in mind. We can now give the
specification for the class Plane.

enum Plane_status {null, arriving, departing};

Plane definition class Plane {
public:

Plane();
Plane(int flt, int time, Plane_status status);
void refuse() const;
void land(int time) const;
void fly(int time) const;
int started() const;

private:
int flt_num;
int clock_start;
Plane_status state;

};
70

3.5.6 Functions and Methods of the Simulation

The actions of the functions and methods for doing the steps of the simulation are
generally straightforward, so we proceed to write each in turn, with comments
only as needed for clarity.

102 Chapter 3 • Queues

1. Simulation Initialization71

void initialize(int &end_time, int &queue_limit,
double &arrival_rate, double &departure_rate)

/* Pre: The user specifies the number of time units in the simulation, the maximal
queue sizes permitted, and the expected arrival and departure rates for
the airport.

Post: The program prints instructions and initializes the parameters end_time,
queue_limit, arrival_rate, and departure_rate to the specified values.

Uses: utility function user_says_yes */

{
cout << "This program simulates an airport with only one runway." << endl

<< "One plane can land or depart in each unit of time." << endl;
cout << "Up to what number of planes can be waiting to land "

<< "or take off at any time? " << flush;
cin >> queue_limit;
cout << "How many units of time will the simulation run?" << flush;
cin >> end_time;
bool acceptable;
do {

cout << "Expected number of arrivals per unit time?" << flush;
cin >> arrival_rate;
cout << "Expected number of departures per unit time?" << flush;
cin >> departure_rate;
if (arrival_rate < 0.0 || departure_rate < 0.0)

cerr << "These rates must be nonnegative." << endl;
else

acceptable = true;
if (acceptable && arrival_rate + departure_rate > 1.0)

cerr << "Safety Warning: This airport will become saturated. " << endl;
} while (!acceptable);

}

2. Runway Initialization72

Runway :: Runway(int limit)
/* Post: The Runway data members are initialized to record no prior Runway use

and to record the limit on queue sizes. */
{

queue_limit = limit;
num_land_requests = num_takeoff_requests = 0;
num_landings = num_takeoffs = 0;
num_land_refused = num_takeoff_refused = 0;
num_land_accepted = num_takeoff_accepted = 0;
land_wait = takeoff_wait = idle_time = 0;

}

Section 3.5 • Application of Queues: Simulation 103

3. Accepting a New Plane into a Runway Queue

Error_code Runway :: can_land(const Plane ¤t)
/* Post: If possible, the Plane current is added to the landing Queue; otherwise,

an Error_code of overflow is returned. The Runway statistics are updated.
Uses: class Extended_queue. */

{
Error_code result;
if (landing.size() < queue_limit)

result = landing.append(current);
else

result = fail;
num_land_requests++;

if (result != success)
num_land_refused++;

else
num_land_accepted++;

return result;
}

Error_code Runway :: can_depart(const Plane ¤t)
/* Post: If possible, the Plane current is added to the takeoff Queue; otherwise, an

Error_code of overflow is returned. The Runway statistics are updated.
Uses: class Extended_queue. */

{
Error_code result;
if (takeoff.size() < queue_limit)

result = takeoff.append(current);
else

result = fail;
num_takeoff_requests++;

if (result != success)
num_takeoff_refused++;

else
num_takeoff_accepted++;

return result;
}

4. Handling Runway Access73

Runway_activity Runway :: activity(int time, Plane &moving)
/* Post: If the landing Queue has entries, its front Plane is copied to the parameter

moving and a result land is returned. Otherwise, if the takeoff Queue has
entries, its front Plane is copied to the parameter moving and a result
takeoff is returned. Otherwise, idle is returned. Runway statistics are
updated.

Uses: class Extended_queue. */

104 Chapter 3 • Queues

{
Runway_activity in_progress;
if (!landing.empty()) {

landing.retrieve(moving);
land_wait += time − moving.started();
num_landings++;
in_progress = land;
landing.serve();

}
else if (!takeoff.empty()) {

takeoff.retrieve(moving);
takeoff_wait += time − moving.started();
num_takeoffs++;
in_progress = takeoff;
takeoff.serve();

}
else {

idle_time++;
in_progress = idle;

}
return in_progress;

}

5. Plane Initialization74

Plane :: Plane(int flt, int time, Plane_status status)
/* Post: The Plane data members flt_num, clock_start, and state are set to the

values of the parameters flt, time and status, respectively. */
{

flt_num = flt;
clock_start = time;
state = status;
cout << "Plane number " << flt << " ready to ";
if (status == arriving)

cout << "land." << endl;
else

cout << "take off." << endl;
}

Plane :: Plane()
/* Post: The Plane data members flt_num, clock_start, state are set to illegal de-

fault values. */
{

flt_num = −1;
clock_start = −1;
state = null;

}

Section 3.5 • Application of Queues: Simulation 105

The second of these constructors performs a null initialization. In many programsnull initialization
it is not necessary to provide such a constructor for a class. However, in C++, if
we ever declare an array of objects that do have a constructor, then the objects
must have an explicit default constructor. A default constructor is a constructor
without parameters (or with specified defaults for all parameters). Each Runway
object contains queues of planes, and each of these queues is implemented using an
array of planes. Hence, in our simulation, we really do need the null initialization
operation.

6. Refusing a Plane75

void Plane :: refuse() const
/* Post: Processes a Plane wanting to use Runway, when the Queue is full. */

{
cout << "Plane number " << flt_num;
if (state == arriving)

cout << " directed to another airport" << endl;
else

cout << " told to try to takeoff again later" << endl;
}

7. Processing an Arriving Plane

void Plane :: land(int time) const
/* Post: Processes a Plane that is landing at the specified time. */

{
int wait = time − clock_start;
cout << time << ": Plane number " << flt_num << " landed after "

<< wait << " time unit" << ((wait == 1) ? "" : "s")
<< " in the takeoff queue." << endl;

}

In this function we have used the ternary operator ? : to append an “s” where
needed to achieve output such as “1 time unit” or “2 time units”.

8. Processing a Departing Plane

void Plane :: fly(int time) const
/* Post: Process a Plane that is taking off at the specified time. */

{
int wait = time − clock_start;
cout << time << ": Plane number " << flt_num << " took off after "

<< wait << " time unit" << ((wait == 1) ? "" : "s")
<< " in the takeoff queue." << endl;

}

106 Chapter 3 • Queues

9. Communicating a Plane’s Arrival Data

int Plane :: started() const
/* Post: Return the time that the Plane entered the airport system. */
{

return clock_start;
}

10. Marking an Idle Time Unit

void run_idle(int time)
/* Post: The specified time is printed with a message that the runway is idle. */
{

cout << time << ": Runway is idle." << endl;
}

11. Finishing the Simulation76

void Runway :: shut_down(int time) const
/* Post: Runway usage statistics are summarized and printed. */
{

cout << "Simulation has concluded after " << time << " time units." << endl
<< "Total number of planes processed "
<< (num_land_requests + num_takeoff_requests) << endl
<< "Total number of planes asking to land "
<< num_land_requests << endl
<< "Total number of planes asking to take off "
<< num_takeoff_requests << endl
<< "Total number of planes accepted for landing "
<< num_land_accepted << endl
<< "Total number of planes accepted for takeoff "
<< num_takeoff_accepted << endl
<< "Total number of planes refused for landing "
<< num_land_refused << endl
<< "Total number of planes refused for takeoff "
<< num_takeoff_refused << endl
<< "Total number of planes that landed "
<< num_landings << endl
<< "Total number of planes that took off "
<< num_takeoffs << endl
<< "Total number of planes left in landing queue "
<< landing.size() << endl
<< "Total number of planes left in takeoff queue "
<< takeoff.size() << endl;

Section 3.5 • Application of Queues: Simulation 107

cout << "Percentage of time runway idle "
<< 100.0 * ((float) idle_time)/((float) time) << "%" << endl;

cout << "Average wait in landing queue "
<< ((float) land_wait)/((float) num_landings) << " time units";

cout << endl << "Average wait in takeoff queue "
<< ((float) takeoff_wait)/((float) num_takeoffs)
<< " time units" << endl;

cout << "Average observed rate of planes wanting to land "
<< ((float) num_land_requests)/((float) time)
<< " per time unit" << endl;

cout << "Average observed rate of planes wanting to take off "
<< ((float) num_takeoff_requests)/((float) time)
<< " per time unit" << endl;

}

3.5.7 Sample Results

We conclude this section with part of the output from a sample run of the airport
simulation. You should note that there are some periods when the runway is idle
and others when one of the queues is completely full and in which planes must
be turned away. If you run this simulation again, you will obtain different results
from those given here, but, if the expected values given to the program are the
same, then there will be some correspondence between the numbers given in the
summaries of the two runs.

This program simulates an airport with only one runway.
One plane can land or depart in each unit of time.
Up to what number of planes can be waiting to land or take off at any time ? 5

How many units of time will the simulation run ? 1000

Expected number of arrivals per unit time ? .48

Expected number of departures per unit time ? .48

Plane number 0 ready to take off.

0: Plane 1 landed; in queue 0 units.

Plane number 0 took off after 0 time units in the takeoff queue.

Plane number 1 ready to take off.

1: Plane number 1 took off after 0 time units in the takeoff queue.

Plane number 2 ready to take off.

Plane number 3 ready to take off.

2: Plane number 2 took off after 0 time units in the takeoff queue.

Plane number 4 ready to land.

Plane number 5 ready to take off.

108 Chapter 3 • Queues

3: Plane number 4 landed after 0 time units in the takeoff queue.

Plane number 6 ready to land.

Plane number 7 ready to land.

Plane number 8 ready to take off.

Plane number 9 ready to take off.

4: Plane number 6 landed after 0 time units in the takeoff queue.

Plane number 10 ready to land.

Plane number 11 ready to take off.

5: Plane number 7 landed after 1 time unit in the takeoff queue.

Plane number 12 ready to land.

6: Plane number 10 landed after 1 time unit in the takeoff queue.

7: Plane number 12 landed after 1 time unit in the takeoff queue.

Plane number 13 ready to land.

Plane number 14 ready to take off.

takeoff queue is full Plane number 14 told to try to takeoff again later.

8: Plane number 13 landed after 0 time units in the takeoff queue.

9: Plane number 3 took off after 7 time units in the takeoff queue.

10: Plane number 5 took off after 7 time units in the takeoff queue.

11: Plane number 8 took off after 7 time units in the takeoff queue.

Plane number 15 ready to take off.

12: Plane number 9 took off after 8 time units in the takeoff queue.

Plane number 16 ready to land.

Plane number 17 ready to land.

13: Plane number 16 landed after 0 time units in the takeoff queue.

Plane number 18 ready to land.

14: Plane number 17 landed after 1 time unit in the takeoff queue.

15: Plane number 18 landed after 1 time unit in the takeoff queue.

Plane number 19 ready to land.

Plane number 20 ready to take off.

16: Plane number 19 landed after 0 time units in the takeoff queue.

17: Plane number 11 took off after 12 time units in the takeoff queue.

18: Plane number 15 took off after 6 time units in the takeoff queue.

19: Plane number 20 took off after 3 time units in the takeoff queue.

both queues are empty 20: Runway is idle.

Section 3.5 • Application of Queues: Simulation 109

Eventually, after many more steps of the simulation, we get a statistical summary.

summary Simulation has concluded after 1000 time units.
Total number of planes processed 970
Total number of planes asking to land 484
Total number of planes asking to take off 486
Total number of planes accepted for landing 484
Total number of planes accepted for takeoff 423
Total number of planes refused for landing 0
Total number of planes refused for takeoff 63
Total number of planes that landed 483
Total number of planes that took off 422
Total number of planes left in landing queue 1
Total number of planes left in takeoff queue 1
Percentage of time runway idle 9.5 %
Average wait in landing queue 0.36646 time units
Average wait in takeoff queue 4.63744 time units
Average observed rate of planes wanting to land 0.484 time units
Average observed rate of planes wanting to take off 0.486 time units

Notice that the last two statistics, giving the observed rates of planes asking for
landing and departure permission, do match the expected values put in at the
beginning of the run (within a reasonable range): This outcome should give us
some confidence that the pseudo-random number algorithm of Appendix B really
does simulate an appropriate Poisson distribution.

Programming
Projects 3.5

P1. Combine all the functions and methods for the airport simulation into a com-
plete program. Experiment with several sample runs of the airport simulation,
adjusting the values for the expected numbers of planes ready to land and take
off. Find approximate values for these expected numbers that are as large as
possible subject to the condition that it is very unlikely that a plane must be
refused service. What happens to these values if the maximum size of the
queues is increased or decreased?

P2. Modify the simulation to give the airport two runways, one always used for
landings and one always used for takeoffs. Compare the total number of planes
that can be served with the number for the one-runway airport. Does it more
than double?

P3. Modify the simulation to give the airport two runways, one usually used for
landings and one usually used for takeoffs. If one of the queues is empty, then
both runways can be used for the other queue. Also, if the landing queue is
full and another plane arrives to land, then takeoffs will be stopped and both
runways used to clear the backlog of landing planes.

110 Chapter 3 • Queues

P4. Modify the simulation to have three runways, one always reserved for each of
landing and takeoff and the third used for landings unless the landing queue
is empty, in which case it can be used for takeoffs.

P5. Modify the original (one-runway) simulation so that when each plane arrives
to land, it will have (as one of its data members) a (randomly generated) fuel
level, measured in units of time remaining. If the plane does not have enough
fuel to wait in the queue, it is allowed to land immediately. Hence the planes in
the landing queue may be kept waiting additional units, and so may run out of
fuel themselves. Check this out as part of the landing function, and find about
how busy the airport can become before planes start to crash from running out
of fuel.

P6. Write a stub to take the place of the random-number function. The stub can
be used both to debug the program and to allow the user to control exactly the
number of planes arriving for each queue at each time unit.

POINTERS AND PITFALLS

1. Before choosing implementations, be sure that all the data structures and their
78 associated operations are fully specified on the abstract level.

2. In choosing between implementations, consider the necessary operations on
the data structure.

3. If every object of class A has all the properties of an object of class B, implement
class A as a derived class of B.

4. Consider the requirements of derived classes when declaring the members of
a base class.

5. Implement is-a relationships between classes by using public inheritance.

6. Implement has-a relationships between classes by layering.

7. Use Poisson random variables to model random event occurrences.

REVIEW QUESTIONS

1. Define the term queue. What operations can be done on a queue?3.1

2. How is a circular array implemented in a linear array?

3. List three different implementations of queues.

4. Explain the difference between has-a and is-a relationships between classes.

5. Define the term simulation.3.4

Chapter 3 • References for Further Study 111

REFERENCES FOR FURTHER STUDY

Queues are a standard topic covered by all data structures books. Most modern
texts take the viewpoint of separating properties of data structures and their opera-
tions from the implementation of the data structures. Two examples of such books
are:

JIM WELSH, JOHN ELDER, and DAVID BUSTARD, Sequential Program Structures, Prentice-
Hall International, London, 1984, 385 pages.

DANIEL F. STUBBS and NEIL W. WEBRE, Data Structures with Abstract Data Types and
Pascal, Brooks/Cole Publishing Company, Monterey, Calif., 1985, 459 pages.

For many topics concerning queues, the best source for additional information,
historical notes, and mathematical analysis is KNUTH, volume 1 (reference in
Chapter 2).

An elementary survey of computer simulations appears in Byte 10 (October
1985), 149–251. A simulation of the National Airport in Washington, D.C., appears
on pp. 186–190.

A useful discussion of the possible relationships between classes and appro-
priate C++ implementations of these relationships is given in

SCOTT MEYERS, Effective C++, second edition, Addison-Wesley, Reading, Mass., 1997.

Linked Stacks and
Queues 4

T
HIS chapter introduces linked implementations of data structures. The
chapter begins with a review of the use of dynamically allocated memory
in C++. Next come implementations of linked stacks and queues. As
an application, we derive a class to represent polynomials and use it to

implement a reverse-Polish calculator for polynomials. The chapter closes with
a review of the principles of abstract data types.

4.1 Pointers and Linked Structures 113
4.1.1 Introduction and Survey 113
4.1.2 Pointers and Dynamic Memory in

C++ 116
4.1.3 The Basics of Linked Structures 122

4.2 Linked Stacks 127

4.3 Linked Stacks with Safeguards 131
4.3.1 The Destructor 131
4.3.2 Overloading the Assignment

Operator 132
4.3.3 The Copy Constructor 135
4.3.4 The Modified Linked-Stack

Specification 136

4.4 Linked Queues 137

4.4.1 Basic Declarations 137
4.4.2 Extended Linked Queues 139

4.5 Application: Polynomial Arithmetic 141
4.5.1 Purpose of the Project 141
4.5.2 The Main Program 141
4.5.3 The Polynomial Data Structure 144
4.5.4 Reading and Writing Polynomials 147
4.5.5 Addition of Polynomials 148
4.5.6 Completing the Project 150

4.6 Abstract Data Types and Their
Implementations 152

Pointers and Pitfalls 154
Review Questions 155

112

4.1 POINTERS AND LINKED STRUCTURES

4.1.1 Introduction and Survey

1. The Problem of Overflow
If we implement a data structure by storing all the data within arrays, then the
arrays must be declared to have some size that is fixed when the program is written,
and that therefore cannot be changed while the program is running. When writing

81

a program, we must decide on the maximum amount of memory that will be
needed for our arrays and set this aside in the declarations. If we run the program
on a small sample, then much of this space will never be used. If we decide to
run the program on a large set of data, then we may exhaust the space set aside
and encounter overflow, even when the computer memory itself is not fully used,
simply because our original bounds on the array were too small.

Even if we are careful to declare our arrays large enough to use up all the
available memory, we can still encounter overflow, since one array may reach itsmisallocation of space
limit while a great deal of unused space remains in others. Since different runs
of the same program may cause different structures to grow or shrink, it may
be impossible to tell before the program actually executes which structures will
overflow.

Modern languages, including C++, provide constructions that allow us to keep
data structures in memory without using arrays, whereby we can avoid these dif-
ficulties.

2. Pointers
The C++ construction that we use is a pointer. A pointer, also called a link or a
reference, is defined to be an object, often a variable, that stores the location (that is
the machine address) of some other object, typically of a structure containing data
that we wish to manipulate. If we use pointers to locate all the data in which we
are interested, then we need not be concerned about where the data themselves
are actually stored, since by using a pointer, we can let the computer system itself
locate the data when required.

3. Diagram Conventions
Figure 4.1 shows pointers to several objects. Pointers are generally depicted as
arrows and the referenced objects as rectangular boxes. In the figures throughout
this book, variables containing pointers are generally shown as emanating from
colored boxes or circles. Colored circles generally denote ordinary variables that
contain pointers; colored boxes contain pointers that are parts of larger objects.

Hence, in the diagram, r is a pointer to the object “Lynn” and v is a pointer to
the object “Jack.” As you can see, the use of pointers is quite flexible: Two pointers
can refer to the same object, as t and u do in Figure 4.1, or a pointer can refer to
no object at all. We denote this latter situation within diagrams by the electricalpointers referring

nowhere ground symbol, as shown for pointer s.

113

114 Chapter 4 • Linked Stacks and Queues

80

Lynn

Jack

Dave

Marsha

r

s

t

u

v

Figure 4.1. Pointers to objects

Care must be exercised when using pointers, moreover, to be sure that, when
they are moved, no object is lost. In the diagram, the object “Dave” is lost, with no
pointer referring to it, and therefore there is no way to find it. In such a situation, we
shall say that the object has become garbage. Although a small amount of garbage
does little harm, if we allow garbage to mount up, it can eventually occupy all ofgarbage
our available memory in the computer and smother our program. Therefore, in
our work, we shall always strive to avoid the creation of garbage.

4. Linked Structures

In Chapter 2 and Chapter 3, we implemented stacks and queues by storing elements
of the associated structure in an array. In this chapter, we illustrate how to use
pointers to obtain a different implementation, where elements of the structure are
linked together. The idea of a linked list is to augment every element of a list
structure with a pointer giving the location of the next element in the list. This idealinked list
is illustrated in Figure 4.2.

Fred Jackie

Carol Tom René

367-2205

Jan. 28

295-0603
Feb. 18

628-5100
Feb. 23

286-2139
Feb. 28

342-5153
Mar. 15

Figure 4.2. A linked list

Section 4.1 • Pointers and Linked Structures 115

As you can see from the illustration, a linked list is simple in concept. It uses the
same idea as a children’s treasure hunt, where each clue that is found tells where to
find the next one. Or consider friends passing a popular cassette around. Fred hasanalogies
it, and has promised to give it to Jackie. Carol asks Jackie if she can borrow it, and
then will next share it with Tom. And so it goes. A linked list may be considered
analogous to following instructions where each instruction is given out only upon
completion of the previous task. There is then no inherent limit on the number of
tasks to be done, since each task may specify a new instruction, and there is no
way to tell in advance how many instructions there are. The stack implementation
studied in Section 2.2, on the other hand, is analogous to a list of instructions written
on a single sheet of paper. It is then possible to see all the instructions in advance,
but there is a limit to the number of instructions that can be written on the single
sheet of paper.

With some practice in their use, you will find that linked structures are as
easy to work with as structures implemented within arrays. The methods differ
substantially, however, so we must spend some time developing new programming
skills. Before we turn to this work, let us consider a few more general observations.

5. Contiguous and Linked Lists

The word contiguous means in contact, touching, adjoining. The entries in an arraydefinitions
are contiguous, and we speak of a list kept in an array as a contiguous list. We
can then distinguish as desired between contiguous lists and linked lists, and we
use the unqualified word list only to include both. The same convention applies to
stacks, queues, and other data structures.

6. Dynamic Memory Allocation

As well as preventing unnecessary overflow problems caused by running out of
space in arrays, the use of pointers has advantages in a multitasking or time-sharing
environment. If we use arrays to reserve in advance the maximum amount ofmultitasking and

time sharing memory that our task might need, then this memory is assigned to it and will be
unavailable for other tasks. If it is necessary to page our task out of memory, then
there may be time lost as unused memory is copied to and from a disk. Instead
of using arrays to hold all our data, we can begin very small, with space only foradvantages of dynamic

memory allocation the program instructions and simple variables, and whenever we need space for
more data, we can request the system for the needed memory. Similarly, when an
item is no longer needed, its space can be returned to the system, which can then
assign it to another task. In this way, a program can start small and grow only as
necessary, so that when it is small, it can run more efficiently, and, when necessary,
it can grow to the limits of the computer system.

Even with only one task executing at a time, this dynamic control of memory
can prove useful. During one part of a task, a large amount of memory may be
needed for some purpose, which can later be released and then allocated again for
another purpose, perhaps now containing data of a completely different type than
before.

116 Chapter 4 • Linked Stacks and Queues

4.1.2 Pointers and Dynamic Memory in C++

Most modern programming languages, including C++, provide powerful facilities
for processing pointers, as well as standard functions for requesting additional
memory and for releasing memory during program execution.

1. Automatic and Dynamic Objects

Objects that can be used during execution of a C++ program come in two varieties.
Automatic objects are those that are declared and named, as usual, while writingautomatic objects
the program. Space for them is explicitly allocated by the compiler and exists as long
as the block of the program in which they are declared is running. The programmer
need not worry about whether storage space will exist for an automatic object, or
whether the storage used for such an object will be cleaned up after it is used.
Dynamic objects are created (and perhaps destroyed) during program execution.
Since dynamic objects do not exist while the program is compiled, but only when itdynamic objects
is run, they are not assigned names while it is being written. Moreover, the storage
occupied by dynamic objects must be managed entirely by the programmer.

The only way to access a dynamic object is by using pointers. Once it is created,
however, a dynamic object does contain data and must have a type like any other
object. Thus we can talk about creating a new dynamic object of type x and setting
a pointer to point to it, or of moving a pointer from one dynamic object of type x
to another, or of returning a dynamic object of type x to the system.

Automatic objects, on the other hand, cannot be explicitly created or destroyed
during execution of the block in which they are declared. They come into exis-
tence automatically when the block begins execution and disappear when execu-
tion ends.

Pointer variables can be used to point to automatic objects: This creates a
second name, or alias, for the object. The object can then be changed using onealiases
name and later used with the other name, perhaps without the realization that it
had been changed. Aliases are therefore dangerous and should be avoided as much
as possible.

2. C++ Notation

C++ uses an asterisk (star) * to denote a pointer. If Item denotes the type of data in
which we are interested, then a pointer to such an object has the type Item *. Forpointer type
example, we can make a declaration:

Item *item_ptr;

The verbal translation of any C++ declaration is most easily formed by reading
the tokens of the declaration from right to left. In this case, the tokens, read from

82

the right, are item_ptr, *, and Item. Hence, we see that the declaration says that
item_ptr is a pointer to an Item object.

Normally, we should only use a pointer of type Item * to store the address of
an object of type Item. However, as we shall see later, it is also reasonable to store
the address of an object from a derived class of Item in a pointer of type Item *.

Section 4.1 • Pointers and Linked Structures 117

3. Creating and Destroying Dynamic Objects

We can create dynamic objects with the C++ operator new. The operator new is
invoked with an object type as its argument, and it returns the address of a newly
created dynamic object of the appropriate type. If we are ever to use this dynamic
object, we should immediately record its address in an appropriate pointer variable:
Thus the new operator is most often applied on the right-hand side of a pointer
assignment. For example, suppose that p has been declared as a pointer to type
Item. Then the statementcreation of dynamic

objects
p = new Item;

creates a new dynamic object of type Item and assigns its location to the pointer p.
The dynamic objects that we create are actually kept in an area of computer

memory called the free store (or the heap). Like all other resources, the free storefree store
is finite, and if we create enough dynamic objects, it can be exhausted. If the free
store is full, then calls to the new operator will fail. In early implementations of
C++ this failure was signaled by the return from new of a value of 0 rather than a
legitimate machine address. In ANSI C++, an exception is generated to signal the
failure of the new operator. However, the modified statement

p = new(nothrow) Item;

restores the traditional behavior of the new operator. In this text, we will assume the
older behavior of the new operator. Our code should be modified using nothrow
to run in an ANSI C++ environment. It follows that we should always check that
the result of a call to new is nonzero to make sure that the call has succeeded.

To help us conserve the free store, C++ provides a second operator called deletedeletion of dynamic
objects that disposes of dynamically allocated objects. The storage formerly occupied by

such objects is returned to the free store for reuse. The operator delete is applied
to a pointer that references a dynamic object, and it returns the space used by the
referenced object to the system. For example, if p is a pointer to a dynamic object
of type Item, the statement

delete p;

disposes of the object. After this delete statement is executed, the pointer variable
p is undefined and so should not be used until it is assigned a new value.

The effects of the new and delete operators are illustrated in Figure 4.3.

4. Following the Pointers

We use a star * to denote a pointer not only in the declarations of a C++ program, but
also to access the object referenced by a pointer. In this context, the star appears not
to the right of a type, but to the left of a pointer. Thus *p denotes the object to which
p points. Again, the words link and reference are often used in this connection. Thedereferencing pointers
action of taking *p is sometimes called “dereferencing the pointer p.”

118 Chapter 4 • Linked Stacks and Queues

84

???

1378

1378??

p = NULL;

p = new Item;

*p = 1378;

delete p;

Figure 4.3. Creating and disposing of dynamic objects

Note that a dereferenced pointer, such as *p, really is just the name of an object.
In particular, we can use the expression *p on the left of an assignment. (Techni-
cally, we say that a dereferenced pointer is a modifiable lvalue.) For example, themodifiable lvalue
assignment expression *p = 0 resets the value of the object referenced by p to 0.
This assignment is illustrated in Figure 4.4.

196884

0

important_data

important_data

0 *random_pointer = 0;

*p = 0;

p

random_pointer

random_pointer

p

Figure 4.4. Modifying dereferenced pointers

This figure also shows that if a pointer random_pointer stores an illegal or
uninitialized memory address, an assignment to the object *random_pointer can
cause a particularly insidious type of error. For example, an uninitialized pointer
random_pointer might happen to record the address of another variable, impor-
tant_data, say. Any assignment such as *random_pointer = 0, would (acciden-
tally) alter the value of important_data. If we are lucky, this error will merely resultvery dangerous
in our program crashing at some later time. However, because this crash will prob-
ably not occur immediately, its origin will be rather hard to explain. Worse still,

Section 4.1 • Pointers and Linked Structures 119

our program might run to completion and silently produce unreliable results. Or
it might destroy some other part of memory, producing effects that do not become
apparent until we start some completely unrelated application later.

We shall now consider a useful safeguard against errors of this sort.

5. NULL Pointers
Sometimes a pointer variable p has no dynamic object to which it currently refers.
This situation can be established by the assignmentNULL pointer

p = NULL;

and subsequently checked by a condition such as

83

if (p != NULL)

In diagrams we reserve the electrical ground symbol

for NULL pointers. The value NULL is used in the same way as a constant for all
pointer types and is generic in that the same value can be assigned to a variable of
any pointer type. Actually, the value NULL is not part of the C++ language, but it
is defined, as 0, in standard header files such as <cstddef> that we include in our
utility header file.

undefined pointers
versus NULL pointers

Note carefully the distinction between a pointer variable whose value is unde-
fined and a pointer variable whose value is NULL. The assertion p == NULL means
that p currently points to no dynamic object. If the value of p is undefined, then p
might point to any random location in memory.

If p is set as NULL, then any attempt to form the expression *p should cause our
program to crash immediately. Although it is unpleasant to have to deal with any
error, this crash is much easier to understand and correct than the problems that,
as we have seen, are likely to result from an assignment through a random pointer.

Programming Precept

Uninitialized or random pointer objects should always be reset to NULL.
After deletion, a pointer object should be reset to NULL.

6. Dynamically allocated arrays
The new and delete keywords can be used to assign and delete contiguous blocks ofdynamic arrays
dynamic storage for use as arrays. For example, if array_size represents an integer
value, the declaration

item_array = new Item[array_size];

creates a dynamic array of Item objects. The entries of this array are indexed
from 0 up to array_size − 1. We access a typical entry with an expression such as
item_array[i].

120 Chapter 4 • Linked Stacks and Queues

For example, we can read in an array size from a user and create and use an
appropriate array with the following statements. The resulting assignments are85

illustrated in Figure 4.5.

int size, *dynamic_array, i;
cout << "Enter an array size: " << flush;
cin >> size;
dynamic_array = new int[size];
for (i = 0; i < size; i++) dynamic_array[i] = i;

dynamic_array

0 1 2 3 4 5 6 7 8 9 10

for (i=0; i<size; i++) dynamic_array[i] = i;

dynamic_array = new int [size];

dynamic_array

Figure 4.5. Dynamic arrays and pointers

Dynamically allocated array storage is returned with the operator delete [].
For example, we return the storage in dynamic_array by the statement

delete []dynamic_array;

7. Pointer Arithmetic

A pointer object p of type Item * can participate in assignment statements, can be
checked for equality, and (as an argument) can appear in calls to functions. The
programmer can also add and subtract integers from pointer values and obtain
pointer values as results. For example, if i is an integer value, then p + i is anpointer arithmetic
expression of type Item *. The value of p + i gives the memory address offset from
p by i Item objects. That is, the expression p + i actually yields the address p+n× i,
where n is the number of bytes of storage occupied by a simple object of type Item.

It is also possible to print out the values of pointers, but since they are addresses
assigned while the program is running, they may differ from one run of the pro-
gram to the next. Moreover, their values (as addresses in the computer memory)
are implementation features with which the programmer should not be directly
concerned. (During debugging, it is, however, sometimes useful to print pointer
values so that a programmer can check that appropriate equalities hold and that
appropriate pointer assignments have been made.)

Section 4.1 • Pointers and Linked Structures 121

Note that rules and restrictions on using pointers do not apply to the dynamic
variables to which the pointers refer. If p is a pointer, then *p is not usually a
pointer (although it is legal for pointers to point to pointers) but a variable of some
other type Item, and therefore *p can be used in any legitimate way for type Item.

8. Pointer assignment

With regard to assignment statements, it is important to remember the differenceassignment
between p = q and *p = *q, both of which are legal (provided that p and q point to
objects of the same type), but which have quite different effects. The first statement
makes p point to the same object to which q points, but it does not change the value
of either that object or of the other object that was formerly *p. The latter object will
become garbage unless there is some other pointer variable that still refers to it. The
second statement, *p = *q, on the contrary, copies the value of the object *q into
the object *p, so that we now have two objects with the same value, with p and q
pointing to the two separate copies. Finally, the two assignment statements p = *q
and *p = q have mixed types and are illegal (except in the rare case that both p and
q point to pointers of their same type!). Figure 4.6 illustrates these assignments.86

Music

Calculus

Calculus

Calculus

Music

Calculus

p

p *p

p

q

q *q

p = q

q *q = *p

*p = *q

*p

*q

Figure 4.6. Assignment of pointer variables

9. Addresses of Automatic Objects

In C++, automatic objects are usually accessed simply by using their names—just as
we have always done. However, at run time, we can recover and use the machine
addresses at which automatic objects are stored. For example, if x is a variable ofthe address operator
type Item, then &x is a value of type Item * that gives the address of x. In this case,
a declaration and assignment such as Item *ptr = &x would establish a pointer, ptr,
to the object x.

122 Chapter 4 • Linked Stacks and Queues

We can also look up the address at which the initial element of an array is
stored. This address is found by using the array’s name without any attached []

87

operators. For example, given a declaration Item x[20] the assignment

Item *ptr = x

sets up a pointer ptr to the initial element of the array x. Observe that an assignment
expression ptr = &(x[0]) could also be used to find this address. In exactly the
same way, an assignment expression, p = &(x[i]), locates the address where x[i]
is stored. However, since the location of x[i] is offset from that of x[0] by the
storage required for i items, the expression x + i uses pointer arithmetic to give a
simpler way of finding the address of x[i].

10. Pointers to Structures

Many programs make use of pointers to structures, and the C++ language includes
an extra operator to help us access members of such structures. For example,
if p is a pointer to an object that has a data member called the_data, then we
could access this data member with the expression (*p).the_data. The rules of
operator precedence prevent us from omitting the parentheses in this expression,
and thus the common operation of following a link and then looking up a member
becomes cumbersome. Happily, C++ provides the operator -> as a shorthand, anddereferencing operator

-> we can replace the expression (*p).the_data by an equivalent, but more convenient,
expression p->the_data.

For example, given the definitions

class Fraction{
public:

int numerator;
int denominator;

};
Fraction *p;

we can access the members of the Fraction object referenced by p with an expression
such as p->numerator = 0 or with a somewhat less convenient, but equivalent,
expression (*p).numerator = 0.

4.1.3 The Basics of Linked Structures

With the tools of pointers and pointer types, we can now begin to consider the
implementation of linked structures in C++. The place to start is with the definitions
we shall need to set up the entries of a linked structure.

Section 4.1 • Pointers and Linked Structures 123

1. Nodes and Type Declarations

Recall from Figure 4.2 that a linked structure is made up of nodes, each containing
both the information that is to be stored as an entry of the structure and a pointer
telling where to find the next node in the structure. We shall refer to these nodes
making up a linked structure as the nodes of the structure, and the pointers wenodes and links
often call links. Since the link in each node tells where to find the next node of the
structure, we shall use the name next to designate this link.

We shall use a struct rather than a class to implement nodes. The only difference

88

between a struct and a class is that, unless modified by the keywords private and
public, members of a struct are public whereas members of a class are private.
Thus, by using modifiers public and private to adjust the visibility of members,
we can implement any structure as either a struct or a class. We shall adopt the
convention of using a struct to implement structures that are not encapsulated, all
of whose members can be accessed by clients. For example, our node structure
is not encapsulated. However, although we can use nodes in their own right,
we shall usually consider them as either private or protected members of other,
encapsulated, data structures. In this context it is both safe and convenient to
implement nodes without encapsulation. Translating these decisions into C++
yields:

struct Node {
// data members

Node_entry entry;
Node *next;

// constructors
Node();
Node(Node_entry item, Node *add_on = NULL);

};

Note that we have an apparent problem of circularity in this definition. The memberuse before definition
next of type Node * is part of the structure Node. On the other hand, it would
appear that type Node should be defined before Node *. To avoid this problem
of circular definitions, for pointer types (and only for pointer types) C++ relaxes
the fundamental rule that every type identifier must be defined before being used.
Instead, the type

Some_type *

is valid in type definitions, even if Some_type has not yet been defined. (Before the
program ends, however, Some_type must be defined or it is an error.)

The reason why C++ can relax its rule in this way and still compile efficiently isspace for pointers:
word of storage that all pointers take the same amount of space in memory, often the same amount

as an integer requires, no matter to what type they refer. We shall call the amount of

124 Chapter 4 • Linked Stacks and Queues

Node *nextNode_entry entry

Node

(a) Structure of a Node (b) Machine storage representation of a Node

Node *next

Node_entry
entryNode

Storage area
 reserved

by machine
used to contain

Node_entry entry
information

Pointer

Figure 4.7. Structures containing pointers

space taken by a pointer one word.1 Hence when encountering the declaration of a
pointer type, the compiler can set aside the right amount of storage and postpone
the problems of checking that all declarations and use of variables are consistent
with the rules. For example, Figure 4.7 illustrates the structure and machine storage
required to implement our struct Node definition.

2. Node Constructors

In addition to storage for the data, our node specification includes two constructors.
These constructors are implemented as two overloaded versions of the function
Node :: Node. In C++, we say that a function is overloaded if two or more different
instances of the function are included within the same scope of a program. Whenoverloading
a function is overloaded, the different implementations must have different sets or
types of parameters, so that the compiler can use the arguments passed by a client
to see which version of the function should be used. For example, our overloaded
constructor has a first version with an empty parameter list, but the second version
requires parameters.

The first constructor does nothing except to set next to NULL as a safeguard formultiple constructors
error checking. The second constructor is used to set the data members of a Node
to the values specified as parameters. Note that in our prototype for the second
constructor we have specified a default value of NULL for the second parameter.
This allows us to call the second constructor with either its usual two arguments
or with just a first argument. In the latter situation the second argument is given
the default value NULL.

1 More precisely, most computers store an integer as 32 bits, although 16-bit integers and 64-bit
integers are also common, and some machines use other sizes, like 24 or 48 bits. Pointers also
usually occupy 32 bits, but some compilers use other sizes, like 16, 24, or 64 bits. Some compilers
even use two different sizes of pointers, called short and long pointers. Hence a pointer may take
space usually called a half word, a word, or a double word, but we shall adopt the convention of
always calling the space for a pointer one word.

Section 4.1 • Pointers and Linked Structures 125

89
Node :: Node()
{

next = NULL;
}

The second form accepts two parameters for initializing the data members.

Node :: Node(Node_entry item, Node *add_on)
{

entry = item;
next = add_on;

}

These constructors make it easy for us to attach nodes together into linked configu-
rations. For example, the following code will produce the linked nodes illustrated
in Figure 4.8.

Node first_node(′a′); // Node first_node stores data ′a′.
Node *p0 = &first_node; // p0 points to first_Node.
Node *p1 = new Node(′b′); // A second node storing ′b′ is created.
p0->next = p1; // The second Node is linked after first_node.
Node *p2 = new Node(′c′, p0); // A third Node storing ′c′ is created.

// The third Node links back to the first node, *p0.
p1->next = p2; // The third Node is linked after the second Node.

'a' 'b' 'c'p0

p1 p2

first_node

Figure 4.8. Linking nodes

Note that, in Figure 4.8 and in the code, we have given the first Node the name
first_node, and it can be accessed either by this name or as *p0, since p0 points
to it. The second and third nodes, however, are not given explicit names, and
therefore these nodes can most easily be accessed by using the pointers p1 and p2,
respectively.

126 Chapter 4 • Linked Stacks and Queues

Exercises 4.1 E1. Draw a diagram to illustrate the configuration of linked nodes that is created
by the following statements.

Node *p0 = new Node(′0′);
Node *p1 = p0->next = new Node(′1′);
Node *p2 = p1->next = new Node(′2′, p1);

E2. Write the C++ statements that are needed to create the linked configuration of
nodes shown in each of the following diagrams. For each part, embed these
statements as part of a program that prints the contents of each node (both data
and next), thereby demonstrating that the nodes have been correctly linked.

(a)

'0' '1'p0

p1

(b)

'0' '1'p0

p2

p1

(c)

'0' '1' '2'p0

p1 p2

Section 4.2 • Linked Stacks 127

4.2 LINKED STACKS

In Section 2.2, we used an array of entries to create a contiguous implementation
of a stack. It is equally easy to implement stacks as linked structures in dynamic
memory.

We would like clients to see our new implementation as interchangeable withconsistency
our former contiguous implementation. Therefore, our stacks must still contain
entries of type Stack_entry. Moreover, we intend to build up stacks out of nodes,
so we will need a declaration

typedef Stack_entry Node_entry;

to equate the types of the entries stored in stacks and nodes. Moreover, we must
provide methods to push and pop entries of type Stack_entry to and from our stacks.
Before we can write the operations push and pop, we must consider some more
details of exactly how such a linked stack will be implemented.

The first question to settle is to determine whether the beginning or the end
of the linked structure will be the top of the stack. At first glance, it may appear
that (as for contiguous stacks) it might be easier to add a node at the end, but this
choice makes popping the stack difficult: There is no quick way to find the node
immediately before a given one in a linked structure, since the pointers stored in
the structure give only one-way directions. Thus, after we remove the last element,
finding the new element at the end might require tracing all the way from the head.
To pop a linked stack, it is much better to make all additions and deletions at the
beginning of the structure. Hence the top of the stack will always be the first node
of the linked structure, as illustrated in Figure 4.9.

top
entry

middle
entry

bottom
entrytop_node

Figure 4.9. The linked form of a stack

90

Each linked structure needs to have a header member that points to its first
node; for a linked stack this header member will always point to the top of the
stack. Since each node of a linked structure points to the next one, we can reach all
the nodes of a linked stack by following links from its first node. Thus, the only
information needed to keep track of the data in a linked stack is the location of itsdeclaration of type

Stack top. The bottom of a Stack can always be identified as the Node that contains a
NULL link.

128 Chapter 4 • Linked Stacks and Queues

We can therefore declare a linked stack by setting up a class having the top of
the stack as its only data member:91

class Stack {
public:

Stack();
bool empty() const;
Error_code push(const Stack_entry &item);
Error_code pop();
Error_code top(Stack_entry &item) const;

protected:
Node *top_node;

};

Since this class contains only one data member, we might think of dispensing with
the class and referring to the top by the same name that we assign to the stack itself.
There are four reasons, however, for using the class we have introduced.

➥ The most important reason is to maintain encapsulation: If we do not use a
class to contain our stack, we lose the ability to set up methods for the stack.

➥ The second reason is to maintain the logical distinction between the stack itself,
which is made up of all of its entries (each in a node), and the top of the stack,
which is a pointer to a single node. The fact that we need only keep track of
the top of the stack to find all its entries is irrelevant to this logical structure.

➥ The third reason is to maintain consistency with other data structures and other
implementations, where structures are needed to collect several methods and
pieces of information.

➥ Finally, keeping a stack and a pointer to its top as incompatible data types helps
with debugging by allowing the compiler to perform better type checking.

Let us start with an empty stack, which now means top_node == NULL, and con-empty stack
sider how to add Stack_entry item as the first entry. We must create a new Node
storing a copy of item, in dynamic memory. We shall access this Node with a
pointer variable new_top. We must then copy the address stored in new_top to
the Stack member top_node. Hence, pushing item onto the Stack consists of the
instructions

Node *new_top = new Node(item); top_node = new_top;

Notice that the constructor that creates the Node *new_top sets its next pointer to
the default value NULL.

As we continue, let us suppose that we already have a nonempty Stack. Inpushing a linked stack
order to push a new entry onto the Stack, we need to add a Stack_entry item to
it. The required adjustments of pointers are shown in Figure 4.10. First, we must
create a new Node, referenced by a pointer new_top, that stores the value of item

Section 4.2 • Linked Stacks 129

X

top_node top_node

Node

Empty stack Stack of size 1

new_top

New

Old Old Old
top_node

Link marked X has been removed.
Colored links have been added.

node

top node second node bottom node

Figure 4.10. Pushing a node onto a linked stack

and points to the old top of the Stack. Then we must change top_node to point to

90

the new node. The order of these two assignments is important: If we attempted to
do them in the reverse order, the change of the top from its previous value would
mean that we would lose track of the old part of the Stack. We thus obtain the
following function:

92

Error_code Stack :: push(const Stack_entry &item)
/* Post: Stack_entry item is added to the top of the Stack; returns success or returns

a code of overflow if dynamic memory is exhausted. */

{
Node *new_top = new Node(item, top_node);
if (new_top == NULL) return overflow;
top_node = new_top;
return success;

}

Of course, our fundamental operations must conform to the earlier specifications,
and so it is important to include error checking and to consider extreme cases.
In particular, we must return an Error_code in the unlikely event that dynamic
memory cannot be found for new_top.

One extreme case for the function is that of an empty Stack, which means
top_node == NULL. Note that, in this case, the function works just as well to push
the first entry onto an empty Stack as to push an additional entry onto a nonempty
Stack.

It is equally simple to pop an entry from a linked Stack. This process is illus-popping a linked stack
trated in Figure 4.11, whose steps translate to the following C++ code.

130 Chapter 4 • Linked Stacks and Queues

top_node

old_top

X

Figure 4.11. Popping a node from a linked stack
92

Error_code Stack :: pop()
/* Post: The top of the Stack is removed. If the Stack is empty the method returns

underflow; otherwise it returns success. */
{

Node *old_top = top_node;
if (top_node == NULL) return underflow;
top_node = old_top->next;
delete old_top;
return success;

}

When we reset the value of top_node in the method pop, the pointer old_top is the
only link to the node that used to occupy the top position of the Stack. Therefore,
once the function ends, and old_top goes out of scope, there will be no way for us to
access that Node. We therefore delete old_top; otherwise garbage would be created.
Of course, in small applications, the method would work equally well without
the use of delete. However, if a client repeatedly used such an implementation,
the garbage would eventually mount up to occupy all available memory and our
client’s program would suffocate.

Our linked stack implementation actually suffers from a number of subtle de-
fects that we shall identify and rectify in the next section. We hasten to add that
we know of no bugs in the methods that we have presented; however, it is possible
for a client to make a Stack object malfunction. We must either document the limi-
tations on the use of our Stack class, or we must correct the problems by adding in
a number of extra features to the class.

Exercises 4.2 E1. Explain why we cannot use the following implementation for the method push
in our linked Stack.

Error_code Stack :: push(Stack_entry item)
{

Node new_top(item, top_node);
top_node = new_top;
return success;

}

Section 4.3 • Linked Stacks with Safeguards 131

E2. Consider a linked stack that includes a method size. This method size requires a
loop that moves through the entire stack to count the entries, since the number
of entries in the stack is not kept as a separate member in the stack record.

(a) Write a method size for a linked stack by using a loop that moves a pointer
variable from node to node through the stack.

(b) Consider modifying the declaration of a linked stack to make a stack into
a structure with two members, the top of the stack and a counter giving its
size. What changes will need to be made to the other methods for linked
stacks? Discuss the advantages and disadvantages of this modification
compared to the original implementation of linked stacks.

Programming
Project 4.2

P1. Write a demonstration program that can be used to check the methods written
in this section for manipulating stacks. Model your program on the one de-
veloped in Section 3.4 and use as much of that code as possible. The entries in
your stack should be characters. Your program should write a one-line menu
from which the user can select any of the stack operations. After your program
does the requested operation, it should inform the user of the result and ask
for the next request. When the user wishes to push a character onto the stack,
your program will need to ask what character to push.

Use the linked implementation of stacks, and be careful to maintain the
principles of information hiding.

4.3 LINKED STACKS WITH SAFEGUARDS

Client code can apply the methods of the linked stack that we developed in the
last section in ways that lead to the accumulation of garbage or that break the
encapsulation of Stack objects. In this section, we shall examine in detail how these
insecurities arise, and we shall look at three particular devices that are provided
by the C++ language to alleviate these problems. The devices take the form of
additional class methods, known as destructors, copy constructors, and overloadeddestructor,

copy constructor,
overloaded assignment

operator

assignment operators. These new methods replace compiler generated default
behavior and are often called silently (that is, without explicit action by a client).
Thus, the addition of these safety features to our Stack class does not change its
appearance to a client.

4.3.1 The Destructor

Suppose that a client runs a simple loop that declares a Stack object and pushes
some data onto it. Consider, for example, the following code:93

for (int i = 0; i < 1000000; i++) {
Stack small;
small.push(some_data);

}

132 Chapter 4 • Linked Stacks and Queues

In each iteration of the loop, a Stack object is created, data is inserted into dynam-
ically allocated memory, and then the object goes out of scope. Suppose now that
the client is using the linked Stack implementation of Section 4.2. As soon as the
object small goes out of scope, the data stored in small becomes garbage. Over the
course of a million iterations of the loop, a lot of garbage will accumulate. Thisaccumulation of

garbage problem should not be blamed on the (admittedly peculiar) behavior of our client:
The loop would have executed without any problem with a contiguous Stack im-
plementation, where all allocated space for member data is released every time a
Stack object goes out of scope.

It is surely the job of a linked stack implementation either to include documen-
tation to warn the client not to let nonempty Stack objects go out of scope, or to
clean up Stack objects before they go out of scope.

The C++ language provides class methods known as destructors that solvedestructors
our problem. For every class, a destructor is a special method that is executed on
objects of the class immediately before they go out of scope. Moreover, a client
does not need to call a destructor explicitly and does not even need to know it is
present. Thus, from the client’s perspective, a class with a destructor can simply
be substituted for a corresponding class without one.

Destructors are often used to delete dynamically allocated objects that would
otherwise become garbage. In our case, we should simply add such a destructor
to the linked Stack class. After this modification, clients of our class will be unable
to generate garbage by letting nonempty Stack objects go out of scope.

The destructor must be declared as a class method without return type and
without parameters. Its name is given by adding a ∼ prefix to the correspondingdestructor prefix ∼
class name. Hence, the prototype for a Stack destructor is:

Stack :: ∼Stack();

Since the method pop is already programmed to delete single nodes, we can im-
plement a Stack destructor by repeatedly popping Stack entries.

94

Stack :: ∼Stack() // Destructor
/* Post: The Stack is cleared. */
{

while (!empty())
pop();

}

We shall adopt the policy that every linked structure should be equipped with a
destructor to clear its objects before they go out of scope.

4.3.2 Overloading the Assignment Operator
Even after we add a destructor to our linked stack implementation, a suitably
perverse client can still create a tremendous buildup of garbage with a simple
loop. For example, the following client code first creates an outer Stack object and
then runs a loop with instructions to set up and immediately reset an inner Stack.

Section 4.3 • Linked Stacks with Safeguards 133

95

Stack outer_stack;
for (int i = 0; i < 1000000; i++) {

Stack inner_stack;
inner_stack.push(some_data);
inner_stack = outer_stack;

}

The statement inner_stack = outer_stack causes a serious problem for our Stack im-
plementation. C++ carries out the resulting assignment by copying the data mem-
ber outer_stack.top_node. This copying overwrites pointer inner_stack.top_node,
so the contents of inner_stack are lost. As we illustrate in Figure 4.12, in everydiscarded memory
iteration of the loop, the previous inner stack data becomes garbage. The blame for
the resulting buildup of garbage rests firmly with our Stack implementation. As
before, no problem occurs when the client uses a contiguous stack implementation.

outer_stack. top_node

inner_stack. top_node some_data

Lost data

X

Figure 4.12. The application of bitwise copy to a Stack

This figure also shows that the assignment operator has another undesired
consequence. After the use of the operator, the two stack objects share their nodes.alias problem:

dangling pointers Hence, at the end of each iteration of the loop, any application of a Stack destructor
on inner_stack will result in the deletion of the outer stack. Worse still, such a dele-
tion would leave the pointer outer_stack.top_node addressing what has become a
random memory location.

The problems caused by using the assignment operator on a linked stack arise
because it copies references rather than values: We summarize this situation by
saying that Stack assignment has reference semantics. In contrast, when the as-reference semantics
signment operator copies the data in a structure, we shall say that it has value
semantics. In our linked Stack implementation, either we must attach documen-value semantics
tation to warn clients that assignment has reference semantics, or we must make
the C++ compiler treat assignment differently.

In C++, we implement special methods, known as overloaded assignment op-
erators to redefine the effect of assignment. Whenever the C++ compiler translatesoverloaded operators
an assignment expression of the form x = y, it first checks whether the class of x
has an overloaded assignment operator. Only if such a method is absent will the

134 Chapter 4 • Linked Stacks and Queues

compiler translate the assignment as a bitwise copy of data members. Thus, to
provide value semantics for Stack assignment, we should overload assignment foroverloaded assignment
our Stack class.

There are several options for the declaration and implementation of this over-
loaded operator. A simple approach is to supply a prototype with void return type:

96

void Stack :: operator = (const Stack &original);

This declares a Stack method called operator = , the overloaded assignment oper-
ator, that can be invoked with the member selection operator in the usual way.

x.operator = (y);

Alternatively, the method can be invoked with the much more natural and conve-
nient operator syntax:

x = y;

By looking at the type(s) of its operands, the C++ compiler can tell that it should
use the overloaded operator rather than the usual assignment. We obtain operator
syntax by omitting the period denoting member selection, the keyword operator,operator syntax
and the parentheses from the ordinary method invocation.

The implementation of the overloaded assignment operator for our Stack class
proves to be quite tricky.

➥ First, we must make a copy of the data stacked in the calling parameter.

➥ Next, we must clear out any data already in the Stack object being assigned to.

➥ Finally, we must move the newly copied data to the Stack object.
97

void Stack :: operator = (const Stack &original) // Overload assignment
/* Post: The Stack is reset as a copy of Stack original. */
{

Node *new_top, *new_copy, *original_node = original.top_node;
if (original_node == NULL) new_top = NULL;
else { // Duplicate the linked nodes

new_copy = new_top = new Node(original_node->entry);
while (original_node->next != NULL) {

original_node = original_node->next;
new_copy->next = new Node(original_node->entry);
new_copy = new_copy->next;

}
}
while (!empty()) // Clean out old Stack entries

pop();
top_node = new_top; // and replace them with new entries.

}

Section 4.3 • Linked Stacks with Safeguards 135

Note that, in the implementation, we do need to pop all of the existing entries out
of the Stack object whose value we are assigning. As a precaution, we first make
a copy of the Stack parameter and then repeatedly apply the method pop. In this
way, we ensure that our assignment operator does not lose objects in assignments
such as x = x.

Although our overloaded assignment operator does succeed in giving Stackremaining defect:
multiple assignment assignment value semantics, it still has one defect: A client cannot use the result of

an assignment in an expression such as fist_stack = second_stack = third_stack. A
very thorough implementation would return a reference of type Stack & to allow
clients to write such an expression.

4.3.3 The Copy Constructor
One final insecurity that can arise with linked structures occurs when the C++
compiler calls for a copy of an object. For example, objects need to be copied when
an argument is passed to a function by value. In C++, the default copy operation
copies each data member of a class. Just as illustrated in Figure 4.12, the default
copy operation on a linked Stack leads to a sharing of data between objects. In
other words, the default copy operation on a linked Stack has reference semantics.
This allows a malicious client to declare and run a function whose sole purpose is
to destroy linked Stack objects:

98

void destroy_the_stack (Stack copy)
{
}
int main()
{

Stack vital_data;
destroy_the_stack(vital_data);

}

In this code, a copy of the Stack vital_data is passed to the function. The Stack copy
shares its nodes with the Stack vital_data, and therefore when a Stack destructor is
applied to copy, at the end of the function, vital_data is also destroyed.

Again, C++ provides a tool to fix this particular problem. Indeed, if we includecopy constructor
a copy constructor as a member of our Stack class, our copy constructor will be
invoked whenever the compiler needs to copy Stack objects. We can thus ensure
that Stack objects are copied using value semantics.

For any class, a standard way to declare a copy constructor is as a constructor
with one argument that is declared as a constant reference to an object of the class.
Hence, a Stack copy constructor would normally have the following prototype:

Stack :: Stack(const Stack &original);

In our implementation of this constructor, we first deal with the case of copying an
empty Stack. We then copy the first node, after which we run a loop to copy all of
the other nodes.

136 Chapter 4 • Linked Stacks and Queues

99 Stack :: Stack(const Stack &original) // copy constructor
/* Post: The Stack is initialized as a copy of Stack original. */
{

Node *new_copy, *original_node = original.top_node;
if (original_node == NULL) top_node = NULL;
else { // Duplicate the linked nodes.

top_node = new_copy = new Node(original_node->entry);
while (original_node->next != NULL) {

original_node = original_node->next;
new_copy->next = new Node(original_node->entry);
new_copy = new_copy->next;

}
}

}

This code is similar to our implementation of the overloaded assignment operator.
However, in this case, since we are creating a new Stack object, we do not need to
remove any existing stack entries.

In general, for every linked class, either we should include a copy constructor,
or we should provide documentation to warn clients that objects are copied with
reference semantics.

4.3.4 The Modified Linked-Stack Specification
We close this section by giving an updated specification for a linked stack. In this
specification we include all of our proposed safety features.

100

class Stack {
public:
// Standard Stack methods

Stack();
bool empty() const;
Error_code push(const Stack_entry &item);
Error_code pop();
Error_code top(Stack_entry &item) const;

// Safety features for linked structures
∼Stack();

Stack(const Stack &original);
void operator = (const Stack &original);

protected:
Node *top_node;

};

Exercises 4.3 E1. Suppose that x, y, and z are Stack objects. Explain why the overloaded assign-
ment operator of Section 4.3.2 cannot be used in an expression such as x = y = z.
Modify the prototype and implementation of the overloaded assignment op-
erator so that this expression becomes valid.

Section 4.4 • Linked Queues 137

E2. What is wrong with the following attempt to use the copy constructor to im-
plement the overloaded assignment operator for a linked Stack?

void Stack :: operator = (const Stack &original)
{

Stack new_copy(original);
top_node = new_copy.top_node;

}

How can we modify this code to give a correct implementation?

4.4 LINKED QUEUES

In contiguous storage, queues were significantly harder to manipulate than were
stacks, because it was necessary to treat straight-line storage as though it were
arranged in a circle, and the extreme cases of full queues and empty queues caused
difficulties. It is for queues that linked storage really comes into its own. Linked
queues are just as easy to handle as are linked stacks. We need only keep two
pointers, front and rear, that will point, respectively, to the beginning and the end
of the queue. The operations of insertion and deletion are both illustrated in Figure
4.13.102

front

rear

Added to

Removed
from front
of queue

queue
rear ofX

X

X

Figure 4.13. Operations on a linked queue

4.4.1 Basic Declarations
For all queues, we denote by Queue_entry the type designating the items in the
queue. For linked implementations, we declare nodes as we did for linked struc-
tures in Section 4.1.3 and use a typedef statement to identify the types Queue_entry
and Node_entry. In close analogy to what we have already done for stacks, we ob-
tain the following specification:type Queue

138 Chapter 4 • Linked Stacks and Queues

101
class Queue {
public:
// standard Queue methods

Queue();
bool empty() const;
Error_code append(const Queue_entry &item);
Error_code serve();
Error_code retrieve(Queue_entry &item) const;

// safety features for linked structures
∼Queue();

Queue(const Queue &original);
void operator = (const Queue &original);

protected:
Node *front, *rear;

};

The first constructor initializes a queue as empty, as follows:initialize

Queue :: Queue()
/* Post: The Queue is initialized to be empty. */
{

front = rear = NULL;
}

Let us now turn to the method to append entries. To add an entry item to the rear
of a queue, we write:103

Error_code Queue :: append(const Queue_entry &item)
/* Post: Add item to the rear of the Queue and return a code of success or return

a code of overflow if dynamic memory is exhausted. */
{

Node *new_rear = new Node(item);
if (new_rear == NULL) return overflow;
if (rear == NULL) front = rear = new_rear;
else {

rear->next = new_rear;
rear = new_rear;

}
return success;

}

The cases when the Queue is empty or not must be treated separately, since the
addition of a Node to an empty Queue requires setting both front and rear to point
to the new Node, whereas addition to a nonempty Queue requires changing only
rear.

Section 4.4 • Linked Queues 139

To serve an entry from the front of a Queue, we use the following function:

Error_code Queue :: serve()
/* Post: The front of the Queue is removed. If the Queue is empty, return an

Error_code of underflow. */
{

if (front == NULL) return underflow;
Node *old_front = front;
front = old_front->next;
if (front == NULL) rear = NULL;
delete old_front;
return success;

}

Again the possibility of an empty Queue must be considered separately. Any at-
tempt to delete from an empty Queue should generate an Error_code of underflow.
It is, however, not an error for the Queue to become empty after a deletion, but
then rear and front should both become NULL to indicate that the Queue has become
empty. We leave the other methods of linked queues as exercises.

If you compare these algorithms for linked queues with those needed for con-
tiguous queues, you will see that the linked versions are both conceptually easier
and easier to program. We leave overloading the assignment operator and writing
the destructor and copy constructor for a Queue as exercises.

4.4.2 Extended Linked Queues
Our linked implementation of a Queue provides the base class for other sorts of
queue classes. For example, extended queues are defined as in Chapter 3. The
following C++ code defining a derived class Extended_queue is identical to the
corresponding code of Chapter 3.104

class Extended_queue: public Queue {
public:

bool full() const;
int size() const;
void clear();
Error_code serve_and_retrieve(Queue_entry &item);

};

Although this class Extended_queue has a linked implementation, there is no need
to supply explicit methods for the copy constructor, the overloaded assignment
operator, or the destructor. For each of these methods, the compiler generates adefault method

implementation default implementation. The default method calls the corresponding method of
the base Queue object. For example, the default destructor for an Extended_queue
merely calls the linked Queue destructor: This will delete all dynamically allocated
Extended_queue nodes. Because our class Extended_queue stores no linked data
that is not already part of the class Queue, the compiler generated-defaults are
exactly what we need.

140 Chapter 4 • Linked Stacks and Queues

The declared methods for the linked class Extended_queue need to be repro-
grammed to make use of the linked data members in the base class. For example,
the new method size must use a temporary pointer called window that traverses
the Queue (in other words, it moves along the Queue and points at each Node in
sequence).104

int Extended_queue :: size() const
/* Post: Return the number of entries in the Extended_queue. */
{

Node *window = front;
int count = 0;
while (window != NULL) {

window = window->next;
count++;

}
return count;

}

The other methods for the linked implementation of an extended queue are left as
exercises.

Exercises 4.4 E1. Write the following methods for linked queues:
(a) the method empty,
(b) the method retrieve,
(c) the destructor,

(d) the copy constructor,
(e) the overloaded assignment opera-

tor.
E2. Write an implementation of the Extended_queue method full. In light of the

simplicity of this method in the linked implementation, why is it still important
to include it in the linked class Extended_queue?

E3. Write the following methods for the linked class Extended_queue:
(a) clear; (b) serve_and_retrieve;

E4. For a linked Extended_queue, the function size requires a loop that moves
through the entire queue to count the entries, since the number of entries in
the queue is not kept as a separate member in the class. Consider modifying
the declaration of a linked Extended_queue to add a count data member to the
class. What changes will need to be made to all the other methods of the class?
Discuss the advantages and disadvantages of this modification compared to
the original implementation.

E5. A circularly linked list, illustrated in Figure 4.14, is a linked list in which the
node at the tail of the list, instead of having a NULL pointer, points back to the
node at the head of the list. We then need only one pointer tail to access both
ends of the list, since we know that tail->next points back to the head of the
list.
(a) If we implement a queue as a circularly linked list, then we need only one

pointer tail (or rear) to locate both the front and the rear. Write the methods
needed to process a queue stored in this way.

(b) What are the disadvantages of implementing this structure, as opposed to
using the version requiring two pointers?

Section 4.5 • Application: Polynomial Arithmetic 141

tail

Figure 4.14. A circularly linked list with tail pointer

Programming
Projects 4.4

P1. Assemble specification and method files, called queue.h and queue.c, for
linked queues, suitable for use by an application program.

P2. Take the menu-driven demonstration program for an Extended_queue of char-
acters in Section 3.4 and substitute the linked Extended_queue implementation
files for the files implementing contiguous queues. If you have designed the
program and the classes carefully, then the program should work correctly
with no further change.

P3. In the airport simulation developed in Section 3.5, replace the implementations
of contiguous queues with linked versions. If you have designed the classes
carefully, the program should run in exactly the same way with no further
change required.

4.5 APPLICATION: POLYNOMIAL ARITHMETIC

4.5.1 Purpose of the Project
In Section 2.3 we developed a program that imitates the behavior of a simple calcu-
lator doing addition, subtraction, multiplication, division, and perhaps some other
operations. The goal of this section is to develop a similar calculator, but now one
that performs these operations for polynomials rather than numbers.

As in Section 2.3, we shall model a reverse Polish calculator where the operands
(polynomials for us) are entered before the operation is specified. The operands arereverse Polish

calculator for
polynomials

pushed onto a stack. When an operation is performed, it pops its operands from
the stack and pushes its result back onto the stack. We reuse the conventions of
Section 2.3 (which you may wish to review), so that ? denotes pushing an operand
onto the stack, + , −, * , / represent arithmetic operations, and = means printing
the top of the stack (but not popping it off). For example, the instructions ? a ? b + =
mean to read two operands a and b, then calculate and print their sum.

4.5.2 The Main Program
It is clear that we ought to implement a Polynomial class for use in our calculator.
After this decision, the task of the calculator program becomes simple. We need to
customize a generic stack implementation to make use of polynomial entries. Then
the main program can declare a stack of polynomials, accept new commands, andmain program
perform them as long as desired.

142 Chapter 4 • Linked Stacks and Queues

105

int main()
/* Post: The program has executed simple polynomial arithmetic commands en-

tered by the user.
Uses: The classes Stack and Polynomial and the functions introduction, instruc-

tions, do_command, and get_command. */

{
Stack stored_polynomials;
introduction();
instructions();
while (do_command(get_command(), stored_polynomials));

}

This program is almost identical to the main program of Section 2.3, and its auxiliary
function get_command is identical to the earlier version.

1. Polynomial Methods

As in Section 2.3, we represent the commands that a user can type by the char-user commands
acters ? , = , + , −, * , /, where ? requests input of a polynomial from the user,
= prints the result of an operation, and the remaining symbols denote addition,
subtraction, multiplication, and division, respectively.

Most of these commands will need to invoke Polynomial class methods; hence
we must now decide on the form of some of these methods.

We will need a method to add a pair of polynomials. One convenient way
to implement this method is as a method, equals_sum, of the Polynomial class.
Thus, if p, q, r are Polynomial objects, the expression p.equals_sum(q, r) replacespolynomial methods
p by the sum of the polynomials q and r. We shall implement similar methods
called equals_difference, equals_product, and equals_quotient to perform other
arithmetic operations on polynomials.

The user commands = and ? will lead us to call on Polynomial methods to print
out and read in polynomials. Thus we shall suppose that Polynomial objects have
methods without parameters called print and read to accomplish these tasks.

2. Performing Commands

Given our earlier decisions, we can immediately write the function do_command.
We present an abbreviated form of the function, where we have coded only a fewDo a user command
of the possibilities in its main switch statement.

106
bool do_command(char command, Stack &stored_polynomials)
/* Pre: The first parameter specifies a valid calculator command.

Post: The command specified by the first parameter has been applied to the
Stack of Polynomial objects given by the second parameter. A result of
true is returned unless command == ′q′.

Uses: The classes Stack and Polynomial. */

Section 4.5 • Application: Polynomial Arithmetic 143

{
Polynomial p, q, r;
switch (command) {
case ′?′:

read Polynomial p.read();
if (stored_polynomials.push(p) == overflow)

cout << "Warning: Stack full, lost polynomial" << endl;
break;

case ′=′:
print Polynomial if (stored_polynomials.empty())

cout << "Stack empty" << endl;
else {

stored_polynomials.top(p);
p.print();

}
break;

case ′+′:
add polynomials if (stored_polynomials.empty())

cout << "Stack empty" << endl;
else {

stored_polynomials.top(p);
stored_polynomials.pop();
if (stored_polynomials.empty()) {

cout << "Stack has just one polynomial" << endl;
stored_polynomials.push(p);

}
else {

stored_polynomials.top(q);
stored_polynomials.pop();
r.equals_sum(q, p);
if (stored_polynomials.push(r) == overflow)

cout << "Warning: Stack full, lost polynomial" << endl;
}

}
break;

// Add options for further user commands.
case ′q′:

quit cout << "Calculation finished." << endl;
return false;

}
return true;

}

In this function, we need to pass the Stack parameter by reference, because its value
might need to be modified. For example, if the command parameter is +, then we
normally pop two polynomials off the stack and push their sum back onto it. The
function do_command also allows for an additional user command, q, that quits
the program.

144 Chapter 4 • Linked Stacks and Queues

3. Stubs and Testing
We have now designed enough of our program that we should pause to compile108

it, debug it, and test it to make sure that what has been done so far is correct.
For the task of compiling the program, we must, of course, supply stubs for all

the missing elements. Since we can use any of our earlier stack implementations,
the only missing part is the class Polynomial. At present, however, we have not
even decided how to store polynomial objects.

For testing, let us run our program as an ordinary reverse Polish calculator
operating on real numbers. Thus we need a stub class declaration that uses realtemporary type

declaration numbers in place of polynomials.

class Polynomial {
public:

void read();
void print();
void equals_sum(Polynomial p, Polynomial q);
void equals_difference(Polynomial p, Polynomial q);
void equals_product(Polynomial p, Polynomial q);
Error_code equals_quotient(Polynomial p, Polynomial q);

private:
double value;

};

Since the method equals_quotient must detect attempted division by 0, it has an
Error_code return type, whereas the other methods do not detect errors and so
have void return type. The following function is typical of the stub methods that
are needed.

void Polynomial :: equals_sum(Polynomial p, Polynomial q)
{

value = p.value + q.value;
}

Producing a skeleton program at this time also ensures that the stack and utility
packages are properly integrated into the program. The program, together with
its stubs, should operate correctly whether we use a contiguous or a linked Stack
implementation.

4.5.3 The Polynomial Data Structure
Let us now turn to our principal task by deciding how to represent polynomials
and writing methods to manipulate them. If we carefully consider a polynomial
such as

3x5 − 2x3 + x2 + 4

we see that the important information about the polynomial is contained in the
coefficients and exponents of x ; the variable x itself is really just a place holder (a
dummy variable). Hence, for purposes of calculation, we may think of a polyno-essence of a

polynomial mial as made up of terms, each of which consists of a coefficient and an exponent. In a

Section 4.5 • Application: Polynomial Arithmetic 145

computer, we could similarly represent a polynomial as a list of pairs of coefficients
and exponents. Each of these pairs constitutes a structure that we shall call a Term.
We implement a Term as a struct with a constructor:

struct Term {
Term int degree;

double coefficient;
Term (int exponent = 0, double scalar = 0);

};
Term :: Term(int exponent, double scalar)
/* Post: The Term is initialized with the given coefficient and exponent, or with

default parameter values of 0. */
{

degree = exponent;
coefficient = scalar;

}

A polynomial is represented as a list of terms. We must then build into our meth-
ods rules for performing arithmetic on two such lists. When we do this work,
however, we find that we continually need to remove the first entry from the list,
and we find that we need to insert new entries only at the end of the list. In other
words, we find that the arithmetic operations treat the list as a queue, or, more
precisely, as an extended queue, since we frequently need methods such as clear and
serve_and_retrieve, as well as deletion from the front and insertion at the rear.

Should we use a contiguous or a linked queue? If, in advance, we know a
bound on the degree of the polynomials that can occur and if the polynomials thatimplementation of a

polynomial occur have nonzero coefficients in almost all their possible terms, then we should
probably do better with contiguous queues. But if we do not know a bound on
the degree, or if polynomials with only a few nonzero terms are likely to appear,
then we shall find linked storage preferable. Let us in fact decide to represent a
polynomial as an extended linked queue of terms. This representation is illustrated
in Figure 4.15.109

1.0

3.0

5.0

–2.0 1.0 4.0

x4 5 0

3x5 – 2x3 + x2 + 4

4 0

5 3 2 0

Figure 4.15. Polynomials as linked queues of terms

146 Chapter 4 • Linked Stacks and Queues

Each node contains one term of a polynomial, and we shall keep only nonzeroassumptions
terms in the queue. The polynomial that is always 0 (that is, it consists of only a 0
term) will be represented by an empty queue. We call this the zero polynomial or
say that it is identically 0.

Our decisions about the Polynomial data structure suggest that we might im-
plement it as a class derived from an extended queue. This will allow us to reuse
methods for Extended_queue operations, and we can concentrate on coding just
those additional methods that are special to polynomials.

As a final check before going ahead with such a derived class implementation,
we should ask: Is a Polynomial an Extended_queue?

An Extended_queue allows methods such as serve that do not apply directly to
polynomials, so we must admit that a Polynomial is not really an Extended_queue.
(In coding an implementation this drawback would become clear if we tried to
prevent clients from serving entries from Polynomial objects.) Thus, although it
would be useful to reuse the data members and function code from the class Ex-
tended_queue in implementing our class Polynomial, we should reject a simple
inheritance implementation because the two classes do not exhibit an is-a relation-
ship (see page 83).

The C++ language provides a second form of inheritance, called private inher-private inheritance
itance, which is exactly what we need. Private inheritance models an “is imple-
mented in terms of” relationship between classes. We shall therefore define the class
Polynomial to be privately inherited from the class Extended_queue. This means
that Extended_queue members and methods are available in the implementation
of the class Polynomial, but they are not available to clients using a Polynomial.

class Polynomial: private Extended_queue { // Use private inheritance.
Polynomial public:

void read();
void print() const;
void equals_sum(Polynomial p, Polynomial q);
void equals_difference(Polynomial p, Polynomial q);
void equals_product(Polynomial p, Polynomial q);
Error_code equals_quotient(Polynomial p, Polynomial q);
int degree() const;

private:
void mult_term(Polynomial p, Term t);

};

We have incorporated a useful method, Polynomial :: degree(), that returns the
degree of the leading term in a Polynomial, together with an auxiliary function that
multiplies a Polynomial by a single Term.

We have not yet considered the order of storing the terms of the polynomial. If
we allow them to be stored in any order, then it might be difficult to recognize that

x5 + x2 − 3 and −3 + x5 + x2 and x2 − 3 + x5

Section 4.5 • Application: Polynomial Arithmetic 147

all represent the same polynomial. Hence we adopt the usual convention that therestriction
terms of every polynomial are stored in the order of decreasing exponent within the
linked queue. We further assume that no two terms have the same exponent and
that no term has a zero coefficient. (Recall that the polynomial that is identically 0
is represented as an empty queue.)

4.5.4 Reading and Writing Polynomials
With polynomials implemented as linked queues, writing out a polynomial is a
simple matter of looping through the nodes of the queue and printing out data for
each node. The intricate nature of the following print method is a reflection of the
customary but quite special conventions for writing polynomials, rather than anystandard conventions
conceptual difficulty in working with our data structure. In particular, our method
suppresses any initial + sign, any coefficients and exponents with value 1, and
any reference to x0 . Thus, for example, we are careful to print 3x2 + x + 5 and
−3x2 + 1 rather than +3x2 + 1x1 + 5x0 and −3x2 + 1x0 .110

void Polynomial :: print() const
/* Post: The Polynomial is printed to cout. */
{

Node *print_node = front;
print Polynomial bool first_term = true;

while (print_node != NULL) {
Term &print_term = print_node->entry;
if (first_term) { // In this case, suppress printing an initial ′+′.

first_term = false;
if (print_term.coefficient < 0) cout << "− ";

}
else if (print_term.coefficient < 0) cout << " − ";
else cout << " + ";
double r = (print_term.coefficient >= 0)

? print_term.coefficient : −(print_term.coefficient);
if (r != 1) cout << r;
if (print_term.degree > 1) cout << " Xˆ" << print_term.degree;
if (print_term.degree == 1) cout << " X";
if (r == 1 && print_term.degree == 0) cout << " 1";
print_node = print_node->next;

}
if (first_term)

cout << "0"; // Print 0 for an empty Polynomial.
cout << endl;

}

As we read in a new polynomial, we shall construct a new Polynomial object and
then append an entry to the object for each term (coefficient-exponent pair) that we
read from the input.

148 Chapter 4 • Linked Stacks and Queues

Like all functions that accept input directly from the user, our function for
reading a new polynomial must carefully check its input to make sure that it meets
the requirements of the problem. Making sure that the exponents in the polynomial
appear in descending order is one of the larger tasks for our function. To do this,
we continually compare the exponent of the current term with that of the previous
term.

We shall use the special values of either a coefficient of 0.0 or an exponent of
0 to stop the reading process: Recall that a term with 0.0 as a coefficient is never

111

stored in the polynomial, and, since the exponents are in descending order, any
term with an exponent of 0 must always be last. The resulting function follows.

void Polynomial :: read()
/* Post: The Polynomial is read from cin. */

read Polynomial {
clear();
double coefficient;
int last_exponent, exponent;
bool first_term = true;
cout << "Enter the coefficients and exponents for the polynomial, "

<< "one pair per line. Exponents must be in descending order." << endl
<< "Enter a coefficient of 0 or an exponent of 0 to terminate." << endl;

do {
cout << "coefficient? " << flush;
cin >> coefficient;
if (coefficient != 0.0) {

cout << "exponent? " << flush;
cin >> exponent;
if ((!first_term && exponent >= last_exponent) || exponent < 0) {

exponent = 0;
cout << "Bad exponent: Polynomial terminates without its last term."

<< endl;
}
else {

Term new_term(exponent, coefficient);
append(new_term);
first_term = false;

}
last_exponent = exponent;

}
} while (coefficient != 0.0 && exponent != 0);

}

4.5.5 Addition of Polynomials
We now study one of the fundamental operations on polynomials, addition of two
polynomials.

Section 4.5 • Application: Polynomial Arithmetic 149

The requirement that the terms of a Polynomial appear with descending expo-
nents in the corresponding Extended_queue greatly simplifies their addition. To
add two polynomials, we need only scan through them once each. If we find terms
with the same exponent in the two polynomials, then we add the coefficients; oth-
erwise, we copy the term with larger exponent into the sum and move on to the
next term of that polynomial. We must also be careful not to include terms with

112

zero coefficient in the sum. Our method destroys the data in both parameters, and
therefore we pass them both by value.

void Polynomial :: equals_sum(Polynomial p, Polynomial q)
add polynomials /* Post: The Polynomial object is reset as the sum of the two parameters. */

{
clear();
while (!p.empty() || !q.empty()) {

Term p_term, q_term;
if (p.degree() > q.degree()) {

p.serve_and_retrieve(p_term);
append(p_term);

}

else if (q.degree() > p.degree()) {
q.serve_and_retrieve(q_term);
append(q_term);

}

else {
p.serve_and_retrieve(p_term);
q.serve_and_retrieve(q_term);
if (p_term.coefficient + q_term.coefficient != 0) {

Term answer_term(p_term.degree,
p_term.coefficient + q_term.coefficient);

append(answer_term);
}

}
}

}

The method begins by clearing any terms currently stored in the Polynomial object
that records the answer. We complete the implementation with a loop that peels
off a leading term from one or both of the polynomial parameters and adds these
terms onto our answer. We first decide which parameter or parameters should
provide the next term according to their respective degrees.

Polynomial degrees are calculated by the method degree(), which has to re-
trieve() the leading term and return its degree. We follow one of the standard
mathematical conventions and assign a degree of −1 to the zero polynomial.

150 Chapter 4 • Linked Stacks and Queues

int Polynomial :: degree() const
/* Post: If the Polynomial is identically 0, a result of −1 is returned. Otherwise the

degree of the Polynomial is returned. */

determine degree {
if (empty()) return −1;
Term lead;
retrieve(lead);
return lead.degree;

}

4.5.6 Completing the Project

1. The Missing Procedures

At this point, the remaining methods for the class Polynomial are sufficiently similar
to those already written that they can be left as projects. Methods for the remaining
arithmetical operations have the same general form as equals_sum. Some of these
are easy: Subtraction is almost identical to addition. For multiplication, we can
first write a function that multiplies a Polynomial by a Term. Then we combine use
of this function with the addition function to do a general multiplication. Division
is more complicated.

2. The Choice of Stack Implementation

Our implementation of the class Polynomial makes use of a linked Extended_queue
of terms. Therefore, we must declare that a Node contains a Term as its entry. This

113

prevents us from using our linked Stack class to contain Polynomial entries (since
that would require nodes that contain Polynomial entries). We must therefore
compile our calculator program with our contiguous Stack implementation.

This is the first case where we have been handicapped by our simple treatment
of generics. As we have previously observed, however, C++ does provide a more
sophisticated approach to generics that makes use of templates. If we had usedtemplates
templates systematically throughout this chapter, our calculator program could
have been compiled with either a linked or a contiguous Stack implementation.
In the next chapter, we shall begin using templates to achieve truly generic data
structures.

3. Group Project

Production of a coherent package of functions for manipulating polynomials makes
an interesting group project. Different members of the group can write auxiliary
functions or methods for different operations. Some of these are indicated as
projects at the end of this section, but you may wish to include additional fea-
tures as well. Any additional features should be planned carefully to be sure that
they can be completed in a reasonable time, without disrupting other parts of the
program.

Section 4.5 • Application: Polynomial Arithmetic 151

After deciding on the division of work among its members, the most important
decisions of the group relate to the exact ways in which the functions and methods
should communicate with each other, and especially with the calling program. Ifspecifications
you wish to make any changes in the organization of the program, be certain that
the precise details are spelled out clearly and completely for all members of the
group.

Next, you will find that it is too much to hope that all members of the group
will complete their work at the same time, or that all parts of the project can be
combined and debugged together. You will therefore need to use program stubscooperation
and drivers (see Section 1.4) to debug and test the various parts of the project. One
member of the group might take special responsibility for this testing. In any case,
you will find it very effective for different members to read, help debug, and test
each other’s functions.

Finally, there are the responsibilities of making sure that all members of the
group complete their work on time, of keeping track of the progress of variouscoordination
aspects of the project, of making sure that no functions are integrated into the
project before they are thoroughly debugged and tested, and then of combining all
the work into the finished product.

Exercise 4.5 E1. Discuss the steps that would be needed to extend the polynomial calculator so
that it would process polynomials in several variables.

Programming
Projects 4.5

P1. Assemble the functions developed in this section and make the necessary
changes in the code so as to produce a working skeleton for the calculator
program, one that will read, write, and add polynomials. You will need to
supply the functions get_command(), introduction(), and instructions().

P2. Write the Polynomial method equals_difference and integrate it into the calcu-
lator.

P3. Write an auxiliary function

void Polynomial :: mult_term(Polynomial p, Term t)

that calculates a Polynomial object by multiplying p by the single Term t.

P4. Use the function developed in the preceding problem, together with the Poly-
nomial method equals_sum, to write the Polynomial method equals_product,
and integrate the resulting method into the calculator.

P5. Write the Polynomial method equals_quotient and integrate it into the calcu-
lator.

P6. Many reverse Polish calculators use not only a stack but also provide memory
locations where operands can be stored. Extend the project to provide an array
to store polynomials. Provide additional commands to store the top of the
stack into an array entry and to push the polynomial in an array entry onto
the stack. The array should have 100 entries, and all 100 positions should be
initialized to the zero polynomial when the program begins. The functions
that access the array should ask the user which entry to use.

152 Chapter 4 • Linked Stacks and Queues

P7. Write a function that will discard the top polynomial on the stack, and include
this capability as a new command.

P8. Write a function that will interchange the top two polynomials on the stack,
and include this capability as a new command.

P9. Write a function that will add all the polynomials on the stack together, and
include this capability as a new command.

P10. Write a function that will compute the derivative of a polynomial, and include
this capability as a new command.

P11. Write a function that, given a polynomial and a real number, evaluates the
polynomial at that number, and include this capability as a new command.

P12. Write a new method equals_remainder that obtains the remainder when a first
Polynomial argument is divided by a second Polynomial argument. Add a new
user command % to the calculator program to call this method.

4.6 ABSTRACT DATA TYPES AND THEIR IMPLEMENTATIONS

When we first introduced stacks and queues, we considered them only as they are
implemented in contiguous storage, and yet upon introduction of linked stacks
and queues, we had no difficulty in recognizing the same underlying abstract data
types. To clarify the general process of passing from an abstract data type definition
to a C++ implementation, let us reflect on these data types and the implementations
that we have seen.

We begin by recalling the definition of the stack ADT from Section 2.5.

Definition A stack of elements of type T is a finite sequence of elements of T together
with the following operations:

1. Create the stack, leaving it empty.

2. Test whether the stack is Empty.

3. Push a new entry onto the top of the stack, provided the stack is not full.

4. Pop the entry off the top of the stack, provided the stack is not empty.

5. Retrieve the Top the entry off the stack, provided the stack is not empty.

To obtain the definition of a queue ADT, we replace stack methods by queue meth-
ods as follows.

Section 4.6 • Abstract Data Types and Their Implementations 153

Definition A queue of elements of type T is a finite sequence of elements of T together
with the following operations:

1. Create the queue, leaving it empty.

2. Test whether the queue is Empty.

3. Append a new entry onto the rear of the queue, provided the queue is not
full.

4. Serve (and remove) the entry from the front of the queue, provided the
queue is not empty.

5. Retrieve the front entry off the queue, provided the queue is not empty.

114

We can also give a precise definition of extended queues as follows.

Definition An extended queue of elements of type T is a queue of elements of T together
with the following additional operations:

4. Determine whether the queue is full or not.

5. Find the size of the queue.

6. Serve and retrieve the front entry in the queue, provided the queue is not
empty.

7. Clear the queue to make it empty.

Note that these definitions make no mention of the way in which the abstract data
type (stack, queue, or extended queue) is to be implemented. In the past several
chapters we have studied different implementations of each of these types, and
these new definitions fit any of these implementations equally well.

As we recall from Section 2.5, in the process of implementing an abstract data
type we must pass from the abstract level of a type definition, through a data
structures level, where we decide on a structure to model our data type, to an
implementation level, where we decide on the details of how our data structure will
be stored in computer memory. Figure 4.16 illustrates these stages of refinement
in the case of a queue. We begin with the mathematical concept of a sequence and
then the queue considered as an abstract data type. At the next level, we choose
from the various data structures shown in the diagram, ranging from the physical
model (in which all items move forward as each one leaves the head of the queue)
to the linear model (in which the queue is emptied all at once) to circular arrays
and finally linked lists. Some of these data structures allow further variation in

115

their implementation, as shown on the next level. At the final stage, the queue is
coded for a specific application.

154 Chapter 4 • Linked Stacks and Queues

Sequence

Stack General list

Physical Linear Circular Linked

Array Array Array Array Simple Circular Array

AirportLine of

Mathematical

Abstract

Data structure

Implementation

Application

Concept

Code

Algorithm

Queue

concept

data type

people

with
counter

with
flag

simulation

with
skipped

entry

with
two

pointers

with
tail

pointer

with
two

cursors

Figure 4.16. Refinement of a queue

Exercises 4.6 E1. Draw a diagram similar to that of Figure 4.16 showing levels of refinement for
a stack.

E2. Give a formal definition of the term deque, using the definitions given for stack
and queue as models. Recall that entries may be added to or deleted from
either end of a deque, but nowhere except at its ends.

POINTERS AND PITFALLS

1. Before choosing implementations, be sure that all the data structures and their
116 associated operations are fully specified on the abstract level.

2. In choosing between linked and contiguous implementations, consider the
necessary operations on the data structure. Linked structures are more flexible
in regard to insertions, deletions, and rearrangement; contiguous structures
are sometimes faster.

3. Contiguous structures usually require less computer memory, computer time,
and programming effort when the items in the structure are small and the al-
gorithms are simple. When the structure holds large records, linked structures
usually save space, time, and often programming effort.

4. Dynamic memory and pointers allow a program to adapt automatically to
a wide range of application sizes and provide flexibility in space allocation
among different data structures. Automatic memory is sometimes more effi-
cient for applications whose size can be completely specified in advance.

Chapter 4 • Review Questions 155

5. Before reassigning a pointer, make sure that the object that it references will
not become garbage.

6. Set uninitialized pointers to NULL.

7. Linked data structures should be implemented with destructors, copy con-
structors, and overloaded assignment operators.

8. Use private inheritance to model an “is implemented with” relationship be-
tween classes.

9. Draw “before” and “after” diagrams of the appropriate part of a linked struc-
ture, showing the relevant pointers and the way in which they should be
changed. If they might help, also draw diagrams showing intermediate stages
of the process.

10. To determine in what order values should be placed in the pointer fields to

117

carry out the various changes, it is usually better first to assign the values to
previously undefined pointers, then to those with value NULL, and finally to
the remaining pointers. After one pointer variable has been copied to another,
the first is free to be reassigned to its new location.

11. Be sure that no links are left undefined at the conclusion of a method of a linkedundefined links
structure, either as links in new nodes that have never been assigned or links
in old nodes that have become dangling, that is, that point to nodes that no
longer are used. Such links should either be reassigned to nodes still in use or
set to the value NULL.

12. Always verify that your algorithm works correctly for an empty structure andextreme cases
for a structure with only one node.

13. Avoid the use of constructions such as (p->next)->next, even though they are
syntactically correct. A single object should involve only a single pointer deref-multiple dereferencing
erencing. Constructions with repeated dereferencing usually indicate that the
algorithms can be improved by rethinking what pointer variables should be
declared in the algorithm, introducing new ones if necessary.

REVIEW QUESTIONS

1. Give two reasons why dynamic memory allocation is valuable.4.1

2. What is garbage?

3. Why should uninitialized pointers be set to NULL?

4. What is an alias and why is it dangerous?

5. Why is it important to return an Error_code from the push method of a linked4.2
Stack?

156 Chapter 4 • Linked Stacks and Queues

6. Why should we always add a destructor to a linked data structure?4.3

7. How is a copy constructor used and why should a copy constructor be included
in a linked data structure?

8. Why should a linked data structure be implemented with an overloaded as-
signment operator?

9. Discuss some problems that occur in group programming projects that do not4.5
occur in individual programming projects. What advantages does a group
project have over individual projects?

10. In an abstract data type, how much is specified about implementation?4.6

11. Name (in order from abstract to concrete) four levels of refinement of data
specification.

Recursion 5

T
HIS CHAPTER introduces the study of recursion, the method in which a
problem is solved by reducing it to smaller cases of the same problem.
To illustrate recursion we shall study some applications and sample pro-
grams, thereby demonstrating some of the variety of problems to which

recursion may fruitfully be applied. Some of these examples are simple; others
are quite sophisticated. We also analyze how recursion is usually implemented
on a computer. In the process, we shall obtain guidelines regarding good and bad
uses of recursion, when it is appropriate, and when it should best be avoided.

5.1 Introduction to Recursion 158
5.1.1 Stack Frames for Subprograms 158
5.1.2 Tree of Subprogram Calls 159
5.1.3 Factorials: A Recursive Definition 160
5.1.4 Divide and Conquer:

The Towers of Hanoi 163

5.2 Principles of Recursion 170
5.2.1 Designing Recursive Algorithms 170
5.2.2 How Recursion Works 171
5.2.3 Tail Recursion 174
5.2.4 When Not to Use Recursion 176
5.2.5 Guidelines and Conclusions 180

5.3 Backtracking: Postponing the Work 183
5.3.1 Solving the Eight-Queens Puzzle 183
5.3.2 Example: Four Queens 184
5.3.3 Backtracking 185

5.3.4 Overall Outline 186
5.3.5 Refinement: The First Data Structure

and Its Methods 188
5.3.6 Review and Refinement 191
5.3.7 Analysis of Backtracking 194

5.4 Tree-Structured Programs:
Look-Ahead in Games 198
5.4.1 Game Trees 198
5.4.2 The Minimax Method 199
5.4.3 Algorithm Development 201
5.4.4 Refinement 203
5.4.5 Tic-Tac-Toe 204

Pointers and Pitfalls 209
Review Questions 210
References for Further Study 211

157

5.1 INTRODUCTION TO RECURSION

5.1.1 Stack Frames for Subprograms

As one important application of stacks, consider what happens within the computer
system when functions are called. The system (or the program) must remember
the place where the call was made, so that it can return there after the function is
complete. It must also remember all the local variables, processor registers, and
the like, so that information will not be lost while the function is working. We can
think of all this information as one large data structure, a temporary storage area
for each function. This structure is sometimes called the invocation record or theinvocation record

activation record for the function call.
Suppose now that we have three functions called A, B , and C , and suppose

that A invokes B and B invokes C . Then B will not have finished its work until
C has finished and returned. Similarly, A is the first to start work, but it is the
last to be finished, not until sometime after B has finished and returned. Thusnested function calls
the sequence by which function activity proceeds is summed up as the property
last in, first out. If we consider the machine’s task of assigning temporary storage
areas for use by functions, then these areas would be allocated in a list with this
same property; that is, in a stack (see Figure 5.1, where M represents an invocation
record for the main program, and A, B , and C represent invocation records for the
corresponding functions). Hence a stack plays a key role in invoking functions in
a computer system.119

Stack
space

for
data

Time

D

C

A

M

D

D D D

D D DD D

C C

A A A A A A

M M M M M M M M M M M M M M

B

Figure 5.1. Stack frames for function calls

Figure 5.1 shows a sequence of stack frames, where each vertical column showsstack frames
the contents of the stack at a given time, and changes to the stack are portrayed by
reading through the frames from left to right. Notice from Figure 5.1 that it makes
no difference whether the temporary storage areas pushed on the stack come from
different functions or from repeated occurrences of the same function. Recursiondefinition: recursion
is the name for the case when a function invokes itself or invokes a sequence of
other functions, one of which eventually invokes the first function again. In regard
to stack frames for function calls, recursion is no different from any other function
call.

158

Section 5.1 • Introduction to Recursion 159

5.1.2 Tree of Subprogram Calls

One more picture elucidates the connection between stacks and function calls. This
is a tree diagram showing the order in which the functions are invoked. Such a tree
diagram appears in Figure 5.2, corresponding to the stack frames shown in Figure
5.1.

Start FinishM

B

D

C

A

D

D

D

Figure 5.2. Tree of function calls

We start at the top of the tree, which is called its root and corresponds to theroot, vertex, node
main program. Each circle (called a vertex or a node) corresponds to a call to a
function. All the calls that the main program makes directly are shown as the
vertices directly below the root. Each of these functions may, of course, call other

120

functions, which are shown as further vertices on lower levels. In this way, the
tree grows into a form like the one in Figure 5.2. We shall call such a tree a tree of
function calls.

We shall frequently use several other terms in reference to trees, recklessly
mixing the metaphors of botanical trees and family trees. The vertices immediately
below a given vertex are called the children of that vertex, and the (unique) vertexchildren, parent
immediately above is called its parent. The line connecting a vertex with one
immediately above or below is called a branch. Siblings are vertices with the same
parent. The root is the only vertex in the tree that has no parent. A vertex with nobranch, sibling, leaf
children is called a leaf or, sometimes, an external vertex. For example, in Figure
5.2, M is the root; A and D are its children; B and C are children of A; B and the
two bottom occurrences of D are leaves. (The other two occurrences of D are not
leaves.) We say that two branches of a tree are adjacent if the lower vertex of the
first branch is the upper vertex of the second. A sequence of branches in which
each is adjacent to its successor is called a path. The height of a tree is the number of
vertices on a longest-possible path from the root to a leaf. Hence the tree in Figureheight, depth, level
5.2 has height 4, and a tree containing only one vertex has height 1. Sometimes
(but not for function calls) we allow empty trees (no vertices); an empty tree has
height 0. The depth or level of a vertex is the number of branches on a path from
the root to the vertex. Hence the root has depth 0; in Figure 5.2, A has depth 1, B
and C have depth 2.

160 Chapter 5 • Recursion

To trace the function calls made in a program, we start at the root and move
around the tree, as shown by the colored path in Figure 5.2. This colored path istraversal
called a traversal of the tree. When we come to a vertex while moving downward,
we invoke the function. After we traverse the part of the tree below the vertex, we
reach it again on the way up, and this represents termination and return from the
function. The leaves represent functions that do not invoke any other functions.

We are especially interested in recursion, so that often we draw only the part
of the tree showing the recursive calls, and we call it a recursion tree. You shouldrecursion tree
first notice from the diagram that there is no difference in the way a recursive
call appears and the way any other function call occurs. Different recursive calls
appear simply as different vertices that happen to have the same name of function
attached. Second, note carefully that the tree shows the calls to functions. Henceexecution trace
a function called from only one place, but within a loop executed more than once,
will appear several times in the tree, once for each execution of the loop. Similarly,
if a function is called from a conditional statement that is not executed, then the
call will not appear in the tree.

stack frames The stack frames like Figure 5.1 show the nesting of recursive calls and also
illustrate the storage requirements for recursion. If a function calls itself recursively
several times, then separate copies of the variables declared in the function are
created for each recursive call. In the usual implementation of recursion, these are
kept on a stack. Note that the amount of space needed for this stack is proportional
to the height of the recursion tree, not to the total number of nodes in the tree. Thatspace requirement
is, the amount of space needed to implement a recursive function depends on the
depth of recursion, not on the number of times the function is invoked.

The last two figures can, in fact, be interpreted in a broader context than as
the process of invoking functions. They thereby elucidate an easy but important

119

observation, providing an intimate connection between arbitrary trees and stacks:

Theorem 5.1 During the traversal of any tree, vertices are added to or deleted from the path back to
the root in the fashion of a stack. Given any stack, conversely, a tree can be drawn to
portray the life history of the stack, as items are pushed onto and popped from it.

We now turn to the study of several simple examples of recursion. We next analyze
how recursion is usually implemented on a computer. In the process, we shall
obtain guidelines regarding good and bad uses of recursion, when it is appropriate,
and when it should best be avoided. The rest of this chapter includes several more
sophisticated applications of recursion.

5.1.3 Factorials: A Recursive Definition

In mathematics, the factorial function of a positive integer is usually defined by
the formula

n! = n × (n − 1)×· · · × 1.informal definition

Section 5.1 • Introduction to Recursion 161

The ellipsis (three dots) in this formula means “continue in the same way.” This
121 notation is not precise, since there can be more than one sensible way to fill in

the ellipsis. To calculate factorials, we need a more precise definition, such as the
following:

n! =
{

1 if n = 0
n × (n − 1)! if n > 0.formal definition

This definition tells us exactly how to calculate a factorial, provided we follow the
rules carefully and use a piece of paper to help us remember where we are.

Suppose that we wish to calculate 4!. Since 4 > 0, the definition tells us thatexample
4! = 4× 3!. This may be some help, but not enough, since we do not know what 3!
is. Since 3 > 0, the definition again gives us 3! = 3×2!. Again, we do not know the
value of 2!, but the definition gives us 2! = 2×1!. We still do not know 1!, but, since
1 > 0, we have 1! = 1× 0!. The definition, finally, treats the case n = 0 separately,
so we know that 0! = 1. We can substitute this answer into the expression for 1!
and obtain 1! = 1 × 0! = 1 × 1 = 1. Now comes the reason for using a piece of
paper to keep track of partial results. Unless we write the computation down in
an organized fashion, by the time we work our way through a definition several
times we will have forgotten the early steps of the process before we reach the
lowest level and begin to use the results to complete the earlier calculations. For
the factorial calculation, it is of course easy to write out all the steps in an organized
way:

4! = 4 × 3!
= 4 × (3 × 2!)
= 4 × (3 × (2 × 1!))
= 4 × (3 × (2 × (1 × 0!)))
= 4 × (3 × (2 × (1 × 1)))
= 4 × (3 × (2 × 1))
= 4 × (3 × 2)
= 4 × 6
= 24.

This calculation illustrates the essence of the way recursion works. To obtainproblem reduction
the answer to a large problem, a general method is used that reduces the large
problem to one or more problems of a similar nature but a smaller size. The same
general method is then used for these subproblems, and so recursion continues
until the size of the subproblems is reduced to some smallest, base case, where the
solution is given directly without using further recursion. In other words:

Every recursive process consists of two parts:aspects of recursion

1. A smallest, base case that is processed without recursion; and

2. A general method that reduces a particular case to one or more of the smaller
cases, thereby making progress toward eventually reducing the problem all the
way to the base case.

162 Chapter 5 • Recursion

C++ (like most other modern computer languages) provides easy access to recursion.121
The factorial calculation in C++ becomes the following function.

recursive program int factorial(int n)
/* Pre: n is a nonnegative integer.

Post: Return the value of the factorial of n. */
{

if (n == 0)
return 1;

else
return n * factorial(n − 1);

}

As you can see from this example of factorials, the recursive definition and recur-
sive solution of a problem can be both concise and elegant, but the computational
details can require keeping track of many partial computations before the process
is complete.

Computers can easily keep track of such partial computations with a stack; theremembering partial
computations human mind is not at all good for such tasks. It is exceedingly difficult for a person

to remember a long chain of partial results and then go back through it to complete
the work. Consider, for example, the following nursery rhyme:

As I was going to St. Ives,
I met a man with seven wives.

Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:

Kits, cats, sacks and wives,
How many were there going to St. Ives?

Because of the human difficulty in keeping track of many partial computations
simultaneously, when we use recursion, it becomes necessary for us to think in
somewhat different terms than with other programming methods. Programmers
must look at the big picture and leave the detailed computations to the computer.

We must specify in our algorithm the precise form of the general step in re-
ducing a large problem to smaller cases; we must determine the stopping rule (the
smallest case) and how it is processed. On the other hand, except for a few simple
and small examples, we should generally not try to understand a recursive algo-
rithm by working the general case all the way down to the stopping rule or by
tracing the action the computer will take on a good-sized case. We would quickly
become so confused by all the postponed tasks that we would lose track of the
complete problem and the overall method used for its solution.

There are good general methods and tools that allow us to concentrate on the
general methods and key steps while at the same time analyzing the amount of
work that the computer will do in carrying out all the details. We now turn to an
example that illustrates some of these methods and tools.

Section 5.1 • Introduction to Recursion 163

5.1.4 Divide and Conquer: The Towers of Hanoi

1. The Problem

In the nineteenth century, a game called the Towers of Hanoi appeared in Europe,
together with promotional material (undoubtedly apocryphal) explaining that the
game represented a task underway in the Temple of Brahma. At the creation of the
world, the priests were given a brass platform on which were 3 diamond needles.the story
On the first needle were stacked 64 golden disks, each one slightly smaller than the
one under it. (The less exotic version sold in Europe had 8 cardboard disks and 3
wooden posts.) The priests were assigned the task of moving all the golden disks
from the first needle to the third, subject to the conditions that only one disk can be
moved at a time and that no disk is ever allowed to be placed on top of a smaller
disk. The priests were told that when they had finished moving the 64 disks, it

122

would signify the end of the world. See Figure 5.3.

1 2 3

Figure 5.3. The Towers of Hanoi

Our task, of course, is to write a computer program that will type out a list of
instructions for the priests. We can summarize our task by the instruction

move(64, 1, 3, 2)

which means

Move 64 disks from tower 1 to tower 3 using tower 2 as temporary storage.

2. The Solution

The idea that gives a solution is to concentrate our attention not on the first step
(which must be to move the top disk somewhere), but rather on the hardest step:
moving the bottom disk. There is no way to reach the bottom disk until the top 63

164 Chapter 5 • Recursion

disks have been moved, and, furthermore, they must all be on tower 2 so that we
can move the bottom disk from tower 1 to tower 3. This is because only one disk
can be moved at a time and the bottom (largest) one can never be on top of any
other, so that when we move the bottom one, there can be no other disks on towers
1 or 3. Thus we can summarize the steps of our algorithm for the Towers of Hanoi
problem as

move(63, 1, 2, 3); // Move 63 disks from tower 1 to 2 (tower 3 temporary).
cout << "Move disk 64 from tower 1 to tower 3." << endl;
move(63, 2, 3, 1); // Move 63 disks from tower 2 to 3 (tower 1 temporary).

We now have a small step toward the solution, only a very small one since we
must still describe how to move the 63 disks two times. It is a significant stepgeneral reduction
nonetheless, since there is no reason why we cannot move the 63 remaining disks
in the same way. (As a matter of fact, we must indeed do so in the same way, since
there is again a largest disk that must be moved last.)

This is exactly the idea of recursion. We have described how to do the key
step and asserted that the rest of the problem is done in essentially the same way.divide and conquer
This is also the idea of divide and conquer: To solve a problem, we split the work
into smaller and smaller parts, each of which is easier to solve than the original
problem.

3. Refinement

To write the algorithm formally, we shall need to know at each step which tower
may be used for temporary storage, and thus we will invoke the function with
specifications as follows:

void move(int count, int start, int finish, int temp);

precondition: There are at least count disks on the tower start. The top disk (if
any) on each of towers temp and finish is larger than any of the
top count disks on tower start.

postcondition: The top count disks on start have been moved to finish; temp
(used for temporary storage) has been returned to its starting
position.

Supposedly our task is to be finished in a finite number of steps (even if it does
mark the end of the world!), and thus there must be some way that the recursionstopping rule
stops. The obvious stopping rule is that, when there are no disks to be moved,
there is nothing to do. We can now write the complete program to embody these
rules. The main program is:

Section 5.1 • Introduction to Recursion 165

123 const int disks = 64; // Make this constant much smaller to run program.
void move(int count, int start, int finish, int temp);

/* Pre: None.
Post: The simulation of the Towers of Hanoi has terminated. */

main()
{

move(disks, 1, 3, 2);
}

The recursive function that does the work is:

recursive function void move(int count, int start, int finish, int temp)
{

if (count > 0) {
move(count − 1, start, temp, finish);
cout << "Move disk " << count << " from " << start

<< " to " << finish << "." << endl;
move(count − 1, temp, finish, start);

}
}

4. Program Tracing

One useful tool in studying a recursive function when applied to a very small
example is to construct a trace of its action. Such a trace is shown in Figure 5.4 for the
Towers of Hanoi in the case when the number of disks is 2. Each box in the diagram
shows what happens in one of the calls. The outermost call move(2, 1, 3, 2) (the
call made by the main program) results essentially in the execution of the following
three statements, shown as the statements in the outer box (colored gray) of the
diagram.

move(1, 1, 2, 3); // Move 1 disk from tower 1 to 2 (using tower 3).
cout << "Move disk 2 from tower 1 to tower 3." << endl;
move(1, 2, 3, 1); // Move 1 disk from tower 2 to 3 (using tower 1).

The first and third of these statements make recursive calls. The statement

move(1, 1, 2, 3)

starts the function move over again from the top, but now with the new parameters.
Hence this statement results essentially in the execution of the following three
statements, shown as the statements in the first inner box (shown in color):

166 Chapter 5 • Recursion

move (2, 1, 3, 2)

Outer call.

First recursive call.

Trivial recursive call.

First instruction printed.

Trivial recursive call.

End of first recursive call.

Second instruction printed.

Second recursive call.

Trivial recursive call.

Third instruction printed.

Trivial recursive call.
End of second recursive call.
End of outer call.

move (0, 3, 1, 2)

"Move disk 1 from 1 to 2."

"Move disk 1 from 2 to 3."

move (0, 3, 2, 1)

move (0, 2, 1, 3)

move (0, 1, 3, 2)

move (1, 2, 3, 1)

move (1, 1, 2, 3)

"Move disk 2 from 1 to 3."

Figure 5.4. Trace of Hanoi for disks == 2
124

move(0, 1, 3, 2); // Move 0 disks.
cout << "Move disk 1 from tower 1 to tower 2." << endl;
move(0, 3, 2, 1); // Move 0 disks.

If you wish, you may think of these three statements as written out in place of
the call move(1, 1, 2, 3), but think of them as having a different color from the
statements of the outer call, since they constitute a new and different call to the
function. These statements are shown as colored print in the figure.

After the box corresponding to this call comes the output statement and then a
second box corresponding to the call move(1, 2, 3, 1). But before these statements
are reached, there are two more recursive calls coming from the first inner box.
That is, we must next expand the call move(0, 1, 3, 2). But the function move does
nothing when its parameter count is 0; hence this call move(0, 1, 3, 2) executes no
further function calls or other statements. We show it as corresponding to the first
empty box in the diagram.

After this empty call comes the output statement shown in the first inner box,
and then comes another call that does nothing. This then completes the work for
the call move(1, 1, 2, 3), so it returns to the place from which it was called. The

Section 5.1 • Introduction to Recursion 167

following statement is then the output statement in the outer box, and finally the
statement move(1, 2, 3, 1) is done. This call produces the statements shown in the
second inner box, which are then, in turn, expanded as the further empty boxes
shown.

With all the recursive calls through which we worked our way, the examplesorcerer’s apprentice
we have studied may lead you to liken recursion to the fable of the Sorcerer’s
Apprentice, who, when he had enchanted a broom to fetch water for him, did not
know how to stop it and so chopped it in two, whereupon it started duplicating
itself until there were so many brooms fetching water that disaster would have
ensued had the master not returned.

We now turn to another tool to visualize recursive calls, a tool that manages
the multiplicity of calls more effectively than a program trace can. This tool is the
recursion tree.

5. Analysis

The recursion tree for the Towers of Hanoi with three disks appears as Figure 5.5,
and the progress of execution follows the path shown in color.

move (3, 1, 3, 2)

move (2, 1, 2, 3) move (2, 2, 3, 1)

move (1, 1, 3, 2)

move (1, 3, 2, 1)

move (1, 2, 1, 3) move (1, 1, 3, 2)

move (0, 1, 2, 3)
move (0, 2, 3, 1)move (0, 3, 1, 2)move (0, 1, 2, 3)

move (0, 2, 3, 1) move (0, 3, 1, 2)
move (0, 1, 2, 3)

move (0, 2, 3, 1)

Figure 5.5. Recursion tree for three disks

Note that our program for the Towers of Hanoi not only produces a complete
solution to the task, but it produces the best possible solution, and, in fact, the
only solution that can be found except for the possible inclusion of redundant and
useless sequences of instructions such as

Move disk 1 from tower 1 to tower 2.
Move disk 1 from tower 2 to tower 3.
Move disk 1 from tower 3 to tower 1.

168 Chapter 5 • Recursion

To show the uniqueness of the irreducible solution, note that, at every stage,
the task to be done can be summarized as moving a certain number of disks from
one tower to another. There is no way of doing this task other than moving all the
disks except the bottom one first, then perhaps making some redundant moves,
then moving the bottom one, possibly making more redundant moves, and finally
moving the upper disks again.

Next, let us find out how many times the recursion will proceed before starting
to return and back out. The first time function move is called, it is with count ==
64, and each recursive call reduces the value of count by 1. Thus, if we exclude the
calls with count == 0, which do nothing, we have a total depth of recursion of 64.
That is, if we were to draw the tree of recursive calls for the program, it would havedepth of recursion
64 levels above its leaves. Except for the leaves, each vertex results in two recursive
calls (as well as in writing out one instruction), and so the number of vertices on
each level is exactly double that of the level above.

From thinking about its recursion tree (even if it is much too large to draw),
we can easily calculate how many instructions are needed to move 64 disks. One
instruction is printed for each vertex in the tree, except for the leaves (which are
calls with count == 0). The number of non-leaves is

1 + 2 + 4 + · · · + 263 = 20 + 21 + 22 + · · · + 263 = 264 − 1.total number of moves

Hence the number of moves required altogether for 64 disks is 264 − 1. We can
estimate how large this number is by using the approximation

103 = 1000 ≈ 1024 = 210.

(This easy fact is well worth remembering and is frequently used in discussing
computers: The abbreviation K, as in 512K, means 1024.) Thus the number of
moves is approximately

264 = 24 × 260 ≈ 24 × 1018 = 1.6 × 1019.

There are about 3.2× 107 seconds in one year. Suppose that the instructions could
be carried out at the rather frenetic rate of one every second. (The priests have
plenty of practice.) The total task will then take about 5× 1011 years. Astronomers
estimate the age of the universe at less than 20 billion (2×1010) years, so, according
to this story, the world will indeed endure a long time—25 times as long as it already
has!

You should note carefully that, although no computer could ever carry out the
full Towers of Hanoi program, it would fail for lack of time, but certainly not fortime and space
lack of space. The space needed is only that to keep track of 64 recursive calls, but
the time needed is that required for 264 calculations.

Section 5.1 • Introduction to Recursion 169

Exercises 5.1 E1. Consider the function f(n) defined as follows, where n is a nonnegative in-
teger:

f(n)=

0 if n = 0;
f(1

2n) if n is even, n > 0;
1 + f(n − 1) if n is odd, n > 0.

Calculate the value of f(n) for the following values of n.

(a) n = 1.
(b) n = 2.

(c) n = 3.
(d) n = 99.

(e) n = 100.
(f) n = 128.

E2. Consider the function f(n) defined as follows, where n is a nonnegative in-
teger:

f(n)=

n if n ≤ 1;
n + f (1

2n
)

if n is even, n > 1;
f
(1

2(n + 1)
) + f (1

2(n − 1)
)

if n is odd, n > 1.

For each of the following values of n, draw the recursion tree and calculate the
value of f(n).

(a) n = 1.
(b) n = 2.

(c) n = 3.
(d) n = 4.

(e) n = 5.
(f) n = 6.

Programming
Projects 5.1

P1. Compare the running times1 for the recursive factorial function written in this
section with a nonrecursive function obtained by initializing a local variable
to 1 and using a loop to calculate the product n! = 1× 2× · · · × n. To obtain
meaningful comparisons of the CPU time required, you will probably need to
write a loop in your driver program that will repeat the same calculation of a
factorial several hundred times. Integer overflow will occur if you attempt to
calculate the factorial of a large number. To prevent this from happening, you
may declare n and the function value to have type double instead of int.

P2. Confirm that the running time1 for the program hanoi increases approximately
like a constant multiple of 2n , where n is the number of disks moved. To do
this, make disks a variable, comment out the line that writes a message to the
user, and run the program for several successive values of disks, such as 10, 11,
. . . , 15. How does the CPU time change from one value of disks to the next?

1 You will need one of the standard header filesctimeortime.h that accesses a package of functions
for calculating the CPU time used by a C or C++ program; see Appendix C for more details of
this package.

170 Chapter 5 • Recursion

5.2 PRINCIPLES OF RECURSION

5.2.1 Designing Recursive Algorithms

Recursion is a tool to allow the programmer to concentrate on the key step of an
algorithm, without having initially to worry about coupling that step with all the
others. As usual with problem solving, the first approach should usually be to
consider several simple examples, and as these become better understood, to at-
tempt to formulate a method that will work more generally. Some of the important
aspects of designing algorithms with recursion are as follows:

➥ Find the key step. Begin by asking yourself, “How can this problem be divided
into parts?” or “How will the key step in the middle be done?” Be sure to keep

125

your answer simple but generally applicable. Do not come up with a multitude
of special cases that work only for small problems or at the beginning and end
of large ones. Once you have a simple, small step toward the solution, ask
whether the remainder of the problem can be done in the same or a similar way,
and modify your method, if necessary, so that it will be sufficiently general.

➥ Find a stopping rule. The stopping rule indicates that the problem or a suitable
part of it is done. This stopping rule is usually the small, special case that is
trivial or easy to handle without recursion.

➥ Outline your algorithm. Combine the stopping rule and the key step, using
an if statement to select between them. You should now be able to write the
main program and a recursive function that will describe how to carry the key
step through until the stopping rule applies.

➥ Check termination. Next, and of great importance, is a verification that the
recursion will always terminate. Start with a general situation and check that,
in a finite number of steps, the stopping rule will be satisfied and the recursion
terminate. Be sure also that your algorithm correctly handles extreme cases.
When called on to do nothing, any algorithm should be able to return gracefully,
but it is especially important that recursive algorithms do so, since a call to do
nothing is often the stopping rule. Notice, as well, that a call to do nothing
is usually not an error for a recursive function. It is therefore usually not
appropriate for a recursive function to generate a message when it performs
an empty call; it should instead simply return silently.

➥ Draw a recursion tree. The key tool for the analysis of recursive algorithms
is the recursion tree. As we have seen for the Towers of Hanoi, the height
of the tree is closely related to the amount of memory that the program will
require, and the total size of the tree reflects the number of times the key step
will be done, and hence the total time the program will use. It is usually
highly instructive to draw the recursion tree for one or two simple examples
appropriate to your problem.

Section 5.2 • Principles of Recursion 171

5.2.2 How Recursion Works
The question of how recursion is actually done in a computer should be carefullydesign versus

implementation separated in our minds from the question of using recursion in designing algo-
rithms.

➥ In the design phase, we should use all problem-solving methods that prove to
be appropriate, and recursion is one of the most flexible and powerful of these
tools.

➥ In the implementation phase, we may need to ask which of several methods is
the best under the circumstances.

There are at least two ways to accomplish recursion in computer systems. The first
of these, at present, is only available in some large systems, but with changing costs
and capabilities of computer equipment, it may soon be more common. Our major
point in considering two different implementations is that, although restrictions
in space and time do need to be considered, they should be considered separately
from the process of algorithm design, since different kinds of computer equipment
in the future may lead to different capabilities and restrictions.

1. Multiple Processors: Concurrency
Perhaps the most natural way to think of implementing recursion is to think of

126

each function not as occupying a different part of the same computer, but to think
of each function as running on a separate machine. In that way, when one function
invokes another, it starts the corresponding machine going, and when the other
machine completes its work, then it sends the answer back to the first machine,
which can then continue its task. If a function makes two recursive calls to itself,
then it will simply start two other machines working with the same instructions
that it is using. When these machines complete their work, they will send the
answers back to the one that started them going. If they, in turn, make recursive
calls, then they will simply start still more machines working.

It used to be that the central processor was the most expensive component of a
computer system, and any thought of a system including more than one processor
would have been considered extravagant. The price of processing power compared
to other computing costs has now dropped radically, and in all likelihood we shall,costs
before long, see large computer systems that will include hundreds, if not thou-
sands, of identical microprocessors among their components. When this occurs,
implementation of recursion via multiple processors will become commonplace if
not inevitable.

With multiple processors, programmers should no longer consider algorithms
solely as a linear sequence of actions, but should instead realize that some partsparallel processing
of the algorithm can often be done in parallel (at the same time) as other parts.
Processes that take place simultaneously are called concurrent. The study of con-concurrency
current processes and the methods for communication between them is, at present,
an active subject for research in computing science, one in which important devel-
opments will undoubtedly improve the ways in which algorithms will be described
and implemented in coming years.

172 Chapter 5 • Recursion

2. Single-Processor Implementation: Storage Areas

In order to determine how recursion can be efficiently implemented in a system
with only one processor, let us first for the moment leave recursion to consider
the question of what steps are needed to call a function, on the primitive level of
machine-language instructions in a simple computer.

The hardware of any computer has a limited range of instructions that includes
(amongst other instructions) doing arithmetic on specified words of storage or on
special locations within the CPU called registers, moving data to and from the
memory and registers, and branching (jumping) to a specified address. When a
calling program branches to the beginning of a function, the address of the place
whence the call was made must be stored in memory, or else the function could not
remember where to return. The addresses or values of the calling parameters must
also be stored where the function can find them, and where the answers can inreturn address
turn be found by the calling program after the function returns. When the function
starts, it will do various calculations on its local variables and storage areas. Once
the function finishes, however, these local variables are lost, since they are notlocal variables
available outside the function. The function will, of course, have used the registers
within the CPU for its calculations, so normally these would have different values
after the function finishes than before it is called. It is traditional, however, to expect
that a function will change nothing except its calling parameters or global variables
(side effects). Thus it is customary that the function will save all the registers it will
use and restore their values before it returns.

In summary, when a function is called, it must have a storage area (perhaps
scattered as several areas); it must save the registers or whatever else it will change,storage area
using the storage area also for its return address, calling parameters, and local
variables. As it returns, it will restore the registers and the other storage that it was
expected to restore. After the return, it no longer needs anything in its local storage
area.

In this way, we implement function calls by changing storage areas, an action
that takes the place of changing processors that we considered before. In these con-
siderations, it really makes no difference whether the function is called recursively
or not, providing that, in the recursive case, we are careful to regard two recursive
calls as being different, so that we do not mix the storage areas for one call with
those of another, any more than we would mix storage areas for different functions,
one called from within the other. For a nonrecursive function, the storage area can
be one fixed area, permanently reserved, since we know that one call to the func-
tion will have returned before another one is made, and after the first one returns,
the information stored is no longer needed. For recursive functions, however, the
information stored must be preserved until the outer call returns, so an inner call
must use a different area for its temporary storage.

Note that the once-common practice of reserving a permanent storage area for
a nonrecursive function can in fact be quite wasteful, since a considerable amount
of memory may be consumed in this way, memory that might be useful for other
purposes while the function is not active. This is, nevertheless, the way that storage
was allocated for functions in older versions of languages like FORTRAN and COBOL,
and this is the reason why these older languages did not allow recursion.

Section 5.2 • Principles of Recursion 173

3. Re-Entrant Programs

Essentially the same problem of multiple storage areas arises in a quite different
context, that of re-entrant programs. In a large time-sharing system, there may
be many users simultaneously using the C++ compiler, the text-editing system, or
database software. Such systems programs are quite large, and it would be very
wasteful of high-speed memory to keep thirty or forty copies of exactly the same
large set of instructions in memory at once, one for each user. What is often done
instead is to write large systems programs like the text editor with the instructions
in one area, but the addresses of all variables or other data kept in a separate area.
Then, in the memory of the time-sharing system, there will be only one copy of the
instructions, but a separate data area for each user.

This situation is somewhat analogous to students writing a test in a room where
the questions are written on the blackboard. There is then only one set of questions
that all students can read, but each student separately writes answers on different
pieces of paper. There is no difficulty for different students to be reading the same
or different questions at the same time, and with different pieces of paper, their
answers will not be mixed with each other. See Figure 5.6.

126

Instructions

Data

Data
Data

Figure 5.6. Example of concurrent, re-entrant processes

4. Data Structures: Stacks and Trees

We have yet to specify the data structure that will keep track of all these storage
areas for functions; to do so, let us look at the tree of function calls. So that an inner
function can access variables declared in an outer block, and so that we can return
properly to the calling program, we must, at every point in the tree, remember all
vertices on the path from the given point back to the root. As we move through
the tree, vertices are added to and deleted from one end of this path; the other end
(at the root) remains fixed. Hence the vertices on the path form a stack; the storagestacks
areas for functions likewise are to be kept as a stack. This process is illustrated in
Figure 5.7.

174 Chapter 5 • Recursion

127
A

M

Tree of
subprogram

calls

Time

Su
bp

ro
gr

am
 c

al
ls

M

A CB

B

B C

D E

C

A A B C

B D E

M

C C

M M M M

A A B B C C C

B B D E E E

B C C

B

Time

St
ac

k
sp

ac
e

Figure 5.7. A tree of function calls and the associated stack frames

From Figure 5.7 and our discussion, we can immediately conclude that the
amount of space needed to implement recursion (which, of course, is related to the
number of storage areas in current use) is directly proportional to the height of thetime and space

requirements recursion tree. Programmers who have not carefully studied recursion sometimes
mistakenly think that the space requirement relates to the total number of vertices
in the tree. The time requirement of the program is related to the number of times
functions are done, and therefore to the total number of vertices in the tree, but the
space requirement is only that of the storage areas on the path from a single vertex
back to the root. Thus the space requirement is reflected in the height of the tree. A
well-balanced, bushy recursion tree signifies a recursive process that can do much
work with little need for extra space.

5.2.3 Tail Recursion
Suppose that the very last action of a function is to make a recursive call to itself.
In the stack implementation of recursion, as we have seen, the local variables of the

Section 5.2 • Principles of Recursion 175

function will be pushed onto the stack as the recursive call is initiated. When the
recursive call terminates, these local variables will be popped from the stack anddiscarding stack

entries thereby restored to their former values. But doing this step is pointless, because the
recursive call was the last action of the function, so that the function now terminates
and the just-restored local variables are immediately discarded.

When the very last action of a function is a recursive call to itself, it is thus
unnecessary to use the stack, as we have seen, since no local variables need to be
preserved. All that we need to do is to set the dummy calling parameters to their
new values (as specified for the inner recursive call) and branch to the beginning
of the function. We summarize this principle for future reference.

If the last-executed statement of a function is a recursive call to the function itself,

128

then this call can be eliminated by reassigning the calling parameters to the values
specified in the recursive call, and then repeating the whole function.

The process of this transformation is shown in Figure 5.8. Part (a) shows the storage
areas used by the calling program M and several copies of the recursive function
P, each invoked by the previous one. The colored arrows show the flow of control
from one function call to the next and the blocks show the storage areas maintained
by the system. Since each call by P to itself is its last action, there is no need to
maintain the storage areas after returning from the call. The reduced storage areas
are shown in part (b). Part (c), finally, shows the calls to P as repeated in iterative
fashion on the same level of the diagram.

Recursion
Tail

recursion

(a) (b)

(c)

Iteration

M

P

P

P

M

P

P

P

M

P P P

Figure 5.8. Tail recursion

176 Chapter 5 • Recursion

tail recursion This special case when a recursive call is the last-executed statement of the
function is especially important because it frequently occurs. It is called tail re-
cursion. You should carefully note that tail recursion means that the last-executed
statement is a recursive call, not necessarily that the recursive call is the last state-
ment appearing in the function. Tail recursion may appear, for example, within one
clause of a switch statement or an if statement where other program lines appear
later.

time and space With most compilers, there will be little difference in execution time whether
tail recursion is left in a program or is removed. If space considerations are impor-
tant, however, then tail recursion should often be removed. By rearranging the
termination condition, if needed, it is usually possible to repeat the function using
a do while or a while statement.

Consider, for example, a divide-and-conquer algorithm like the Towers of
Hanoi. The second recursive call inside function move is tail recursion; the first
call is not. By removing the tail recursion, function move of the original recursive
program can be expressed as

Hanoi without tail
recursion

void move(int count, int start, int finish, int temp)
/*move: iterative version

Pre: Disk count is a valid disk to be moved.
Post: Moves count disks from start to finish using temp for temporary storage. */

{
int swap; // temporary storage to swap towers
while (count > 0) { // Replace the if statement with a loop.

move(count − 1, start, temp, finish); // first recursive call
cout << "Move disk " << count << " from " << start

<< " to " << finish << "." << endl;
count−−; // Change parameters to mimic the second recursive call.
swap = start;
start = temp;
temp = swap;

}
}129

We would have been quite clever had we thought of this version of the function
when we first looked at the problem, but now that we have discovered it via other
considerations, we can give it a natural interpretation. Think of the two towers
start and temp as in the same class: We wish to use them for intermediate storage
as we slowly move all the disks onto finish. To move a pile of count disks onto
finish, then, we must move all except the bottom to the other one of start and temp.
Then move the bottom one to finish, and repeat after interchanging start and temp,
continuing to shuffle all except the bottom one between start and temp, and, at
each pass, getting a new bottom one onto finish.

5.2.4 When Not to Use Recursion

1. Factorials
Consider the following two functions for calculating factorials. We have already
seen the recursive one:

Section 5.2 • Principles of Recursion 177

130
int factorial(int n)
/* factorial: recursive version

Pre: n is a nonnegative integer.
Post: Return the value of the factorial of n. */

{
if (n == 0) return 1;
else return n * factorial(n − 1);

}

There is an almost equally simple iterative version:

int factorial(int n)
/* factorial: iterative version

Pre: n is a nonnegative integer.
Post: Return the value of the factorial of n. */

{
int count, product = 1;
for (count = 1; count <= n; count++)

product *= count;
return product;

}

1!

2!

n!

(n – 1)!

(n – 2)!

…
0!

Figure 5.9.
Recursion tree for
calculating
factorials

Which of these programs uses less storage space? At first glance, it might appear
that the recursive one does, since it has no local variables, and the iterative program
has two. But actually (see Figure 5.9), the recursive program will set up a stack and
fill it with the n numbers

n,n − 1, n − 2, . . . ,2, 1

that are its calling parameters before each recursion and will then, as it works its
way out of the recursion, multiply these numbers in the same order as does the
second program. The progress of execution for the recursive function applied with
n = 5 is as follows:

factorial(5) = 5 * factorial(4)
= 5 * (4 * factorial(3))
= 5 * (4 * (3 * factorial(2)))
= 5 * (4 * (3 * (2 * factorial(1))))
= 5 * (4 * (3 * (2 * (1 * factorial(0)))))
= 5 * (4 * (3 * (2 * (1 * 1))))
= 5 * (4 * (3 * (2 * 1)))
= 5 * (4 * (3 * 6))
= 5 * (4 * 6)
= 5 * 24
= 120.

Thus the recursive program keeps more storage than the iterative version, and it
will take more time as well, since it must store and retrieve all the numbers as well
as multiply them.

178 Chapter 5 • Recursion

2. Fibonacci Numbers
A far more wasteful example than factorials (one that also appears as an apparently

131

recommended program in some textbooks) is the computation of the Fibonacci
numbers, which are defined by the recurrence relation

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.

The recursive program closely follows the definition:

int fibonacci(int n)
/* fibonacci: recursive version

Pre: The parameter n is a nonnegative integer.
Post: The function returns the nth Fibonacci number. */

{
if (n <= 0) return 0;
else if (n == 1) return 1;
else return fibonacci(n − 1) + fibonacci(n − 2);

}
133

F1 F0

F2

F3

F4

F1

F0

F2F2

F0F1F1

F3

F1

F0F1

F2

F5

F1

F0F1

F3

F4

F7

F0F1

F0F1 F0F1F2

F2 F3

F4

F5F6

F2 F2

F1

F3

F1

Figure 5.10. Recursion tree for the calculation of F7

Section 5.2 • Principles of Recursion 179

In fact, this program is quite attractive, since it is of the divide-and-conquer form:
The answer is obtained by calculating two smaller cases. As we shall see, however,
in this example it is not “divide and conquer,” but “divide and complicate.”

To assess this algorithm, let us consider, as an example, the calculation of F7 ,
whose recursion tree is shown in Figure 5.10. The function will first have to obtain
F6 and F5 . To get F6 requires F5 and F4 , and so on. But after F5 is calculated on
the way to F6 , then it will be lost and unavailable when it is later needed to get F7 .
Hence, as the recursion tree shows, the recursive program needlessly repeats the
same calculations over and over. Further analysis appears as an exercise. It turns
out that the amount of time used by the recursive function to calculate Fn grows
exponentially with n.

As with factorials, we can produce a simple iterative program by noting that
we can start at 0 and keep only three variables, the current Fibonacci number and
its two predecessors.132

int fibonacci(int n)

/* fibonacci: iterative version
Pre: The parameter n is a nonnegative integer.
Post: The function returns the nth Fibonacci number. */

{
int last_but_one; // second previous Fibonacci number, Fi−2
int last_value; // previous Fibonacci number, Fi−1
int current; // current Fibonacci number Fi
if (n <= 0) return 0;
else if (n == 1) return 1;
else {

last_but_one = 0;
last_value = 1;
for (int i = 2; i <= n; i++) {

current = last_but_one + last_value;
last_but_one = last_value;
last_value = current;

}
return current;

}
}

The iterative function obviously uses time that increases linearly in (that is, in
direct proportion with) n, so that the time difference between this function and the
exponential time of the recursive function will be vast.

3. Comparisons between Recursion and Iteration
What is fundamentally different between this last example and the proper uses
of recursion? To answer this question, we shall again turn to the examination
of recursion trees. It should already be clear that a study of the recursion tree
will provide much useful information to help us decide when recursion should or
should not be used.

180 Chapter 5 • Recursion

If a function makes only one recursive call to itself, then its recursion tree has
a very simple form: It is a chain; that is, each vertex has only one child. This childchain
corresponds to the single recursive call that occurs. Such a simple tree is easy to
comprehend. For the factorial function, it is simply the list of requests to calculate
the factorials from (n− 1)! down to 1!. By reading the recursion tree from bottom
to top instead of top to bottom, we immediately obtain the iterative program from
the recursive one. When the tree does reduce to a chain, then transformation from
recursion to iteration is often easy, and it will likely save both space and time.

Note that a function’s making only one recursive call to itself is not at all the
same as having the recursive call made only one place in the function, since this
place might be inside a loop. It is also possible to have two places that issue a
recursive call (such as both the clauses of an if statement) where only one call can
actually occur.

The recursion tree for calculating Fibonacci numbers is not a chain; instead,
it contains a great many vertices signifying duplicate tasks. When a recursive
program is run, it sets up a stack to use while traversing the tree, but if the resultsduplicate tasks
stored on the stack are discarded rather than kept in some other data structure for
future use, then a great deal of duplication of work may occur, as in the recursive
calculation of Fibonacci numbers.

change data structures In such cases, it is preferable to substitute another data structure for the stack,
one that allows references to locations other than the top. For the Fibonacci num-
bers, we needed only two additional temporary variables to hold the information
required for calculating the current number.

recursion removal Finally, by setting up an explicit stack, it is possible to take any recursive pro-
gram and rearrange it into nonrecursive form. The resulting program, however, is
almost always more complicated and harder to understand than is the recursive
version. The only reason for translating a program to remove recursion is if you
are forced to program in a language that does not support recursion, and fewer
and fewer programs are written in such languages.

4. Comparison of Fibonacci and Hanoi: Size of Output
The recursive function for Fibonacci numbers and the recursive procedure for the
Towers of Hanoi have a very similar divide-and-conquer form. Each consists es-
sentially of two recursive calls to itself for cases slightly smaller than the original.
Why, then, is the Hanoi program as efficient as possible while the Fibonacci pro-
gram is very inefficient? The answer comes from considering the size of the output.
In Fibonacci we are calculating only one number, and we wish to complete this cal-
culation in only a few steps, as the iterative function does but the recursive one
does not. For Hanoi, on the other hand, the size of the output is the number of
instructions to be printed, which increases exponentially with the number of disks.
Hence any procedure for the Towers of Hanoi will necessarily require time that
increases exponentially in the number of disks.

5.2.5 Guidelines and Conclusions
In making a decision, then, about whether to write a particular algorithm in recur-
sive or nonrecursive form, a good starting point is to consider the recursion tree.

Section 5.2 • Principles of Recursion 181

If it has a simple form, the iterative version may be better. If it involves dupli-
cate tasks, then data structures other than stacks will be appropriate, and the need
for recursion may disappear. If the recursion tree appears quite bushy, with little
duplication of tasks, then recursion is likely the natural method.

The stack used to resolve recursion can be regarded as a list of postponed
obligations for the program. If this list can be easily constructed in advance, then
iteration is probably better; if not, recursion may be. Recursion is something of
a top-down approach to problem solving; it divides the problem into pieces ortop-down design
selects out one key step, postponing the rest. Iteration is more of a bottom-up
approach; it begins with what is known and from this constructs the solution step
by step.

It is always true that recursion can be replaced by iteration and stacks. It is also
true, conversely (see the references for the proof), that any (iterative) program thatstacks or recursion
manipulates a stack can be replaced by a recursive program with no stack. Thus
the careful programmer should not only ask whether recursion should be removed,
but should also ask, when a program involves stacks, whether the introduction of
recursion might produce a more natural and understandable program that could
lead to improvements in the approach and in the results.

Exercises 5.2 E1. In the recursive calculation of Fn , determine exactly how many times each
smaller Fibonacci number will be calculated. From this, determine the order-
of-magnitude time and space requirements of the recursive function. [You may
find out either by setting up and solving a recurrence relation (top-down ap-
proach), or by finding the answer in simple cases and proving it more generally
by mathematical induction (bottom-up approach).]

E2. The greatest common divisor (gcd) of two positive integers is the largest integer
that divides both of them. Thus, for example, the gcd of 8 and 12 is 4, the gcd
of 9 and 18 is 9, and the gcd of 16 and 25 is 1.

(a) Write a nonrecursive function int gcd(int x, int y), where x and y are required
to be positive integers, that searches through the positive integers until it
finds the largest integer dividing both x and y.

(b) Write a recursive function int gcd(int x, int y) that implements Euclid’s
algorithm: If y = 0, then the gcd of x and y is x; otherwise the gcd of x and
y is the same as the gcd of y and x % y.2

(c) Rewrite the function of part (b) into iterative form.

(d) Discuss the advantages and disadvantages of each of these methods.

2 Recall that % is the modulus operator: The result of x % y is the remainder after the integer
division of integer x by nonzero integer y.

182 Chapter 5 • Recursion

E3. The binomial coefficients may be defined by the following recurrence relation,
which is the idea of Pascal’s triangle. The top of Pascal’s triangle is shown in
Figure 5.11.

C(n, 0)= 1 and C(n,n)= 1 for n ≥ 0.
C(n, k)= C(n− 1, k) + C(n− 1, k− 1) for n > k > 0.134

1

1

6

5

15

10

20

10

15

5

6

1

1

1

1

4

3

6

3

4

1

1

1

1

2

1

1

1

1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

6

5

4

3

2

1

0

20 63 4 51

(a) Symmetric form (b) In square array

Figure 5.11. The top of Pascal’s triangle of binomial coefficients

(a) Write a recursive function to generate C(n, k) by the foregoing formula.
(b) Draw the recursion tree for calculating C(6,4).
(c) Use a square array with n indicating the row and k the column, and write

a nonrecursive program to generate Pascal’s triangle in the lower left half
of the array, that is, in the entries for which k ≤ n.

(d) Write a nonrecursive program that uses neither an array nor a stack to
calculate C(n, k) for arbitrary n ≥ k ≥ 0.

(e) Determine the approximate space and time requirements for each of the
algorithms devised in parts (a), (c), and (d).

E4. Ackermann’s function, defined as follows, is a standard device to determine
how well recursion is implemented on a computer.

A(0, n)= n+ 1 for n ≥ 0.
A(m, 0)= A(m− 1, 1) for m > 0.
A(m,n)= A(m− 1, A(m,n− 1)) for m > 0 and n > 0.

(a) Write a recursive function to calculate Ackermann’s function.
(b) Calculate the following values. If it is impossible to obtain any of these

values, explain why.

A(0, 0) A(0, 9) A(1, 8) A(2, 2) A(2, 0)
A(2, 3) A(3, 2) A(4, 2) A(4,3) A(4,0)

(c) Write a nonrecursive function to calculate Ackermann’s function.

Section 5.3 • Backtracking: Postponing the Work 183

5.3 BACKTRACKING: POSTPONING THE WORK

As a more complex application of recursion, let us consider the well-known puzzle
of how to place eight queens on a chessboard so that no queen can take another.
Recall that in the rules for chess a queen can take another piece that lies on the same
row, the same column, or the same diagonal (either direction) as the queen. The
chessboard has eight rows and eight columns.

It is by no means obvious how to solve this puzzle, and even the great C. F.

135

GAUSS did not obtain a complete solution when he considered it in 1850. It is typical
of puzzles that do not seem suitable for completely analytical solutions, but require
either luck coupled with trial and error, or else much exhaustive (and exhausting)
computation. To convince you that solutions to this problem really do exist, two
of them are shown in Figure 5.12.

Figure 5.12. Two configurations showing eight nonattacking queens

In this section, we shall develop two programs to solve the eight-queens prob-
lem that will illustrate how the choice of data structures can affect a recursive
program.

5.3.1 Solving the Eight-Queens Puzzle

A person attempting to solve the eight-queens problem will usually soon abandon
attempts to find all (or even one) of the solutions by being clever and will start to
put queens on the board, perhaps randomly or perhaps in some logical order, but
always making sure that no queen placed can take another already on the board.
If the person is lucky enough to place eight queens on the board by proceeding
in this way, then this is a solution; if not, then one or more of the queens must
be removed and placed elsewhere to continue the search for a solution. To start
formulating a program, let us sketch this technique, which we think of as a recursive
function that locates all solutions that begin from a given configuration of queens
on a chessboard. We call the function solve_from. We imagine using a class called
Queens to represent a partial configuration of queens. Thus, we can pass a Queens

184 Chapter 5 • Recursion

configuration as the parameter for our recursive function, solve_from. In the initial
call to solve_from, from a main program, the parameter Queens configuration is136

empty.

solve_from (Queens configuration)
outline if Queens configuration already contains eight queens

print configuration
else

for every chessboard square p that is unguarded by configuration {
add a queen on square p to configuration;
solve_from(configuration);
remove the queen from square p of configuration;

}

This sketch illustrates the use of recursion to mean “Continue to the next stage and
repeat the task.” Placing a queen in square p is only tentative; we leave it there
only if we can continue adding queens until we have eight. Whether we reach
eight or not, the procedure will return when it finds that it has finished or there are
no further possibilities to investigate. After the inner call has returned, then, our
program goes back to investigate the addition of other possible unguarded squares
to the Queens configuration.

5.3.2 Example: Four Queens

Let us see how this algorithm works for a simpler problem, that of placing four
queens on a 4× 4 board, as illustrated in Figure 5.13.135

(a) (b) (c) (d)
Dead end Dead end Solution Solution

X X

?

XX X

?

? ? ?? ?

X X

XX XX

X

X XXX X XX

XXX

X X X

X ? ?

Figure 5.13. Solution to the four-queens problem

We shall need to put one queen in each row of the board. Let us first try to
place the queen as far to the left in the row as we can. Such a choice is shown in
the first row of part (a) of Figure 5.13. The question marks indicate other legitimate
choices that we have not yet tried. Before we investigate these choices, we move
on to the second row and try to insert a queen. The first two columns are guarded
by the queen in row 1, as shown by the crossed-off squares. Columns 3 and 4 are
free, so we first place the queen in column 3 and mark column 4 with a question
mark. Next we move on to row 3, but we find that all four squares are guarded by
one of the queens in the first two rows. We have now reached a dead end.

Section 5.3 • Backtracking: Postponing the Work 185

When we reach a dead end, we must backtrack by going back to the most recent
choice we have made and trying another possibility. This situation is shown in part
(b) of Figure 5.13, which shows the queen in row 1 unchanged, but the queen in
row 2 moved to the second possible position (and the previously occupied position
crossed off as no longer possible). Now we find that column 2 is the only possible
position for a queen in row 3, but all four positions in row 4 are guarded. Hence
we have again reached a point where no other queens can be added, and we must
backtrack.

At this point, we no longer have another choice for row 2, so we must move all
the way back to row 1 and move the queen to the next possible position, column
2. This situation is shown in part (c) of Figure 5.13. Now we find that, in row 2,
only column 4 is unguarded, so a queen must go there. In row 3, then, column
1 is the only possibility, and, in row 4, only column 3 is possible. This placement
of queens, however, does lead to a solution to the problem of four nonattacking
queens on the same 4× 4 board.

If we wish to find all the solutions, we can continue in the same way, back-
tracking to the last choice we made and changing the queen to the next possible
move. In part (c) we had no choice in rows 4, 3, or 2, so we now back up to row 1
and move the queen to column 3. This choice leads to the unique solution shown
in part (d).

Finally, we should investigate the possibilities with a queen in column 4 of row
1, but, as in part (a), there will be no solution in this case. In fact, the configurations
with a queen in either column 3 or column 4 of row 1 are just the mirror images
of those with a queen in column 2 or column 1, respectively. If you do a left-right
reflection of the board shown in part (c), you will obtain the board shown in (d),
and the boards with a queen in column 4, row 1, are just the reflections of those
shown in parts (a) and (b).

5.3.3 Backtracking

This method is typical of a broad class called backtracking algorithms, which
attempt to complete a search for a solution to a problem by constructing partial
solutions, always ensuring that the partial solutions remain consistent with the
requirements of the problem. The algorithm then attempts to extend a partial
solution toward completion, but when an inconsistency with the requirements of
the problem occurs, the algorithm backs up (backtracks) by removing the most
recently constructed part of the solution and trying another possibility.

Backtracking proves useful in situations where many possibilities may first
appear, but few survive further tests. In scheduling problems (like arranging a
sports tournament), for example, it will likely be easy to assign the first few matches,
but as further matches are made, the constraints drastically reduce the number of
possibilities. Or take the problem of designing a compiler. In some languages, it is
impossible to determine the meaning of a statement until almost all of it has been
read. Consider, for example, the pair of FORTRAN statements

DO 17 K = 1, 6
DO 17 K = 1. 6

186 Chapter 5 • Recursion

Both of these are legal: The first starts a loop, and the second assigns the number
1.6 to a variable called DO17K. (FORTRAN ignores all spaces, even spaces inside
identifiers.) In such cases where the meaning cannot be deduced immediately,
backtracking is a useful method in parsing (that is, splitting apart to decipher) theparsing
text of a program.

5.3.4 Overall Outline

1. The Main Program
Although we still need to fill in a great many details about the data structure that
we will need to represent positions of queens on the chessboard, we can provide a
main program to drive the recursive method already outlined.

We first print information about what the program does. Since it will be useful
to test the program by solving smaller problems such as the four-queens problem,
we allow the user to specify the number (called board_size) of queens to use. We
use a global constant max_board (declared in the header file queens.h) to limit the
maximum number of queens that the program can try to place.

136

int main()
/* Pre: The user enters a valid board size.

Post: All solutions to the n-queens puzzle for the selected board size are printed.
Uses: The class Queens and the recursive function solve_from. */

{
int board_size;
print_information();
cout << "What is the size of the board? " << flush;
cin >> board_size;
if (board_size < 0 || board_size > max_board)

cout << "The number must be between 0 and " << max_board << endl;
else {

Queens configuration(board_size); // Initialize empty configuration.
solve_from(configuration); // Find all solutions extending configuration.

}
}

2. The Queens Class
The variable definition

Queens configuration(board_size)

uses a constructor, with a parameter, for the class Queens to set the user-selected
board size and to initialize the empty Queens object called configuration. This
empty configuration is passed as a parameter to our recursive function that will
place queens on the board.

The outline of Section 5.3.1 shows that our class Queens will need methods to
print a configuration, to add a queen at a particular square of the chessboard to

Section 5.3 • Backtracking: Postponing the Work 187

a configuration, to remove this queen, and to test whether a particular square is
unguarded by a configuration. Moreover, any attempt to program our function
solve_from quickly shows the need for Queens data members board_size (to keep
track of the size of the board) and count (to keep track of the number of queens
already inserted).

After we have started building a configuration, how do we find the next square
to try? Once a queen has been put into a given row, no person would waste time
searching to find a place to put another queen in the same row, since the row is
fully guarded by the first queen. There can never be more than one queen in each
row. But our goal is to put board_size queens on the board, and there are only
board_size rows. It follows that there must be a queen, exactly one queen, in every
one of the rows. (This is called the pigeonhole principle: If you have n pigeonspigeonhole principle
and n pigeonholes, and no more than one pigeon ever goes in the same hole, then
there must be a pigeon in every hole.) Thus, we can proceed by placing the queens
on the board one row at a time, starting with row 0, and we can keep track of where
they are with the single data member count, which therefore not only gives the
total number of queens in the configuration so far but also gives the index of the
first unoccupied row. Hence we shall always attempt to insert the next queen into
the row count of a Queens configuration.

The specifications for the major methods of the class Queens are as follows:137

bool Queens :: unguarded(int col) const;

postcondition: Returns true or false according as the square in the first unoc-
cupied row (row count) and column col is not guarded by any
queen.

void Queens :: insert(int col);

precondition: The square in the first unoccupied row (row count) and column
col is not guarded by any queen.

postcondition: A queen has been inserted into the square at row count and
column col; count has been incremented by 1.

void Queens :: remove(int col);

precondition: There is a queen in the square in row count − 1 and column col.

postcondition: The above queen has been removed; count has been decre-
mented by 1.

bool Queens :: is_solved() const;

postcondition: The function returns true if the number of queens already placed
equals board_size; otherwise, it returns false.

188 Chapter 5 • Recursion

3. The Backtracking Function solve_from

With these decisions, we can now write C++ code for the first version of a recursive
function that places the queens on the board. Note that we pass the function’s pa-
rameter by reference to save the time used to copy a Queens object. Unfortunately,
although this parameter is just an input parameter, we do make and undo changes
to it in the function, and therefore we cannot pass it as a constant reference.138

void solve_from(Queens &configuration)
/* Pre: The Queens configuration represents a partially completed arrangement

of nonattacking queens on a chessboard.
Post: All n-queens solutions that extend the given configuration are printed.

The configuration is restored to its initial state.
Uses: The class Queens and the function solve_from, recursively. */

{
if (configuration.is_solved()) configuration.print();
else

for (int col = 0; col < configuration.board_size; col++)
if (configuration.unguarded(col)) {

configuration.insert(col);
solve_from(configuration); // Recursively continue to add queens.
configuration.remove(col);

}
}

5.3.5 Refinement: The First Data Structure and Its Methods

An obvious way to represent a Queens configuration is to store the chessboard as
a square array with entries indicating where the queens have been placed. Such
an array will be our first choice for the data structure. The header file for this
representation is thus:139

const int max_board = 30;

class Queens {
public:

Queens(int size);
bool is_solved() const;
void print() const;
bool unguarded(int col) const;
void insert(int col);
void remove(int col);
int board_size; // dimension of board = maximum number of queens

private:
int count; // current number of queens = first unoccupied row
bool queen_square[max_board][max_board];

};

Section 5.3 • Backtracking: Postponing the Work 189

With this data structure, the method for adding a new queen is trivial:140

void Queens :: insert(int col)
/* Pre: The square in the first unoccupied row (row count) and column col is not

guarded by any queen.
Post: A queen has been inserted into the square at row count and column col;

count has been incremented by 1. */
{

queen_square[count++][col] = true;
}

The methods is_solved, remove, and print are also very easy; these are left as exer-
cises.

To initialize a Queens configuration, we have a constructor that uses its param-
eter to set the size of the board:

Queens :: Queens(int size)
/* Post: The Queens object is set up as an empty configuration on a chessboard

with size squares in each row and column. */
{

board_size = size;
count = 0;
for (int row = 0; row < board_size; row++)

for (int col = 0; col < board_size; col++)
queen_square[row][col] = false;

}

We have set the count of placed queens to 0. This constructor is executed whenever
we declare a Queens object and at the same time specify one integer parameter, as
in our main program.

Finally, we must write the method that checks whether or not the square,
located at a particular column in the first unoccupied row of the chessboard, is
guarded by one (or more) of the queens already in a configuration. To do this
we must search the column and both of the diagonals on which the square lies.
Searching the column is straightforward, but finding the diagonals requires more
delicate index calculations. See Figure 5.14 for the case of a 4× 4 chessboard.

We can identify up to four diagonal directions emerging from a square of a
chessboard. We shall call these the lower-left diagonal (which points downwards
and to the left from the original square), the lower-right diagonal, the upper-left
diagonal, and the upper-right diagonal.

First consider the upper-left diagonal, as shown in part (c) of Figure 5.14. If
we start at a square of the chessboard with position [row][col], then the squares
belonging to the upper-left diagonal have positions of the form [row − i][col − i],
where i is a positive integer. This upper-left diagonal must end on either the upper

190 Chapter 5 • Recursion

0

0 21 3

(a) Rows (b) Columns

difference = row − column sum = row + column

(d) Downward diagonals (e) Upward diagonals

0,20,10,0

0,0 0,3

1,1 1,2

2,2 2,1

3,3 3,0

1,0 1,3

2,1 2,2

3,2 3,1

2,0 2,3

3,1 3,2
3,0 3,3

0,1 0,2

1,2 1,1

2,3 2,0

0,2 0,1

1,3 1,0

0,3 0,0

0,3

1 1,21,11,0 1,3

2 2,22,12,0 2,3

3 3,23,13,0 3,3

0,20,10,0 0,3

1,21,11,0 1,3

2,22,12,0 2,3

3,23,13,0 3,3

lower left

(c) Diagonal directions

0,20,10,0 0,3

1,21,11,0 1,3

2,22,12,0 2,3

3,23,13,0 3,3

−3 0

1

2

3
4

5
6

−2

−1

0
1

2
3

upper left upper right

lower right

Figure 5.14. Chessboard separated into components

edge of the board, where row − i == 0, or the left-hand edge of the board, where
col − i == 0. Therefore, we can list the squares on the upper-left diagonal by

141

using a for loop to increment i from 1 until one of the conditions row − i >= 0 and
col − i >= 0 fails.

Similar loops delineate the other three diagonals that emerge from a given
square of the board. However, when we come to check whether a particular square
in the first unoccupied row of the chessboard is unguarded, we need never check
the two lower diagonals, since lower squares are automatically unoccupied. There-
fore, only the cases of upper diagonals are reflected in the code for the method
unguarded, which follows.

Section 5.3 • Backtracking: Postponing the Work 191

140 bool Queens :: unguarded(int col) const
/* Post: Returns true or false according as the square in the first unoccupied row

(row count) and column col is not guarded by any queen. */
{

int i;
bool ok = true; // turns false if we find a queen in column or diagonal

for (i = 0; ok && i < count; i++)
ok = !queen_square[i][col]; // Check upper part of column

for (i = 1; ok && count − i >= 0 && col − i >= 0; i++)
ok = !queen_square[count − i][col − i]; // Check upper-left diagonal

for (i = 1; ok && count − i >= 0 && col + i < board_size; i++)
ok = !queen_square[count − i][col + i]; // Check upper-right diagonal

return ok;
}

5.3.6 Review and Refinement

The program we have just finished is quite adequate for the problem of 8 queens;
it turns out that there are 92 solutions for placing 8 queens on an 8× 8 chessboard.
If, however, you try running the program on larger sizes of chessboards, you will
find that it quickly starts to consume huge amounts of time. For example, one run
produced the following numbers:

139

Size 8 9 10 11 12 13
Number of solutions 92 352 724 2680 14200 73712
Time (seconds) 0.05 0.21 1.17 6.62 39.11 243.05
Time per solution (ms.) 0.54 0.60 1.62 2.47 2.75 3.30

As you can see, the number of solutions increases rapidly with the size of the board,rapidly increasing
time and the time increases even more rapidly, since even the time per solution increases

with the size. If we wish to obtain results for larger-sized chessboards, we must
either find a more efficient program or use large amounts of computer time.

Let us therefore ask where our program spends most of its time. Making the
recursive calls and backtracking takes a great deal of time, but this time reflects
the basic method by which we are solving the problem and the existence of a large
number of solutions. The several loops in the method unguarded() will also require
considerable time. Let us see if these loops can be eliminated, that is, whether it
is possible to determine whether or not a square is guarded without searching its
row, column, and diagonals.

One way to do this is to change the data we keep in the square array representingfirst refinement
the chessboard. Rather than keeping track only of which squares are occupied by
queens, we can use the array to keep track of all the squares that are guarded by

192 Chapter 5 • Recursion

queens. It is then easy to check if a square is unguarded. A small change helps
with the backtracking, since a square may be guarded by more than one queen.
For each square, we can keep a count of the number of queens guarding the square.
Then, when a queen is inserted, we increase the counts by 1 for all squares on the
same row, column, and diagonals. When a queen is deleted, we simply decrease
all these counts by 1.

Programming this method is left as a project. Let us note that this method,
while faster than the previous one, still requires loops to update the guard counts
for each square. Instead, with a little more thought, we can eliminate all these
loops.

The key idea is to notice that each row, column, and diagonal on the chessboardsecond refinement
can contain at most one queen. (The pigeonhole principle shows that, in a solution,
all the rows and all the columns are occupied, but not all the diagonals will be
occupied, since there are more diagonals than rows or columns.)

We can thus keep track of unguarded squares by using three bool arrays:
col_free, upward_free, and downward_free, where diagonals from the lower left
to the upper right are considered upward and those from the upper left to lower
right are considered downward. (See parts (d) and (e) of Figure 5.14.) Since we
place queens on the board one row at a time, starting at row 0, we do not need an
explicit array to find which rows are free.

Finally, for the sake of printing the configuration, we need to know the column
number for the queen in each row, and this we can do with an integer-valued array
indexed by the rows.

Note that we can now solve the entire problem without even keeping a square
array representing the chessboard, and without any loops at all except for initial-loopless program
izing the “free” arrays. Hence the time that our revised program will need will
closely reflect the number of steps investigated in backtracking.

How do we identify the squares along a single diagonal? Along the longest
upward diagonal, the entry indices are

[board_size − 1][0], [board_size − 2][1], . . . , [0][board_size − 1].

These have the property that the row and column indices always sum to the value
board_size − 1. It turns out that (as shown in part (e) of Figure 5.14) along any
upward diagonal, the row and column indices will have a constant sum. This sum
ranges from 0 for the upward diagonal of length 1 in the upper left corner, to
2 × board_size − 2, for the upward diagonal of length 1 in the lower right corner.
Thus we can number the upward diagonals from 0 to 2 × board_size − 2, so that
the square in row i and column j is in upward diagonal number i+ j .

Similarly, along downward diagonals (as shown in part(d) of Figure 5.14), the
difference of the row and column indices is constant, ranging from −board_size+ 1
to board_size − 1. Hence, we can number the downward diagonals from 0 to
2 × board_size − 1, so that the square in row i and column j is in downward
diagonal number i− j + board_size− 1.

After making all these decisions, we can now specify our revised Queens data
structure formally.

Section 5.3 • Backtracking: Postponing the Work 193
142

class Queens {
public:

Queens(int size);
bool is_solved() const;
void print() const;
bool unguarded(int col) const;
void insert(int col);
void remove(int col);
int board_size;

private:
int count;
bool col_free[max_board];
bool upward_free[2 * max_board − 1];
bool downward_free[2 * max_board − 1];
int queen_in_row[max_board]; // column number of queen in each row

};

We complete our program by supplying the methods for the revised class Queens.
We begin with the constructor:144

Queens :: Queens(int size)
/* Post: The Queens object is set up as an empty configuration on a chessboard

with size squares in each row and column. */
{

board_size = size;
count = 0;
for (int i = 0; i < board_size; i++) col_free[i] = true;
for (int j = 0; j < (2 * board_size − 1); j++) upward_free[j] = true;
for (int k = 0; k < (2 * board_size − 1); k++) downward_free[k] = true;

}

This is similar to the constructor for the first version, except that now we have
marked all columns and diagonals as unguarded, rather than initializing a square
array.

The method insert() encodes our conventions about the numbering of diago-
nals.

void Queens :: insert(int col)
/* Pre: The square in the first unoccupied row (row count) and column col is not

guarded by any queen.
Post: A queen has been inserted into the square at row count and column col;

count has been incremented by 1. */
{

queen_in_row[count] = col;
col_free[col] = false;
upward_free[count + col] = false;
downward_free[count − col + board_size − 1] = false;
count++;

}

194 Chapter 5 • Recursion

Finally, the method unguarded() needs only to test whether the column and two
diagonals that contain a particular square are unguarded.

bool Queens :: unguarded(int col) const
/* Post: Returns true or false according as the square in the first unoccupied row

(row count) and column col is not guarded by any queen. */
{

return col_free[col]
&& upward_free[count + col]
&& downward_free[count − col + board_size − 1];

}

Note how much simpler unguarded() is than it was in the first version. Indeed you
will note that there are no loops in any of the methods, only in the initialization
code in the constructor.

The remaining methods is_solved(), remove(), and print() can safely be left as
exercises.

The following table gives information about the performance of our new pro-
gram for the n-queens problem. For comparison purposes, we produced the data
on the same machine under the same conditions as in the testing of our earlier
program. The timing data shows that for the 8-queens problem the new program
runs about 5 times as fast as the older program. As the board size increases, we
would expect the new program to gain even more on the old program. Indeed for
the 13-queens problem, our new program is faster by a factor of about 7.142

Size 8 9 10 11 12 13
Number of solutions 92 352 724 2680 14200 73712
Time (seconds) 0.01 0.05 0.22 1.06 5.94 34.44
Time per solution (ms.) 0.11 0.14 0.30 0.39 0.42 0.47

5.3.7 Analysis of Backtracking

Let us conclude this section by estimating the amount of work that our program
will do.

1. Effectiveness of Backtracking

We begin by looking at how much work backtracking saves when compared with
enumerating all possibilities. To obtain numerical results, we look only at the 8×8
case. If we had taken the naïve approach by writing a program that first placed all
eight queens on the board and then rejected the illegal configurations, we would
be investigating as many configurations as choosing 8 places out of 64, which is

(
64
8

)
= 4,426,165,368.

Section 5.3 • Backtracking: Postponing the Work 195

The observation that there can be only one queen in each row immediately cuts
this number to

88 = 16,777,216.

This number is still large, but our program will not investigate nearly this many
squares. Instead, it rejects squares whose column or diagonals are guarded. The
requirement that there be only one queen in each column reduces the number to

8! = 40,320,reduced count

which is quite manageable by computer, and the actual number of cases the pro-
gram considers will be much less than this, since squares with guarded diagonals
in the early rows will be rejected immediately, with no need to make the fruitless
attempt to fill the later rows.

effectiveness of
backtracking

This behavior summarizes the effectiveness of backtracking: positions that are
discovered to be impossible prevent the later investigation of fruitless paths.

Another way to express this behavior of backtracking is to consider the tree
of recursive calls to the recursive function solve_from, part of which is shown in
Figure 5.15. The two solutions shown in this tree are the same as the solutions
shown in Figure 5.12. It appears formally that each node in the tree might have
up to eight children corresponding to the recursive calls to solve_from for the eight
possible values of new_col. Even at levels near the root, however, most of these
branches are found to be impossible, and the removal of one node on an upper
level removes a multitude of its descendents. Backtracking is a most effective tool
to prune a recursion tree to manageable size.

145

7

8

Solution Solution

5

3

5

1

5

7

1

7

3

5

3

7

1

55

1 6 8

4

1

5 6 7 8

2 3 4 5 6 7

1 2 3

61

87

8

4 6 7

2 4 8

2

7 4

2

7

7

8

Figure 5.15. Part of the recursion tree, eight-queens problem

196 Chapter 5 • Recursion

2. Lower Bounds

On the other hand, for the n-queens problem, the amount of work done by back-
tracking still grows very rapidly with n. Let us obtain a very rough idea of how
fast. When we place a queen in one row of the chessboard, notice that it excludes
at most 3 positions (its column, upper diagonal, and lower diagonal) from each
following row of the board. For the first row, backtracking will investigate n posi-
tions for the queen. For the second row it must investigate at least n− 3 positions,
for the third row n− 6, and so on. Hence, to place a queen in each of the first n/4
rows, backtracking investigates a minimum of

n(n − 3)(n − 6). . . (n − 3n/4)

positions. The last of these factors is n/4; the others are all larger, and there are
n/4 factors. Hence, just to fill the first n/4 rows, backtracking must investigate
more than (n/4)n/4 positions.

To obtain an idea how rapidly this number grows with n, recall that the Tow-
ers of Hanoi requires 2n steps for n disks, and notice that (n/4)n/4 grows even
more rapidly than 2n as n increases. To see this, we need only observe that
log

(
(n/4)n/4

)
/ log(2n)= log(n/4)/4 log(2). This ratio clearly increases without

bound as n increases. We say that 2n increases exponentially, and (n/4)n/4 in-exponential growth
creases even more rapidly. Hence backtracking for the n-queens problem becomes
impossibly slow as n increases.

3. Number of Solutions

Notice that we have not proved that it is impossible to print out all solutions to
the n-queens problem by computer for large n, but only that backtracking will
not do so. Perhaps there might exist some other, very clever, algorithm that would
display the solutions much more quickly than backtracking does. This is, however,
not the case. It is possible (see the references) to prove that the number of solutions
of the n-queens problem cannot be bounded by any polynomial in n. In fact, it
appears that the number of solutions cannot even be bounded by any expression
of the exponential form kn , where k is a constant, but to prove this is an unsolvedunsolved problem
problem.

Exercises 5.3 E1. What is the maximum depth of recursion in the function solve_from?

E2. Starting with the following partial configuration of five queens on the board,
construct the recursion tree of all situations that the function solve_from will
consider in trying to add the remaining three queens. Stop drawing the tree
at the point where the function will backtrack and remove one of the original
five queens.

Section 5.3 • Backtracking: Postponing the Work 197

E3. By performing backtracking by hand, find all solutions to the problem of plac-
ing five queens on a 5 × 5 board. You may use the left-right symmetry of the
first row by considering only the possibilities when the queen in row 1 is in
one of columns 1, 2, or 3.

Programming
Projects 5.3

P1. Run the eight-queens program on your computer:

(a) Write the missing Queens methods.
(b) Find out exactly how many board positions are investigated by including

a counter that is incremented every time function solve_from is started.
[Note that a method that placed all eight queens before it started checking
for guarded squares would be equivalent to eight calls to solve_from.]

(c) Run the program for the number of queens ranging from 4 to 15. Try to
find a mathematical function that approximates the number of positions
investigated as a function of the number of queens.

P2. A superqueen can make not only all of a queen’s moves, but it can also make
a knight’s move. (See Project P4.) Modify Project P1 so it uses superqueens
instead of ordinary queens.

P3. Describe a rectangular maze by indicating its paths and walls within an array.
Write a backtracking program to find a way through the maze.

P4. Another chessboard puzzle (this one reputedly solved by GAUSS at the age of
four) is to find a sequence of moves by a knight that will visit every square of the
board exactly once. Recall that a knight’s move is to jump two positions either
vertically or horizontally and one position in the perpendicular direction. Such
a move can be accomplished by setting x to either 1 or 2, setting y to 3 − x ,
and then changing the first coordinate by ±x and the second by ±y (provided
that the resulting position is still on the board). Write a backtracking program
that will input an initial position and search for a knight’s tour starting at the
given position and going to every square once and no square more than once.
If you find that the program runs too slowly, a good method is to order the list
of squares to which it can move from a given position so that it will first try to
go to the squares with the least accessibility, that is, to the squares from which
there are the fewest knight’s moves to squares not yet visited.

198 Chapter 5 • Recursion

P5. Modify the program from Project P4 so that it numbers the squares of the
chessboard in the order they are visited by the knight, starting with 1 in the
square where the knight starts. Modify the program so that it finds a magic
knight’s tour, that is, a tour in which the resulting numbering of the squares
produces a magic square. [See Section 1.6, Project P1(a) for the definition of a
magic square.]

5.4 TREE-STRUCTURED PROGRAMS: LOOK-AHEAD IN GAMES

In games of mental skill the person who can anticipate what will happen several
moves in advance has an advantage over a competitor who looks only for immedi-
ate gain. In this section we develop a computer algorithm to play games by looking
at moves several steps in advance. This algorithm can be described in terms of a
tree; afterward we show how recursion can be used to program this structure.

5.4.1 Game Trees

We can picture the sequences of possible moves by means of a game tree, in which
the root denotes the initial situation and the branches from the root denote the
legal moves that the first player could make. At the next level down, the branches
correspond to the legal moves by the second player in each situation, and so on,
with branches from vertices at even levels denoting moves by the first player, and
from vertices at odd levels denoting moves by the second player.

The complete game tree for the trivial game of Eight is shown in Figure 5.16.Eight
In this game the first player chooses one of the numbers 1, 2, or 3. At each later
turn the appropriate player chooses one of 1, 2, or 3, but the number chosen by
the previous player is not allowed. The branches of the tree are labeled with the
number chosen. A running sum of the numbers chosen is kept, and if a player

147

brings this sum to exactly eight, then the player wins. If the player takes the sum
over eight, then the other player wins. No draws are possible. In the diagram, F
denotes a win by the first player, and S a win by the second player.

Even a trivial game like Eight produces a good-sized tree. Games of real interest
like Chess or Go have trees so huge that there is no hope of investigating all the
branches, and a program that runs in reasonable time can examine only a few levels
below the current vertex in the tree. People playing such games are also unable to
see every possibility to the end of the game, but they can make intelligent choices,
because, with experience, a person comes to recognize that some situations in a
game are much better than others, even if they do not guarantee a win.

For any interesting game that we propose to play by computer, therefore, we
shall need some kind of evaluation function that will examine the current situationevaluation function
and return an integer assessing its benefits. To be definite, we shall assume that
large numbers reflect favorable situations for the first player, and therefore small
(or more negative) numbers show an advantage for the second player.

Section 5.4 • Tree-Structured Programs: Look-Ahead in Games 199

2

3
2

1

1 3

1 2 2 3 1

132

2 31 231

2 3 1

FS S S S F S S S F S S S S S

F F

S FS S S S F FS F F FS S

F

2

1

3

3 1 2 2 3 1 3 2 3 2 3 2 3

2 2 3 1 3 1 3 1 2 2 3 1 3 1 3 1 2 2 3

3

2 3

first

second

first

second

first

second

Figure 5.16. Tree for the game of Eight

5.4.2 The Minimax Method

Part of the tree for a fictitious game appears in Figure 5.17. Since we are looking
ahead, we need the evaluation function only at the leaves of the tree (that is, the
positions from which we shall not look further ahead in the game), and, from this
information, we wish to select a move. We shall draw the leaves of the game tree
as squares and the remaining nodes as circles. Hence Figure 5.16 provides values
only for the nodes drawn as squares.146

7 5

5 3 8 2 3

10

1 1

100

6

83

12

Figure 5.17. A game tree with values assigned at the leaves

200 Chapter 5 • Recursion

The move we eventually select is one of the branches coming directly from the
root, at the top level of the tree. We take the evaluation function from the perspective
of the player who must make the first move, which means that this player selects
the maximum value possible. At the next level down, the other player will select
the smallest value possible, and so on.

By working up from the bottom of the tree, we can assign values to all the
vertices. Let us trace this process part of the way through Figure 5.17, starting attracing the tree
the lower left side of the tree. The first unlabeled node is the circle above the square
labeled 10. Since there is no choice for the move made at this node, it must also
have the value 10. Its parent node has two children now labeled 5 and 10. This
parent node is on the third level of the tree. That is, it represents a move by the
first player, who wishes to maximize the value. Hence, this player will choose the
move with value 10, and so the value for the parent node is also 10.

Next let us move up one level in the tree to the node with three children. We
now know that the leftmost child has value 10, and the second child has value 7.
The value for the rightmost child will be the maximum of the values of its two
children, 3 and 8. Hence its value is 8. The node with three children is on the
second level; that is, it represents a move by the player who wishes to minimize
the value. Thus this player will choose the center move of the three possibilities,
and the value at this node is therefore 7.

And thus the process continues. You should take a moment to complete the
evaluation of all the nodes in Figure 5.17. The result is shown in Figure 5.18. The
value of the current situation turns out to be 7, and the current (first) player will
choose the leftmost branch as the best move.

146

7

5 3 8 2 3

10

1 1

100

6

83

12

0

7

5
10 3 1

1
57

6

12
8

10

3

first
Best move

second

first

second

Figure 5.18. Minimax evaluation of a game tree

Section 5.4 • Tree-Structured Programs: Look-Ahead in Games 201

The dotted lines shown in color will be explained later, in one of the Projects.
It turns out that, by keeping track of the minimum and maximum found so far, it is
not necessary to evaluate every node in a game tree, and, in Figure 5.18, the nodes
enclosed in the dotted lines need not be evaluated. Since in evaluating a game tree
we alternately take minima and maxima, this process is called a minimax method.minimax method

5.4.3 Algorithm Development
Next let us see how the minimax method can be embodied in a formal algorithm
for looking ahead in a game-playing program. We wish to write a general-purpose
algorithm that can be used with any two-player game.

Our program will need access to information about the particular game that
we want it to play. We shall assume that this information is collected in the imple-

148

mentation of classes called Move and Board. An object of type Move will represent
a single game move, and an object of type Board will represent a single game posi-
tion. Later we will implement versions of these classes for the game of tic-tac-toe
(noughts and crosses).

For the class Move, we shall only require constructor methods. We shall need
one constructor to create Move objects that might be specified by a client and a
second, default constructor to create empty Move objects. We shall also assume
that Move objects (as well as Board objects) can be passed as value parameters
to functions and can be copied safely with the assignment operator (that is, the
operator =).

For the class Board, we shall clearly require methods to initialize the Board, to
detect whether the game is over, to play a move that is passed as a parameter, to
evaluate a position, and to supply a list of all current legal moves.

The method legal_moves that gives current move options will need a list param-
eter to communicate its results. We have our choice of several list data structures
to hold these moves. The order in which they are investigated in later stages oflegal moves
look-ahead is unimportant, so they could be kept as any form of list. For simplicity
of programming, let us use a stack. The entries in the stack are moves; so that, in
order to use our earlier Stack implementation, we require the definition:

typedef Move Stack_entry;

We shall also need two other methods, which are useful in our selection of
the most favorable move for the mover, defined to be the player who must makecompare value of

moves the next move. The first of these is the method called better: It uses two integer
parameters and returns a nonzero result if the mover would prefer a game value
given by the first rather than the second parameter.

The other method, worst_case, returns a predetermined constant value that
the mover would definitely like less than the value of any possible game position.find worst-case value
Although we will be able to analyze the game without communicating with a user,
any program that uses our analysis to play the game will need Board methods to
print a stored position and to print game instructions.

202 Chapter 5 • Recursion

Just as a chess player may not touch the pieces on a chessboard except to make
a move, we shall require that the Board methods (other than the one to play aleave Board

unchanged move) leave Board data members unchanged. The touch-move rule in chess helps
to reassure an arbiter or observer that the game is proceeding fairly, and, in a similar
way, the protection that we give our class Board reassures a programmer who uses
the class. As we have already seen, in C++, we attach the modifier const after the
parameter list of a method or member function to guarantee that the function will
not change data members of the corresponding object. Thus our definition for the
class Board will take the form:148

class Board {
public:

Board(); // constructor for initialization
int done() const; // Test whether the game is over.
void play(Move try_it);
int evaluate() const;
int legal_moves(Stack &moves) const;
int worst_case() const;
int better(int value, int old_value) const;

// Which parameter does the mover prefer?
void print() const;
void instructions() const;
/*Additional methods, functions, and data will depend on the game under con-

sideration. */
};

Observe that the data members of the class Board will need to keep track of both
the board position and which player is the mover.

Before we write a function that looks ahead to evaluate a game tree, we shouldtermination
decide when our look-ahead algorithm is to stop looking further. For a game of
reasonable complexity, we must establish a number of levels depth beyond which
the search will not go. The other condition for termination is that the game is over:
this is detected by a return of true from Board :: done(). The basic task of looking
ahead in the tree can now be described with the following recursive algorithm.

outline look_ahead at game (a Board object);
if the recursion terminates (i.e. depth == 0 or game.done())

return an evaluation of the position
else

for each legal Move
create a new Board by making the Move

and recursively look_ahead for the game value corresponding
to the best follow-up Move for the other player;

select the best option for the mover among values found in the loop;
return the corresponding Move and value as the result;

Section 5.4 • Tree-Structured Programs: Look-Ahead in Games 203

5.4.4 Refinement

The outline of Section 5.4.3 leads to the following recursive function.149

int look_ahead(const Board &game, int depth, Move &recommended)
/* Pre: Board game represents a legal game position.

Post: An evaluation of the game, based on looking ahead depth moves, is re-
turned. The best move that can be found for the mover is recorded as
Move recommended.

Uses: The classes Stack, Board, and Move, together with function look_ahead
recursively. */

{
if (game.done() || depth == 0)

return game.evaluate();

else {
Stack moves;
game.legal_moves(moves);
int value, best_value = game.worst_case();

while (!moves.empty()) {
Move try_it, reply;
moves.top(try_it);
Board new_game = game;
new_game.play(try_it);
value = look_ahead(new_game, depth − 1, reply);
if (game.better(value, best_value)) {

// try_it is the best move yet found
best_value = value;
recommended = try_it;

}
moves.pop();

}
return best_value;

}
}

The reference parameter Move recommended is used to return a recommended
move (unless the game is over or the depth of search is 0). The reference parame-
ter Board game could be specified as a value parameter, since we do not want to
change the Board in the function. However, to avoid a possibly expensive copy-
ing operation, we pass game as a constant reference parameter. Observe that the
compiler can guarantee that the object Board game is unchanged by the function
look_ahead, because the only Board methods that are applied have been declared
with the modifier const. Without this earlier care in our definition of the class
Board, it would have been illegal to pass the parameter Board game as a constant.

204 Chapter 5 • Recursion

5.4.5 Tic-Tac-Toe

We shall finish this section by giving implementations of the classes Board and
Move for use in the game of tic-tac-toe (noughts and crosses). Here, the classes
consist of little more than a formal implementation of the rules of the game.

We leave the writing of a main program that harnesses these classes with the
function look_ahead to play a game of tic-tac-toe as a project. A number of optionsmain program
could be followed in such a program: the computer could play against a human
opponent, give a complete analysis of a position, or give its assessments of the
moves of two human players.

We shall represent the grid for a tic-tac-toe game as a 3 × 3 array of integers,

150

and we shall use the value 0 to denote an empty square and the values 1 and 2 to
denote squares occupied by the first and second players, respectively.

In a Move object, we shall just store the coordinates of a square on the grid.
For legal moves, these coordinates will be between 0 and 2. We shall not try
to encapsulate Move objects, because they act as little more than holders for a
collection of data values. We thus arrive at the following implementation of the
class Move.151

// class for a tic-tac-toe move
class Move {
public:

Move();
Move(int r, int c);
int row;
int col;

};

Move :: Move()
/* Post: The Move is initialized to an illegal, default value. */
{

row = 3;
col = 3;

}

Move :: Move(int r, int c)
/* Post: The Move is initialized to the given coordinates. */
{

row = r;
col = c;

}

We have seen that the class Board needs a constructor (to initialize a game), methods
print and instructions (which print out information for a user), methods done, play,

Section 5.4 • Tree-Structured Programs: Look-Ahead in Games 205

and legal_moves (which implement rules of the game), and methods evaluate,
better, and worst_case (which make judgments about the values of various moves).
We shall find it useful to have an auxiliary function the_winner, which returns a
result to indicate whether the game has been won and, if it has, by which player.

The Board class must also store data members to record the current game state
in a 3× 3 array and to record how many moves have been played. We thus arrive
at the following class definition.152

class Board {
public:

Board();
bool done() const;
void print() const;
void instructions() const;
bool better(int value, int old_value) const;
void play(Move try_it);
int worst_case() const;
int evaluate() const;
int legal_moves(Stack &moves) const;

private:
int squares[3][3];
int moves_done;
int the_winner() const;

};

The constructor simply fills the array squares with the value 0 to indicate thatconstructor
neither player has made any moves.

Board :: Board()
/* Post: The Board is initialized as empty. */

{
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
squares[i][j] = 0;

moves_done = 0;
}

We shall leave the methods that print information for the user as exercises; instead
we concentrate next on methods that apply the rules of the game. To make a
move, we need only reset the value of one of the squares and update the countermaking a move
moves_done to record that another move has been played. The value of the counter
moves_done is used to calculate whether player 1 or player 2 should be credited
with the move.

206 Chapter 5 • Recursion

153
void Board :: play(Move try_it)
/* Post: The Move try_it is played on the Board. */

{
squares[try_it.row][try_it.col] = moves_done % 2 + 1;
moves_done++;

}

The auxiliary function the_winner returns a nonzero result if either player has won.
It tests all eight possible lines of the Board in turn.determine a winner

int Board :: the_winner() const
/* Post: Return either a value of 0 for a position where neither player has won, a

value of 1 if the first player has won, or a value of 2 if the second player
has won. */

{
int i;
for (i = 0; i < 3; i++)

if (squares[i][0] && squares[i][0] == squares[i][1]
&& squares[i][0] == squares[i][2])

return squares[i][0];

for (i = 0; i < 3; i++)
if (squares[0][i] && squares[0][i] == squares[1][i]

&& squares[0][i] == squares[2][i])
return squares[0][i];

if (squares[0][0] && squares[0][0] == squares[1][1]
&& squares[0][0] == squares[2][2])

return squares[0][0];

if (squares[0][2] && squares[0][2] == squares[1][1]
&& squares[2][0] == squares[0][2])

return squares[0][2];
return 0;

}

The game is finished either after nine moves have been played or when one or the
other player has won. (Our program will not recognize that the game is guaranteed
to be a draw until all nine squares are filled.)154

bool Board :: done() const
/* Post: Return true if the game is over; either because a player has already won

or because all nine squares have been filled. */
{

return moves_done == 9 || the_winner() > 0;
}

Section 5.4 • Tree-Structured Programs: Look-Ahead in Games 207

The legal moves available for a player are just the squares with a value of 0.154

int Board :: legal_moves(Stack &moves) const
/* Post: The parameter Stack moves is set up to contain all possible legal moves

on the Board. */
{

int count = 0;
while (!moves.empty()) moves.pop();
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
if (squares[i][j] == 0) {

Move can_play(i, j);
moves.push(can_play);
count++;

}
return count;

}

We now come to the methods that must make a judgment about the value of aevaluating a position
Board position or of a potential Move. We shall initially evaluate a Board position
as 0 if neither player has yet won; however, if one or other player has won, we
shall evaluate the position according to the rule that quick wins are considered
very good, and quick losses are considered very bad. Of course, this evaluation
will only ever be applied at the end of a look_ahead and, so long as we look far
enough ahead, its crude nature will not be a drawback.

int Board :: evaluate() const
/* Post: Return either a value of 0 for a position where neither player has won, a

positive value between 1 and 9 if the first player has won, or a negative
value between −1 and −9 if the second player has won, */

{
int winner = the_winner();
if (winner == 1) return 10 − moves_done;
else if (winner == 2) return moves_done − 10;
else return 0;

}

The method worst_case can simply return a value of either 10 or −10, since evaluate
always produces a value between −9 and 9. Hence, the comparison method better
needs only to compare a pair of integers with values between −10 and 10. We leave
these methods as exercises.

We have now sketched out most of a program to play tic-tac-toe. A program
that sets the depth of look-ahead to a value of 9 will play a perfect game, since it
will always be able to look ahead to a situation where its evaluation of the position
is exact. A program with shallower depth can make mistakes, because it might
finish its look-ahead with a collection of positions that misleadingly evaluate as
zero.

208 Chapter 5 • Recursion

Exercises 5.4 E1. Assign values of +1 for a win by the first player and −1 for a win by the second
player in the game of Eight, and evaluate its game tree by the minimax method,
as shown in Figure 5.16.

E2. A variation of the game of Nim begins with a pile of sticks, from which a player
can remove 1, 2, or 3 sticks at each turn. The player must remove at least 1 (but
no more than remain on the pile). The player who takes the last stick loses.
Draw the complete game tree that begins with

(a) 5 sticks (b) 6 sticks.

Assign appropriate values for the leaves of the tree, and evaluate the other
nodes by the minimax method.

E3. Draw the top three levels (showing the first two moves) of the game tree for the
game of tic-tac-toe (noughts and crosses), and calculate the number of vertices
that will appear on the fourth level. You may reduce the size of the tree by
taking advantage of symmetries: At the first move, for example, show only
three possibilities (the center square, a corner, or a side square) rather than
all nine. Further symmetries near the root will reduce the size of the game
tree.

Programming
Projects 5.4

P1. Write a main program and the Move and Board class implementations to play
Eight against a human opponent.

P2. If you have worked your way through the tree in Figure 5.17 in enough detail,
you may have noticed that it is not necessary to obtain the values for all the
vertices while doing the minimax process, for there are some parts of the tree
in which the best move certainly cannot appear.

Let us suppose that we work our way through the tree starting at the lower
left and filling in the value for a parent vertex as soon as we have the values for
all its children. After we have done all the vertices in the two main branches
on the left, we find values of 7 and 5, and therefore the maximum value will
be at least 7. When we go to the next vertex on level 1 and its left child, we
find that the value of this child is 3. At this stage, we are taking minima, so
the value to be assigned to the parent on level 1 cannot possibly be more than
3 (it is actually 1). Since 3 is less than 7, the first player will take the leftmost
branch instead, and we can exclude the other branch. The vertices that, in
this way, need never be evaluated are shown within dotted lines in color in
Figure 5.18.

The process of eliminating vertices in this way is called alpha-beta pruning.
The Greek letters α (alpha) and β (beta) are generally used to denote the cutoffalpha-beta pruning
points found.

Modify the function look_ahead so that it uses alpha-beta pruning to re-
duce the number of branches investigated. Compare the performance of the
two versions in playing several games.

Chapter 5 • Pointers and Pitfalls 209

POINTERS AND PITFALLS

1. Recursion should be used freely in the initial design of algorithms. It is espe-
155 cially appropriate where the main step toward solution consists of reducing a

problem to one or more smaller cases.

2. Study several simple examples to see whether recursion should be used and
how it will work.

3. Attempt to formulate a method that will work more generally. Ask, “How can
this problem be divided into parts?” or “How will the key step in the middle
be done?”

4. Ask whether the remainder of the problem can be done in the same or a similar
way, and modify your method if necessary so that it will be sufficiently general.

5. Find a stopping rule that will indicate that the problem or a suitable part of it
is done.

6. Be very careful that your algorithm always terminates and handles trivial cases
correctly.

7. The key tool for the analysis of recursive algorithms is the recursion tree. Draw
the recursion tree for one or two simple examples appropriate to your problem.

8. The recursion tree should be studied to see whether the recursion is needlessly
repeating work, or if the tree represents an efficient division of the work into
pieces.

9. A recursive function can accomplish exactly the same tasks as an iterative
function using a stack. Consider carefully whether recursion or iteration with
a stack will lead to a clearer program and give more insight into the problem.

10. Tail recursion may be removed if space considerations are important.

156

11. Recursion can always be translated into iteration, but the general rules will
often produce a result that greatly obscures the structure of the program. Such
obscurity should be tolerated only when the programming language makes it
unavoidable, and even then it should be well documented.

12. Study your problem to see if it fits one of the standard paradigms for recur-
sive algorithms, such as divide and conquer, backtracking, or tree-structured
algorithms.

13. Let the use of recursion fit the structure of the problem. When the conditions of
the problem are thoroughly understood, the structure of the required algorithm
will be easier to see.

14. Always be careful of the extreme cases. Be sure that your algorithm terminates
gracefully when it reaches the end of its task.

15. Do as thorough error checking as possible. Be sure that every condition that
a function requires is stated in its preconditions, and, even so, defend your
function from as many violations of its preconditions as conveniently possible.

210 Chapter 5 • Recursion

REVIEW QUESTIONS

1. Define the term divide and conquer.5.1

2. Name two different ways to implement recursion.5.2

3. What is a re-entrant program?

4. How does the time requirement for a recursive function relate to its recursion
tree?

5. How does the space requirement for a recursive function relate to its recursion
tree?

6. What is tail recursion?

7. Describe the relationship between the shape of the recursion tree and the effi-
ciency of the corresponding recursive algorithm.

8. What are the major phases of designing recursive algorithms?

9. What is concurrency?

10. What important kinds of information does the computer system need to keep
while implementing a recursive function call?

11. Is the removal of tail recursion more important for saving time or for saving
space?

12. Describe backtracking as a problem-solving method.5.3

13. State the pigeonhole principle.

14. Explain the minimax method for finding the value of a game.5.4

15. Determine the value of the following game tree by the minimax method.

1

2

10

4 5 0–1 –2–3 –10

–2

3 –5

Chapter 5 • References for Further Study 211

REFERENCES FOR FURTHER STUDY

Two books giving thorough introductions to recursion, with many examples, and
serving as excellent supplements to this book are:

ERIC S. ROBERTS, Thinking Recursively, John Wiley & Sons, New York, 1986, 179 pages.

The Towers of Hanoi is quite well known and appears in many textbooks. A survey
of related papers is

D. WOOD, “The Towers of Brahma and Hanoi revisited,” Journal of Recreational Math
14 (1981–82), 17–24.

The proof that stacks may be eliminated by the introduction of recursion appears
in

S. BROWN, D. GRIES and T. SZYMANSKI, “Program schemes with pushdown stores,”
SIAM Journal on Computing 1 (1972), 242–268.

Consult the references at the end of the previous chapter for several good sources
for examples and applications of recursion. One of the earlier books containing
algorithms for both the knight’s tour and eight-queens problems is

N. WIRTH, Algorithms + Data Structures = Programs, Prentice Hall, Englewood Cliffs,
N.J., 1976.

For a general discussion of the n-queens problem, including a proof that the number
of solutions cannot be bounded by any polynomial in n, see

IGOR RIVIN, ILAN VARDI, and PAUL ZIMMERMANN, “The n-Queens Problem,” The Amer-
ican Mathematical Monthly 101(7) (1994), 629–639.

Many other applications of recursion appear in books such as

E. HOROWITZ and S. SAHNI, Fundamentals of Computer Algorithms, Computer Science
Press, 1978, 626 pages.

This book (pp. 290–302) contains more extensive discussion and analysis of game
trees and look-ahead programs. The general theory of recursion forms a research
topic. A readable presentation from a theoretical approach is

R. S. BIRD, Programs and Machines, John Wiley, New York, 1976.

Lists and Strings 6

T
HIS CHAPTER turns from restricted lists, like stacks and queues, in which
changes occur only at the ends of the list, to more general lists in which
insertions, deletions, and retrievals may occur at any point of the list. After
examining the specification and implementation of such lists, we study

lists of characters, called strings, develop a simple text editor as an application,
and finally consider the implementation of linked lists within arrays.

6.1 List Definition 213
6.1.1 Method Specifications 214

6.2 Implementation of Lists 217
6.2.1 Class Templates 218
6.2.2 Contiguous Implementation 219
6.2.3 Simply Linked Implementation 221
6.2.4 Variation: Keeping the Current

Position 225
6.2.5 Doubly Linked Lists 227
6.2.6 Comparison of Implementations 230

6.3 Strings 233
6.3.1 Strings in C++ 233
6.3.2 Implementation of Strings 234

6.3.3 Further String Operations 238

6.4 Application: A Text Editor 242
6.4.1 Specifications 242
6.4.2 Implementation 243

6.5 Linked Lists in Arrays 251

6.6 Application:
Generating Permutations 260

Pointers and Pitfalls 265
Review Questions 266
References for Further Study 267

212

6.1 LIST DEFINITION

Let us begin with our definition of an abstract data type that we call a list. Like
a stack or a queue, a list has a sequence of entries as its data value. However,
unlike a stack or a queue, a list permits operations that alter arbitrary entries of the
sequence.

Definition A list of elements of type T is a finite sequence of elements of T together with
the following operations:

1. Construct the list, leaving it empty.

2. Determine whether the list is empty or not.

3. Determine whether the list is full or not.

4. Find the size of the list.

5. Clear the list to make it empty.

6. Insert an entry at a specified position of the list.

7. Remove an entry from a specified position in the list.

8. Retrieve the entry from a specified position in the list.

9. Replace the entry at a specified position in the list.

10. Traverse the list, performing a given operation on each entry.

There are many other operations that are also useful to apply to sequences of el-
ements. Thus we can form a wide variety of similar ADTs by utilizing different

158

packages of operations. Any one of these related ADTs could reasonably go by
the name of list. However, we fix our attention on one particular list ADT whose
operations give a representative sampling of the ideas and problems that arise in
working with lists.

The standard template library provides a rather different data structure called astandard template
library list. The STL list provides only those operations that can be implemented efficiently

in a List implementation known as doubly linked, which we shall study shortly. In
particular, the STL list does not allow random access to an arbitrary list position, as
provided by our List operations for insertion, removal, retrieval, and replacement.
Another STL template class, called a vector, does provide some random access to
a sequence of data values. An STL vector bears some similarity to our List ADT,
in particular, it provides the operations that can be implemented efficiently in the
List implementation that we shall call contiguous. In this way, our study of the List
ADT provides an introduction to the STL classes list and vector.

213

214 Chapter 6 • Lists and Strings

6.1.1 Method Specifications

When we first studied stacks, we applied information hiding by separating our usesoperations,
information hiding,

and implementations
for stacks from the actual programming of these operations. In studying queues,
we continued this practice and soon saw that many variations in implementation
are possible. With general lists, we have much more flexibility and freedom in
accessing and changing entries in any part of the list. The principles of information
hiding are hence even more important for general lists than for stacks or queues.
Let us therefore begin by enumerating postconditions for all the methods that we
wish to have available for lists.159

A constructor is required before a list can be used:

List :: List();constructor

postcondition: The List has been created and is initialized to be empty.

The next operation takes a list that already exists and empties it:

void List :: clear();reinitialization

postcondition: All List entries have been removed; the List is empty.

Next come the operations for checking the status of a list:

bool List :: empty() const;status operations

postcondition: The function returns true or false according to whether the List
is empty or not.

bool List :: full() const;

postcondition: The function returns true or false according to whether the List
is full or not.

int List :: size() const;

postcondition: The function returns the number of entries in the List.

We now consider operations that access entries of a list. As in our earlier treatment
of stacks and queues, we shall suppose that, whenever necessary, our methods will
report problems by returning an Error_code. We shall use a generic type called
List_entry to stand for entries of our list.

Section 6.1 • List Definition 215

To find an entry in a list, we use an integer that gives its position within the list.
We shall number the positions in a list so that the first entry in the list has positionposition in a list
0, the second position 1, and so on. Hence, locating an entry of a list by its position
is superficially like indexing an array, but there are important differences. First, if
we insert an entry at a particular position, then the position numbers of all later
entries increase by 1. If we remove an entry, then the positions of all following
entries decrease by 1. Moreover, the position number for a list is defined withoutimplementation

independence regard to the implementation. For a contiguous list, implemented in an array, the
position will indeed be the index of the entry within the array. But we will also
use the position to find an entry within linked implementations of a list, where no
indices or arrays are used at all.

We can now give precise specifications for the methods of a list that access a

160

single entry.

Error_code List :: insert(int position, const List_entry &x);

postcondition: If the List is not full and 0 ≤ position ≤ n, where n is the number
of entries in the List, the function succeeds: Any entry formerly
at position and all later entries have their position numbers in-
creased by 1, and x is inserted at position in the List.
Else: The function fails with a diagnostic error code.

Note that insert allows position ==n, since it is permissible to insert an entry after
the last entry of the list. The following methods, however, require position < n,
since they refer to a position that must already be in the list.161

Error_code List :: remove(int position, List_entry &x);

postcondition: If 0 ≤ position < n, where n is the number of entries in the List,
the function succeeds: The entry at position is removed from the
List, and all later entries have their position numbers decreased
by 1. The parameter x records a copy of the entry formerly at
position.
Else: The function fails with a diagnostic error code.

Error_code List :: retrieve(int position, List_entry &x) const;

postcondition: If 0 ≤ position < n, where n is the number of entries in the List,
the function succeeds: The entry at position is copied to x; all
List entries remain unchanged.
Else: The function fails with a diagnostic error code.

216 Chapter 6 • Lists and Strings

Error_code List :: replace(int position, const List_entry &x);

postcondition: If 0 ≤ position < n, where n is the number of entries in the List,
the function succeeds: The entry at position is replaced by x; all
other entries remain unchanged.
Else: The function fails with a diagnostic error code.

A method to traverse a list, performing a task on entries, often proves useful: It istraverse
especially useful for testing purposes. A client using this traverse method specifies
the action to be carried out on individual entries of the list; the action is applied in
turn to each entry of the list. For example, a client that has two functions,

void update(List_entry &x) and void modify(List_entry &x),

and an object List the_list, could use a command

the_list.traverse(update) or the_list.traverse(modify)

to perform one or the other of the operations on every entry of the list. If, as
scaffolding, the client desires to print out all the entries of a list, then all that is
needed is a statement

the_list.traverse(print);

where void print(List_entry &x) is a function that prints a single List_entry.
In these calls to the method traverse, the client merely supplies the name of

the function to be performed as a parameter. In C++, a function’s name, without
any parentheses, is evaluated as a pointer to the function. The formal parameter,pointers to functions
visit, for the method traverse must therefore be declared as a pointer to a function.
Moreover, this pointer declaration must include the information that the function
*visit has void return type and a List_entry reference parameter. Hence, we obtain
the following specification for the method traverse:

161

void List :: traverse(void (*visit)(List_entry &));

postcondition: The action specified by function *visit has been performed on
every entry of the List, beginning at position 0 and doing each
in turn.

As with all parameters, visit is only a formal name that is initialized with a pointer
value when the traverse method is used. The expression *visit stands for the func-
tion that will be used during traversal to process each entry in the list.

In the next section, we shall turn to implementation questions.

Section 6.2 • Implementation of Lists 217

Exercises 6.1 Given the methods for lists described in this section, write functions to do each
of the following tasks. Be sure to specify the preconditions and postconditions
for each function. You may use local variables of types List and List_entry, but
do not write any code that depends on the choice of implementation. Include
code to detect and report an error if a function cannot complete normally.

E1. Error_code insert_first(const List_entry &x, List &a_list) inserts entry x into po-
sition 0 of the List a_list.

E2. Error_code remove_first(List_entry &x, List &a_list) removes the first entry of
the List a_list, copying it to x.

E3. Error_code insert_last(const List_entry &x, List &a_list) inserts x as the last entry
of the List a_list.

E4. Error_code remove_last(List_entry &x, List &a_list) removes the last entry of
a_list, copying it to x.

E5. Error_code median_list(List_entry &x, List &a_list) copies the central entry of the
List a_list to x if a_list has an odd number of entries; otherwise, it copies the
left-central entry of a_list to x.

E6. Error_code interchange(int pos1, int pos2, List &a_list) interchanges the entries
at positions pos1 and pos2 of the List a_list.

E7. void reverse_traverse_list(List &a_list, void (*visit)(List_entry &)) traverses the
List a_list in reverse order (from its last entry to its first).

E8. Error_code copy(List &dest, List &source) copies all entries from source into dest;
source remains unchanged. You may assume that dest already exists, but any
entries already in dest are to be discarded.

E9. Error_code join(List &list1, List &list2) copies all entries from list1 onto the end
of list2; list1 remains unchanged, as do all the entries previously in list2.

E10. void reverse(List &a_list) reverses the order of all entries in a_list.
E11. Error_code split(List &source, List &oddlist, List &evenlist) copies all entries from

source so that those in odd-numbered positions make up oddlist and those in
even-numbered positions make up evenlist. You may assume that oddlist and
evenlist already exist, but any entries they may contain are to be discarded.

6.2 IMPLEMENTATION OF LISTS
At this point, we have specified how we wish the operations of our list ADT to
behave. It is now time to turn to the details of implementing lists in C++. In our
previous study of stacks and queues, we programmed two kinds of implemen-
tations: contiguous implementations using arrays, and linked implementations
using pointers. For lists we have the same division, but we shall find several vari-
ations of further interest.

We shall implement our lists as generic template classes rather than as classes;
we therefore begin with a brief review of templates.

218 Chapter 6 • Lists and Strings

6.2.1 Class Templates
Suppose that a client program needs three lists: a list of integers, a list of characters,

162 and a list of real numbers. The implementation tools we have developed so far are
inadequate, since, if we use a typedef to set the type List_entry to one of int, char,
or double, then we cannot use the same List class to set up lists with the other two
types of entries. We need to set up a generic list, one whose entry type is not yet
specified, but one that the client program can specialize in order to declare lists
with the three different entry types.

In C++, we accomplish this aim with a template construction, which allowstemplate
us to write code, often code to implement a class, that uses objects of a generic
type. In template code we utilize a parameter to denote the generic type, and
later, when a client uses our code, the client can substitute an actual type for the
template parameter. The client can thus obtain several actual pieces of code from
our template, using different actual types in place of the template parameter.

For example, we shall implement a template class List that depends on one
generic type parameter. A client can then use our template to declare a list of
integers with a declaration of the following form:

List<int> first_list;

Moreover, in the same program, the client could also set up a list of characters with
a declaration:

List<char> second_list;

In these declaration statements, our client customizes the class template by speci-
fying the value of the template’s parameter between angled brackets.

We see that templates provide a new mechanism for creating generic data struc-generics
tures. One advantage of using templates rather than our prior, simple treatment
of generics is that a client can make many different specializations of a given data
structure template in a single application. For example, the lists first_list and sec-
ond_list that we declared earlier have different entry types but can coexist in the
same client program. The lack of precisely this flexibility, in our earlier treatment
of generics, restricted our choice of Stack implementation in the polynomial project
of Section 4.5.

The added generality that we get by using templates comes at the price of
slightly more complicated class specifications and implementations. For the most
part, we just need to prefix templated code with the keyword template and a
declaration of template parameters. Thus our later template class List, which uses
a generic entry type called List_entry, is defined by adding members to the following
specification:

template <class List_entry>
class List{

// Add in member information for the class.
};

Section 6.2 • Implementation of Lists 219

6.2.2 Contiguous Implementation

In a contiguous list implementation, we store list data in an array with max_list
entries of type List_entry. Just as we did for contiguous stacks, we must keep
a count of how much of the array is actually taken up with list data. Thus, we
must define a class with all of the methods of our list ADT together with two data
members.

163

template <class List_entry>
class List {
public:
// methods of the List ADT

List();
int size() const;
bool full() const;
bool empty() const;
void clear();
void traverse(void (*visit)(List_entry &));
Error_code retrieve(int position, List_entry &x) const;
Error_code replace(int position, const List_entry &x);
Error_code remove(int position, List_entry &x);
Error_code insert(int position, const List_entry &x);

protected:
// data members for a contiguous list implementation

int count;
List_entry entry[max_list];

};

Many of the methods (List, clear, empty, full, size, retrieve) have very simple im-
plementations. However, these methods all depend on the template parameter
List_entry, and so must be implemented as templates too. For example, the method
size can be written with the following function template:

template <class List_entry>
int List<List_entry> :: size() const
/* Post: The function returns the number of entries in the List. */
{

return count;
}

We leave the other simple methods as exercises and concentrate on those methods
that access data in the list. To add entries to the list, we must move entries within
the array to make space to insert the new one. The resulting function template is:

220 Chapter 6 • Lists and Strings

164
template <class List_entry>
Error_code List<List_entry> :: insert(int position, const List_entry &x)
/* Post: If the List is not full and 0 ≤ position ≤ n, where n is the number of

entries in the List, the function succeeds: Any entry formerly at position
and all later entries have their position numbers increased by 1 and x is
inserted at position of the List.
Else: The function fails with a diagnostic error code. */

{
if (full())

return overflow;
if (position < 0 || position > count)

return range_error;

for (int i = count − 1; i >= position; i−−)
entry[i + 1] = entry[i];

entry[position] = x;
count++;
return success;

}

How much work does this function do? If we insert an entry at the end of the list,
then the function executes only a small, constant number of commands. If, at the
other extreme, we insert an entry at the beginning of the list, then the function must
move every entry in the list to make room, so, if the list is long, it will do much
more work. In the average case, where we assume that all possible insertions are
equally likely, the function will move about half the entries of the list. Thus we say
that the amount of work the function does is approximately proportional to n, the
length of the list.

Deletion, similarly, must move entries in the list to fill the hole left by the
removed entry. Hence deletion also requires time approximately proportional to
n, the number of entries. Most of the remaining operations, on the other hand, do
not use any loops and do their work in constant time. In summary,165

In processing a contiguous list with n entries:

➥ insert and remove require time approximately proportional to n.

➥ List, clear, empty, full, size, replace, and retrieve operate in constant time.

We have not included traverse in this discussion, since its time depends on the
time used by its parameter visit, something we do not know in general. The imple-
mentation of traverse must include a loop through all n elements of the list, so we
cannot hope that its time requirement is ever less than proportional to n. However,
for traversal with a fixed parameter visit, the time requirement is approximately
proportional to n.

Section 6.2 • Implementation of Lists 221

template <class List_entry>
void List<List_entry> :: traverse(void (*visit)(List_entry &))
/* Post: The action specified by function (*visit) has been performed on every entry

of the List, beginning at position 0 and doing each in turn. */
{

for (int i = 0; i < count; i++)
(*visit)(entry[i]);

}

6.2.3 Simply Linked Implementation

1. Declarations
For a linked implementation of a list, we can begin with declarations of nodes. Our
nodes are similar to those we used for linked stacks and queues, but we now make
them depend on a template parameter.166

template <class Node_entry>
struct Node {
// data members

Node_entry entry;
Node<Node_entry> *next;

// constructors
Node();
Node(Node_entry, Node<Node_entry> *link = NULL);

};

We have included two constructors, the choice of which depends on whether or
not the contents of the Node are to be initialized. The implementations of these
constructors are almost identical to those for the linked nodes that we used in
Section 4.1.3. Once we have defined the struct Node, we can give the definition for
a linked list by filling in the following skeleton:

template <class List_entry>
class List {
public:
// Specifications for the methods of the list ADT go here.

// The following methods replace compiler-generated defaults.
∼List();

List(const List<List_entry> ©);
void operator = (const List<List_entry> ©);

protected:
// Data members for the linked list implementation now follow.

int count;
Node<List_entry> *head;

// The following auxiliary function is used to locate list positions
Node<List_entry> *set_position(int position) const;

};

222 Chapter 6 • Lists and Strings

In the definition we have omitted the method prototypes, because these are iden-
tical to those used in the contiguous implementation. As well as protected data
members, we have included a protected member function set_position that will
prove useful in our implementations of the methods.

2. Examples

To illustrate some of the kinds of actions we need to perform with linked lists, let
us consider for a moment the problem of editing text, and suppose that each node
holds one word as well as the link to the next node. The sentence “Stacks are Lists”
appears as in (a) of Figure 6.1. If we insert the word “simple” before the word “Lists”
we obtain the list in (b). Next we decide to replace “Lists” by “structures” and insert
the three nodes “but important data” to obtain (c). Afterward, we decide to remove
“simple but” and so arrive at list (d). Finally, we traverse the list to print its contents.167

(a)

(b)

(c)

(d)

Stacks

Stacks

Stacks

Stacks

are

are

are

are

but

but

lists.

lists.

lists.

important

simple

simple

simple

data

data

structures.

?

structures.

important

Figure 6.1. Actions on a linked list

Section 6.2 • Implementation of Lists 223

3. Finding a List Position
Several of the methods for lists make use of a function called set_position that takes
as its parameter a position (that is, an integer index into the list) and returns a pointer
to the corresponding node of the list.

We should declare the visibility of set_position as protected. This is because
set_position returns a pointer to, and therefore gives access to, a Node in the List.

168

Any client with access to set_position would have access to all of the data in the
corresponding List. Therefore, to maintain an encapsulated data structure, we must
restrict the visibility of set_position. By giving it a protected visibility we ensure
that it is only available as a tool for constructing other methods of the List.

The easiest way, conceptually, to construct set_position is to start at the begin-
ning of the List and traverse it until we reach the desired node:

template <class List_entry>
Node<List_entry> *List<List_entry> :: set_position(int position) const
/* Pre: position is a valid position in the List; 0 ≤ position < count.

Post: Returns a pointer to the Node in position. */
{

Node<List_entry> *q = head;
for (int i = 0; i < position; i++) q = q->next;
return q;

}

Since we control exactly which functions can use set_position, there is no need to
include error checking: Instead, we impose preconditions. Indeed the functions
that call set_position will include their own error checking so it would be inefficient
to repeat the process in set_position.

If all nodes are equally likely, then, on average, the set_position function must
move halfway through the List to find a given position. Hence, on average, its time
requirement is approximately proportional to n, the size of the List.

4. Insertion
Next let us consider the problem of inserting a new entry into a linked List. If we
have a new entry that we wish to insert into the middle of a linked List, then, as
shown in Figure 6.2, we set up pointers to the nodes preceding and following the
place where the new entry is to be inserted. If we let new_node point to the new
node to be inserted, previous point to the preceding node, and following point to
the following node, then this action consists of the two statements

new_node->next = following;
previous->next = new_node;

We can now build this code into a function for inserting a new entry into a
linked List. Observe that the assignment new_node->next = following is carried
out by the constructor that initializes new_node. Insertion at the beginning of the
List must be treated as a special case, since the new entry then does not follow any
other.

224 Chapter 6 • Lists and Strings

new_node

previous Node following Node

new Node

new_node –> nextprevious –> next

previous following

X

Figure 6.2. Insertion into a linked list
169

template <class List_entry>
Error_code List<List_entry> :: insert(int position, const List_entry &x)
/* Post: If the List is not full and 0 ≤ position ≤ n, where n is the number of

entries in the List, the function succeeds: Any entry formerly at position
and all later entries have their position numbers increased by 1, and x is
inserted at position of the List.
Else: The function fails with a diagnostic error code. */

{
if (position < 0 || position > count)

return range_error;
Node<List_entry> *new_node, *previous, *following;
if (position > 0) {

previous = set_position(position − 1);
following = previous->next;

}
else following = head;
new_node = new Node<List_entry>(x, following);
if (new_node == NULL)

return overflow;
if (position == 0)

head = new_node;
else

previous->next = new_node;
count++;
return success;

}

Apart from the call to set_position the steps performed by insert do not depend on
the length of the List. Therefore, it operates, like set_position, in time approximately
proportional to n, the size of the List.

Section 6.2 • Implementation of Lists 225

5. Other Operations

The remaining operations for linked lists will all be left as exercises. Those that
access a particular position in the List all need to use the function set_position,
sometimes for the current position and sometimes, as in insert, for the previous
position. All these functions turn out to perform at most a constant number of
steps other than those in set_position, except for clear (and traverse), which go
through all entries of the List. We therefore have the conclusion:

In processing a linked List with n entries:

➥ clear, insert, remove, retrieve, and replace require time approximately propor-
tional to n.

➥ List, empty, full, and size operate in constant time.

Again, we have not included traverse in this discussion, since its time depends
on the time used by its parameter visit, something we do not know in general.
However, as before, for a fixed parameter visit, the time required by traverse is

170

approximately proportional to n.

6.2.4 Variation: Keeping the Current Position

Many applications process the entries of a list in order, moving from one entry to the
next. Many other applications refer to the same entry several times, doing retrieve171

or replace operations before moving to another entry. For all these applications,
our current implementation of linked lists is very inefficient, since every operation
that accesses an entry of the list begins by tracing through the list from its start
until the desired position is reached. It would be much more efficient if, instead,
we were able to remember the last-used position in the list and, if the next operation
refers to the same or a later position, start tracing through the list from this last-used
position.

Note, however, that remembering the last-used position will not speed up
every application using lists. If, for example, some program accesses the entries
of a linked list in reverse order, starting at its end, then every access will require
tracing from the start of the list, since the links give only one-way directions and
so remembering the last-used position gives no help in finding the one preceding
it.

One problem arises with the method retrieve. This method is defined as a
constant method, but its implementation will need to alter the last-used position of
a List. We recognize that although this operation does change some data members
of a List object, it does not change the sequence of entries that represents the actual
value of the object. In order to make sure that the C++ compiler agrees, we must
define the data members that record the last-used position of a List with a storage
modifier of mutable. The keyword mutable is a relatively recent addition to C++,
and it is not yet available in all implementations of the language. Mutable data
members of a class can be changed, even by constant methods.

226 Chapter 6 • Lists and Strings

The enlarged definition for a list is obtained by adding method specifications
to the following skeleton:171

template <class List_entry>
class List {
public:
// Add specifications for the methods of the list ADT.
// Add methods to replace the compiler-generated defaults.
protected:
// Data members for the linked-list implementation with
// current position follow:

int count;
mutable int current_position;
Node<List_entry> *head;
mutable Node<List_entry> *current;

// Auxiliary function to locate list positions follows:
void set_position(int position) const;

};

Observe that although we have added extra members to our earlier class defini-
tion, all of the new members have protected visibility. This means that, from the
perspective of a client, the class looks exactly like our earlier implementation.

We can rewrite set_position to use and change the new data members of this
class. The current position is now a member of the class List, so there is no longer a

172

need for set_position to return a pointer; instead, the function can simply reset the
pointer current directly within the List.

template <class List_entry>
void List<List_entry> :: set_position(int position) const
/* Pre: position is a valid position in the List: 0 ≤ position < count.

Post: The current Node pointer references the Node at position. */
{

if (position < current_position) { // must start over at head of list
current_position = 0;
current = head;

}
for (; current_position != position; current_position++)

current = current->next;
}

Note that, for repeated references to the same position, neither the body of the if
statement nor the body of the for statement will be executed, and hence the function
will take almost no time. If we move forward only one position, the body of the
for statement will be executed only once, so again the function will be very fast.
On the other hand, when it is necessary to move backwards through the List, then
the function operates in almost the same way as the version of set_position used
in the previous implementation.

Section 6.2 • Implementation of Lists 227

With this revised version of set_position we can now revise the linked-list im-
plementation to improve its efficiency. The changes needed to the various methods
are minor, and they will all be left as exercises.

6.2.5 Doubly Linked Lists

Some applications of linked lists require that we frequently move both forward and
backward through the list. In the last section we solved the problem of moving
backwards by traversing the list from its beginning until the desired node was
found, but this solution is generally unsatisfactory. Its programming is difficult,
and the running time of the program will depend on the length of the list, which
may be quite long.

There are several strategies that can be used to overcome this problem of finding
the node preceding the given one. In this section, we shall study the simplest and,
in many ways, the most flexible and satisfying strategy.173

Figure 6.3. A doubly linked list

1. Declarations for a Doubly Linked List

The idea, as shown in Figure 6.3, is to keep two links in each node, pointing in
opposite directions. Hence, by following the appropriate link, we can move in
either direction through the linked list with equal ease. We call such a list a doublydoubly linked list
linked list.

In a doubly linked list, the definition of a Node becomes

template <class Node_entry>
struct Node {
// data members

Node_entry entry;
Node<Node_entry> *next;
Node<Node_entry> *back;

// constructors
Node();
Node(Node_entry, Node<Node_entry> *link_back = NULL,

Node<Node_entry> *link_next = NULL);
};

The Node constructor implementations are just minor modifications of the con-
structors for the singly linked nodes of Section 4.1.3. We therefore proceed straight
to a skeleton definition of a doubly-linked list class.

228 Chapter 6 • Lists and Strings

174

template <class List_entry>
class List {
public:

// Add specifications for methods of the list ADT.
// Add methods to replace compiler generated defaults.
protected:
// Data members for the doubly-linked list implementation follow:

int count;
mutable int current_position;
mutable Node<List_entry> *current;

// The auxiliary function to locate list positions follows:
void set_position(int position) const;

};

In this implementation, it is possible to move in either direction through the List
while keeping only one pointer into the List. Therefore, in the declaration, we keep
only a pointer to the current node of the List. We do not even need to keep pointers
to the head or the tail of the List, since they, like any other nodes, can be found by
tracing back or forth from any given node.

2. Methods for Doubly Linked Lists
With a doubly linked list, retrievals in either direction, finding a particular position,
insertions, and deletions from arbitrary positions in the list can be accomplished
without difficulty. Some of the methods that make changes in the list are longer
than those for simply linked lists because it is necessary to update both forward
and backward links when a node is inserted or removed from the list.

First, to find a particular location within the list, we need only decide whether to
move forward or backward from the initial position. Then we do a partial traversal

175

of the list until we reach the desired position. The resulting function is:

template <class List_entry>
void List<List_entry> :: set_position(int position) const
/* Pre: position is a valid position in the List: 0 ≤ position < count.

Post: The current Node pointer references the Node at position. */
{

if (current_position <= position)
for (; current_position != position; current_position++)

current = current->next;
else

for (; current_position != position; current_position−−)
current = current->back;

}

Given this function, we can now write the insertion method, which is made some-
what longer by the need to adjust multiple links. The action of this function is

176

shown in Figure 6.4.
Special care must be taken when the insertion is at one end of the List or into a

previously empty List.

Section 6.2 • Implementation of Lists 229

previous following

X
X

new_node

current

X

Figure 6.4. Insertion into a doubly linked list

177

template <class List_entry>
Error_code List<List_entry> :: insert(int position, const List_entry &x)
/* Post: If the List is not full and 0 ≤ position ≤ n, where n is the number of

entries in the List, the function succeeds: Any entry formerly at position
and all later entries have their position numbers increased by 1 and x is
inserted at position of the List.
Else: the function fails with a diagnostic error code. */

{
Node<List_entry> *new_node, *following, *preceding;

if (position < 0 || position > count) return range_error;

if (position == 0) {
if (count == 0) following = NULL;
else {

set_position(0);
following = current;

}
preceding = NULL;

}

else {
set_position(position − 1);
preceding = current;
following = preceding->next;

}
new_node = new Node<List_entry>(x, preceding, following);

if (new_node == NULL) return overflow;
if (preceding != NULL) preceding->next = new_node;
if (following != NULL) following->back = new_node;
current = new_node;
current_position = position;
count++;
return success;

}

230 Chapter 6 • Lists and Strings

The cost of a doubly linked list, of course, is the extra space required in each Node
for a second link. For most applications, however, the amount of space needed for
the information member, entry, in each Node is much larger than the space needed
for a link, so the second link member in each Node does not significantly increase
the total amount of storage space required for the List.

6.2.6 Comparison of Implementations

Now that we have seen several algorithms for manipulating linked lists and several
variations in their structure and implementation, let us pause to assess some relative
advantages of linked and of contiguous implementation of lists.

The foremost advantage of linked lists in dynamic storage is flexibility. Over-advantages
flow is no problem until the computer memory is actually exhausted. Especially
when the individual entries are quite large, it may be difficult to determine the
amount of contiguous static storage that might be needed for the required arraysoverflow
while keeping enough free for other needs. With dynamic allocation, there is no
need to attempt to make such decisions in advance.

Changes, especially insertions and deletions, can be made in the middle of a
linked list more quickly than in the middle of a contiguous list. If the structures arechanges
large, then it is much quicker to change the values of a few pointers than to copy
the structures themselves from one location to another.

The first drawback of linked lists is that the links themselves take space—spacedisadvantages
that might otherwise be needed for additional data. In most systems, a pointer
requires the same amount of storage (one word) as does an integer. Thus a list of
integers will require double the space in linked storage that it would require in
contiguous storage.

On the other hand, in many practical applications, the nodes in the list arespace use
quite large, with data members taking hundreds of words altogether. If each node
contains 100 words of data, then using linked storage will increase the memory
requirement by only one percent, an insignificant amount. In fact, if extra space is
allocated to arrays holding contiguous lists to allow for additional insertions, then
linked storage will probably require less space altogether. If each entry takes 100
words, then contiguous storage will save space only if all the arrays can be filled
to more than 99 percent of capacity.

The major drawback of linked lists is that they are not suited to random access.random access
With contiguous storage, a client can refer to any position within a list as quickly
as to any other position. With a linked list, it may be necessary to traverse a long
path to reach the desired node. Access to a single node in linked storage may
even take slightly more computer time, since it is necessary, first, to obtain the
pointer and then go to the address. This last consideration, however, is usually of
no importance. Similarly, you may find at first that writing methods to manipulateprogramming
linked lists takes a bit more programming effort, but, with practice, this discrepancy
will decrease.

Section 6.2 • Implementation of Lists 231

In summary, therefore, we can conclude as follows:

Contiguous storage is generally preferable

➥ when the entries are individually very small;

➥ when the size of the list is known when the program is written;

➥ when few insertions or deletions need to be made except at the end of the list; and

➥ when random access is important.

178

Linked storage proves superior

➥ when the entries are large;

➥ when the size of the list is not known in advance; and

➥ when flexibility is needed in inserting, deleting, and rearranging the entries.

179

Finally, to help choose one of the many possible variations in structure and imple-
mentation, the programmer should consider which of the operations will actually
be performed on the list and which of these are the most important. Is there locality
of reference? That is, if one entry is accessed, is it likely that it will next be accessed
again? Are the entries processed in order or not? If so, then it may be worthwhile
to maintain the last-used position as part of the list structure. Is it necessary to
move both directions through the list? If so, then doubly linked lists may prove
advantageous.

Exercises 6.2 E1. Write C++ functions to implement the remaining operations for the contiguous
implementation of a List, as follows:

(a) The constructor List
(b) clear
(c) empty
(d) full

(e) replace
(f) retrieve
(g) remove

E2. Write C++ functions to implement the constructors (both forms) for singly
linked and doubly linked Node objects.

232 Chapter 6 • Lists and Strings

E3. Write C++ functions to implement the following operations for the (first) simply
linked implementation of a list:
(a) The constructor List
(b) The copy constructor
(c) The overloaded assignment

operator
(d) The destructor ∼List
(e) clear
(f) size

(g) empty
(h) full
(i) replace
(j) retrieve

(k) remove
(l) traverse

E4. Write remove for the (second) implementation of simply linked lists that re-
members the last-used position.

E5. Indicate which of the following functions are the same for doubly linked lists
(as implemented in this section) and for simply linked lists. For those that are
different, write new versions for doubly linked lists. Be sure that each function
conforms to the specifications given in Section 6.1.
(a) The constructor List
(b) The copy constructor
(c) The overloaded assignment

operator
(d) The destructor ∼List
(e) clear
(f) size

(g) empty
(h) full
(i) replace
(j) insert

(k) retrieve
(l) remove

(m) traverse
Programming
Projects 6.2

P1. Prepare a collection of files containing the declarations for a contiguous list and
all the functions for list processing.

P2. Write a menu-driven demonstration program for general lists, based on the
one in Section 3.4. The list entries should be characters. Use the declarations
and the functions for contiguous lists developed in Project P1.

P3. Create a collection of files containing declarations and functions for processing
linked lists.
(a) Use the simply linked lists as first implemented.
(b) Use the simply linked lists that maintain a pointer to the last-used position.
(c) Use doubly linked lists as implemented in this section.

P4. In the menu-driven demonstration program of Project P2, substitute the col-
lection of files with declarations and functions that support linked lists (from
Project P3) for the files that support contiguous lists (Project P1). If you have
designed the declarations and the functions carefully, the program should op-
erate correctly with no further change required.

P5. (a) Modify the implementation of doubly linked lists so that, along with the
pointer to the last-used position, it will maintain pointers to the first node
and to the last node of the list.

(b) Use this implementation with the menu-driven demonstration program of
Project P2 and thereby test that it is correct.

(c) Discuss the advantages and disadvantages of this variation of doubly
linked lists in comparison with the doubly linked lists of the text.

Section 6.3 • Strings 233

P6. (a) Write a program that will do addition, subtraction, multiplication, and
division for arbitrarily large integers. Each integer should be represented
as a list of its digits. Since the integers are allowed to be as large as you
like, linked lists will be needed to prevent the possibility of overflow. For
some operations, it is useful to move backwards through the list; hence,
doubly linked lists are appropriate. Multiplication and division can be
done simply as repeated addition and subtraction.

(b) Rewrite multiply so that it is not based on repeated addition but on standard
multiplication where the first multiplicand is multiplied with each digit of
the second multiplicand and then added.

(c) Rewrite the divide operation so that it is not based on repeated subtraction
but on long division. It may be necessary to write an additional function
that determines if the dividend is larger than the divisor in absolute value.

6.3 STRINGS

In this section, we shall implement a class to represent strings of characters. A string
is defined as a sequence of characters. Examples of strings are "This is a string"definition
or "Name?", where the double quotes (" ") are not part of the string. There is
an empty string, denoted "". Since strings store sequences of data (characters), a
string ADT is a kind of list. However, because the operations that are normally
applied to a string differ considerably from the operations of our list ADT, we will
not base our strings on any of our earlier list structures.

We begin with a review of the string processing capabilities supplied by the
C++ language.

6.3.1 Strings in C++

The C++ language provides a pair of implementations of strings. The more primi-
tive of these is just a C implementation of strings. Like other parts of the C language,C-strings
it is available in all implementations of C++. We shall refer to the string objects
provided by this implementation as C-strings. C-strings reflect the strengths and
weaknesses of the C language: They are widely available, they are very efficient,

180

but they are easy to misuse with disastrous consequences. C-strings must conform
to a collection of conventions that we now review.

Every C-string has type char *. Hence, a C-string references an address inconventions
memory; the referenced address is the first of a contiguous set of bytes that store
the characters making up the string. The storage occupied by the string must
terminate with the special character value ′\0′. The compiler cannot enforce any

181

of these conventions, but any deviation from the rules is likely to result in a run-time
crash. In other words, C-string objects are not encapsulated.

The standard header file <cstring> contains a library of functions that ma-
nipulate C-strings. In older C++ compilers, this header file is sometimes called
<string.h>. These library functions are convenient, efficient, and represent al-

182

most every string operation that we could ever wish to use. For example, suppose

234 Chapter 6 • Lists and Strings

that s and t are C-strings. Then the operation strlen(s) returns the length of s, str-

183 cmp(s, t) reveals the lexicographic order of s and t, and strstr(s, t) returns a pointer
to the first occurrence of the string t in s. Moreover, in C++ the output operator <<
is overloaded to apply to C-strings, so that a simple instruction cout << s prints the
string s.

Although the implementation of C-strings has many excellent features, it has
some serious drawbacks too. In fact, it suffers from exactly the problems that wedrawbacks
identified in studying linked data structures in Section 4.3. It is easy for a client
to create either garbage or aliases for string data. For example, in Figure 6.5, we
illustrate how the C-string assignment s = t leads to both of these problems.180

"important string" "acquires an alias"

t

Lost data Alias data

s

s = tX
Figure 6.5. Insecurities of C-string objects

Another problem often arises in applications that use C-strings. Uninitialized
C-strings should store the value NULL. However, many of the string library functions
fail (with a run-time crash) when presented with a NULL string object. For example,
the statements

char *x = NULL;
cout << strlen(x);

are accepted by the compiler, but, for many implementations of the C-string library,
they generate a fatal run-time error. Thus, client code needs to test preconditions
for C-string functions very carefully.

In C++, it is easy to use encapsulation to embed C-strings into safer class-based
implementations of strings. Indeed, the standard template library includes a safe
string implementation in the header file <string>. This library implements a class
called std :: string that is convenient, safe, and efficient. Since this library is not
included with older C++ compilers, we shall develop our own safe String ADT
that uses encapsulation and object-oriented techniques to overcome the problems
that we have identified in C-strings.

6.3.2 Implementation of Strings
In order to create a safer string implementation, we embed the C-string representa-
tion as a member of a class String. It is very convenient to add the string length as aclass String
second data member in our class. Moreover, our class String can avoid the problems
of aliases, garbage creation, and uninitialized objects by including an overloaded
assignment operator, a copy constructor, a destructor, and a constructor.

Section 6.3 • Strings 235

For later applications, it will be extremely convenient to be able to apply thecomparison operators
comparison operators <, >, <= , >= , == , != to determine the lexicographic re-
lationship between a pair of strings. Therefore, our class String will include over-
loaded comparison operators.

We shall also equip the class String with a constructor that uses a parameter ofString constructor
type char *. This constructor provides a convenient translator from C-string objects
to String objects. The translator can be called explicitly with code such as:

String s("some_string");

In this statement, the String s is constructed by translating the C-string

185

"some_string".

Our constructor is also called implicitly, by the compiler, whenever client code
requires a type cast from type char * to String. For instance, the constructor is
invoked in running the following statements:

String s;
s = "some_string";

To translate the second statement, the C++ compiler first calls our new construc-
tor to cast "some_string" to a temporary String object. It then calls the overloaded
String assignment operator to copy the temporary String to s. Finally, it calls the
destructor for the temporary String.

It is very useful to have a similar constructor to convert from a List of characters
to a String. For example, when we read a String from a user, it is most convenient to
read characters into a linked list. Once the list is read, we can apply our translator
to turn the linked list into a String.

Finally, it is useful to be able to convert String objects to corresponding C-stringconversion from
String to C-string objects. For example, such a conversion allows us to apply many of the C-string

library functions to String data. We shall follow the example of the standard tem-
plate library and implement this conversion as a String method called c_str(). The
method should return a value of type const char *, which is a pointer to constant
character data that represents the String. The method c_str() can be used as fol-
lows:

String s = "some_string";
const char *new_s = s.c_str();

It is important that the method c_str() returns a C-string of constant characters. We
can see the need for this precaution if we consider the computer memory occupied
by the string in new_s. This memory is certainly allocated by the class String.
Once allocated, the memory must be looked after and ultimately deleted — either
by client code or by the class String. We shall take the view that the class String
should accept these responsibilities, since this will allow us to write a very efficient
implementation of the conversion function, and it will avoid the possibility that a
client forgets to delete C-strings created by the String class. However, the price that
we must pay for this decision is that the client should not use the returned pointer
to alter referenced character data. Hence, our conversion returns a constant C-
string.

236 Chapter 6 • Lists and Strings

The few features that we have described combine to give us very flexible, pow-
erful, and yet safe string processing. Our own String class is a fully encapsulated
ADT, but it provides a complete interface both to C-strings and to lists of characters.

We have now arrived at the following class specification:

186
class String {
public: // methods of the string ADT

String();
∼String();

String (const String ©); // copy constructor
String (const char * copy); // conversion from C-string
String (List<char> ©); // conversion from List
void operator = (const String ©);
const char *c_str() const; // conversion to C-style string

protected:
char *entries;
int length;

};

bool operator == (const String &first, const String &second);
bool operator > (const String &first, const String &second);
bool operator < (const String &first, const String &second);
bool operator >= (const String &first, const String &second);
bool operator <= (const String &first, const String &second);
bool operator != (const String &first, const String &second);

The constructors that convert C-string and List data to String objects are imple-constructors
mented as follows:

187
String :: String (const char *in_string)
/* Pre: The pointer in_string references a C-string.

Post: The String is initialized by the C-string in_string. */
{

length = strlen(in_string);
entries = new char[length + 1];
strcpy(entries, in_string);

}

String :: String (List<char> &in_list)
/* Post: The String is initialized by the character List in_list. */
{

length = in_list.size();
entries = new char[length + 1];
for (int i = 0; i < length; i++) in_list.retrieve(i, entries[i]);
entries[length] = ′\0′;

}

Section 6.3 • Strings 237

We shall choose to implement the conversion method c_str(), that converts a String
to type const char * as follows:

187

const char*String :: c_str() const
/* Post: A pointer to a legal C-string object matching the String is returned. */
{

return (const char *) entries;
}

This implementation is not entirely satisfactory, because it gives access to inter-
nal String data; however, as we shall explain, other implementation strategies also
have problems, and our implementation has the advantage of supreme efficiency.compromise for

efficiency We note that the standard template library makes a similar compromise in its im-
plementation of c_str().

The method c_str() returns a pointer to an array of characters that can be read
but not modified by clients: In this situation, we choose to return access to the
C-string data member of the String. We use a cast to make sure that the returned
pointer references a constant C-string. However, an irresponsible client could sim-
ilarly cast away the constancy of the returned C-string and thus break the encap-
sulation of our class. A more serious problem is the alias created by our function.alias problem
This means that clients of either our class String or the STL class string should use
the result of c_str() only immediately after application of the method. Otherwise,
even responsible clients could run into the problem exhibited by the following
code.

String s = "abc";
const char *new_string = s.c_str();
s = "def";
cout << new_string;

The statement
s = "def";

results in the deletion of the former String and C-string data, so that the final
statement has unpredictable results.

An alternative implementation strategy for c_str() is to allocate dynamic mem-alternative
implementation ory for a copy of String data and copy characters into this storage. A pointer to

the dynamic C-string is turned over to the client as the return value from the func-
tion. This alternative is clearly much less efficient, especially when converting long
strings. However, it has another serious drawback: It is very likely to lead to the
creation of garbage. The client has to remember to delete the C-string object after
its use. For example, the following statements cause no problems for our earlier
implementation of the method c_str() but would create some garbage if we adopted
the alternative implementation.

String s = "Some very long string";
cout << s.c_str(); // creates garbage from a temporary C-string object

238 Chapter 6 • Lists and Strings

Finally, we turn to the overloaded comparison operators. The following imple-overloaded
comparison operators mentation of the overloaded operator == is short and extremely efficient precisely

because of the convenience and efficiency of our method String :: c_str().

187
bool operator == (const String &first, const String &second)
/* Post: Return true if the String first agrees with String second. Else: Return

false. */
{

return strcmp(first.c_str(), second.c_str()) == 0;
}

The syntax that we use in overloading the operator == is similar to that used
in implementing an overloaded assignment operator in Section 4.3.2. The other
overloaded comparison operators have almost identical implementations.

6.3.3 Further String Operations

We now develop a number of functions that work with String objects. Since users
are likely to know the methods in the library for C-strings, we shall create an
analogous library for String objects.

In many cases, the C-string functions can be applied directly to converted String
objects. For example, with no extra programming effort, we can legally write:

String s = "some_string";
cout << s.c_str() << endl;
cout << strlen(s.c_str()) << endl;

For C-string functions such as strcpy that do change string arguments, we shall
write overloaded versions that operate with String parameters instead of char *
parameters. As we have already mentioned, in C++: a function is overloaded if
two or more different versions of the function are included in a single scope withinoverloaded functions
a program. Of course, we have already overloaded constructors and operator
functions, such as the assignment operator, several times. When a function is
overloaded, the different function implementations must have different sets or
types of parameters, so that the compiler can use the arguments passed by a client
to see which version of the function should be used.

Our overloaded version of strcat is a function with prototype

void strcat(String &add_to, const String &add_on)

A client can concatenate strings s and t with the call strcat(s, t); if the parameter s
is a String, the parameter t could be either a C-string or a String. The overloaded
function strcat is implemented as follows:

Section 6.3 • Strings 239

188

void strcat(String &add_to, const String &add_on)
/* Post: The function concatenates String add_on onto the end of String add_to. */
{

const char *cfirst = add_to.c_str();
const char *csecond = add_on.c_str();
char *copy = new char[strlen(cfirst) + strlen(csecond) + 1];
strcpy(copy, cfirst);
strcat(copy, csecond);
add_to = copy;
delete []copy;

}

Observe that the function strcat, called in this implementation, uses arguments of
type char * and const char *. The C++ compiler recognizes this as a call to the
C-string function strcat, because of the exact match in argument types. Thus, our
overloaded function contains a call to the corresponding library function, rather
than a recursive call to itself. The statement add_to = copy calls for a cast from the
C-string copy to a String, and then an application of our overload String assignment
operator: In other words, it leads to two complete string copying operations. In
order to avoid the cost of these operations, we could consider recoding the state-
ment. For example, one simple solution is to make the function strcat a friend of
the class String, we can then simply copy the address of copy to add_to.entries.friend function

We shall need a function to read String objects. One way to achieve this, which
would maintain an analogy with operations for C-strings, is to overload the stream
input operator << to accept String parameters. However, we shall adopt the alter-
native approach of creating a String library function called read_in.

Our String reading function uses a temporary List of characters to collect its in-
put from a stream specified as a parameter. The function then calls the appropriate
constructor to translate this List into a String. The function assumes that input is
terminated by either a new line or an end-of-file character.

String read_in(istream &input)
/* Post: Return a String read (as characters terminated by a newline or an end-of-

file character) from an istream parameter. */
{

List<char> temp;
int size = 0;
char c;
while ((c = input.peek()) != EOF && (c = input.get()) != ′\n′)

temp.insert(size++, c);
String answer(temp);
return answer;

}

It will be useful to have another version of the function read_in that uses a sec-
ond reference parameter to record the input terminator. The specification for this
overloaded function follows:

240 Chapter 6 • Lists and Strings

String read_in(istream &input, int &terminator);188

postcondition: Return a String read (as characters terminated by a newline or an
end-of-file character) from an istream parameter. The terminat-
ing character is recorded as the output parameter terminator.

We shall also find it useful to apply the following String output function as an
alternative to the operator << .

189

void write(String &s)
/* Post: The String parameter s is written to cout. */
{

cout << s.c_str() << endl;
}

In the next section, and in later sections, we shall use the following additional String
library functions, whose implementations are left as exercises.

specifications

void strcpy(String ©, const String &original);

postcondition: The function copies String original to String copy.

void strncpy(String ©, const String &original, int n);

postcondition: The function copies at most n characters from String original to
String copy.

These overloaded string handling functions have been designed to have behavior
that matches that of the original C-string functions. However, the corresponding
C-string library functions both return a value. This return value has type char *
and is set to point at the first string parameter. We have omitted any return values
from our String library analogues.

The final C-string function for which we shall need an analogue is strstr. This
function returns a pointer to the first occurrence of a target C-string in a text C-
string. The returned pointer is normally used to calculate an offset from the start of
the text. Our overloaded version of strstr uses two String parameters and returns
an integer giving the index of the first occurrence of the target parameter in the
text parameter.

int strstr(const String &text, const String &target);

postcondition: If String target is a substring of String text, the function returns
the array index of the first occurrence of the string stored in
target in the string stored in text.
Else: The function returns a code of −1.

Section 6.3 • Strings 241

Exercises 6.3 E1. Write implementations for the remaining String methods.

(a) The constructor String()
(b) The destructor ∼String()
(c) The copy constructor String(const String ©)
(d) The overloaded assignment operator.

E2. Write implementations for the following String comparison operators:

> < >= <= !=

E3. Write implementations for the remaining String processing functions.

(a) void strcpy(String ©, const String &original);
(b) void strncpy(String ©, const String &original, int n);
(c) int strstr(const String &text, const String &target);

E4. A palindrome is a string that reads the same forward as backward; that is, a
string in which the first character equals the last, the second equals the next topalindromes
last, and so on. Examples of palindromes include ′radar′ and

′ABLE WAS I ERE I SAW ELBA′.

Write a C++ function to test whether a String object passed as a reference pa-
rameter represents a palindrome.

Programming
Projects 6.3

P1. Prepare a file containing implementations of the String methods and the func-
tions for String processing. This file should be suitable for inclusion in any
application program that uses strings.

P2. Different authors tend to employ different vocabularies, sentences of different
lengths, and paragraphs of different lengths. This project is intended to analyze
a text file for some of these properties.

(a) Write a program that reads a text file and counts the number of words of
each length that occurs, as well as the total number of words. The program
should then print the mean (average) length of a word and the percentage
of words of each length that occurs. For this project, assume that a word
consists entirely of (uppercase and lowercase) letters and is terminated bytext analysis
the first non-letter that appears.

(b) Modify the program so that it also counts sentences and prints the total
number of sentences and the mean number of words per sentence. As-
sume that a sentence terminates as soon as one of the characters period (.),
question mark (?), or exclamation point (!) appears.

(c) Modify the program so that it counts paragraphs and prints the total num-
ber of paragraphs and the mean number of words per paragraph. Assume
that a paragraph terminates when a blank line or a line beginning with a
blank character appears.

242 Chapter 6 • Lists and Strings

6.4 APPLICATION: A TEXT EDITOR

This section develops an application showing the use of both lists and strings. Our
project is the development of a miniature text-editing program. This program will
allow only a few simple commands and is, therefore, quite primitive in comparison
with a modern text editor or word processor. Even so, it illustrates some of the
basic ideas involved in the construction of much larger and more sophisticated
text editors.

6.4.1 Specifications
Our text editor will allow us to read a file into memory, where we shall say that
it is stored in a buffer. The buffer will be implemented as an object of a class that
we call Editor. We shall consider each line of text in an Editor object to be a string.
Hence, the Editor class will be based on a List of strings. We shall devise editing
commands that will do list operations on the lines in the buffer and will do string
operations on the characters in a single line.

Since, at any moment, the user may be typing either characters to be inserted
into a line or commands to apply to existing text, a text editor should always be
written to be as forgiving of invalid input as possible, recognizing illegal com-
mands, and asking for confirmation before taking any drastic action like deleting
the entire buffer.

We shall supply arguments, known as command line arguments to the main
program of our editor implementation. These arguments allow us to run a compiled
program, edit, with a standard invocation: edit infile outfile. Here is the
list of commands to be included in our text editor. Each command is given by

190

typing the letter shown in response to the editor’s prompt ′??′. The command
letter may be typed in either uppercase or lowercase.

′R′ Read the text file, whose name is given in the command line, into the
buffer. Any previous contents of the buffer are lost. At the conclusion,commands
the current line will be the first line of the file.

′W′ Write the contents of the buffer to the text file whose name is given in
the command line. Neither the current line nor the buffer is changed.

′I′ Insert a single new line. The user must type in the new line and supply
its line number in response to appropriate prompts.

′D′ Delete the current line and move to the next line.
′F′ Find the first line, starting from the current line, that contains a target

string that will be requested from the user.
′L′ Show the length in characters of the current line and the length in

lines of the buffer.
′C′ Change a string requested from the user to a replacement text, also

requested from the user, working within the current line only.
′Q′ Quit the editor: Terminate immediately.
′H′ Print out help messages explaining all the commands. The program

will also accept ′?′ as an alternative to ′H′.

Section 6.4 • Application: A Text Editor 243

′N′ Next line: Advance one line through the buffer.
′P′ Previous line: Back up one line in the buffer.
′B′ Beginning: Go to the first line of the buffer.
′E′ End: go to the last line of the buffer.
′G′ Go to a user-specified line number in the buffer.
′S′ Substitute a line typed in by the user for the current line. The function

should print out the line for verification and then request the new line.
′V′ View the entire contents of the buffer, printed out to the terminal.

6.4.2 Implementation

1. The Main Program
The first task of the main program is to use the command-line arguments to open
input and output files. If the files can be opened, the program should then declare
an Editor object called buffer and repeatedly run the Editor methods of buffer to
get commands from a user and process these commands. The resulting program
follows.191

int main(int argc, char *argv[]) // count, values of command-line arguments
/* Pre: Names of input and output files are given as command-line arguments.

Post: Reads an input file that contains lines (character strings), performs simple
editing operations on the lines, and writes the edited version to the output
file.

Uses: methods of class Editor */
{

if (argc != 3) {
cout << "Usage:\n\t edit inputfile outputfile" << endl;
exit (1);

}
ifstream file_in(argv[1]); // Declare and open the input stream.
if (file_in == 0) {

cout << "Can′t open input file " << argv[1] << endl;
exit (1);

}
ofstream file_out(argv[2]); // Declare and open the output stream.
if (file_out == 0) {

cout << "Can′t open output file " << argv[2] << endl;
exit (1);

}
Editor buffer(&file_in, &file_out);
while (buffer.get_command())

buffer.run_command();
}

244 Chapter 6 • Lists and Strings

2. The Editor Class Specification

The class Editor must contain a List of String objects, and it should permit efficient
operations to move in both directions through the List. To meet these require-
ments, since we do not know in advance how large the buffer will be, let us decide
that the class Editor will be derived from a doubly linked implementation of the
class List<String>. This derived class needs the additional methods get_command
and run_command that we have called from our main program. It also needs pri-
vate data members to store a user command and links to the input and output
streams.

192

class Editor: public List<String> {
public:

Editor(ifstream *file_in, ofstream *file_out);
bool get_command();
void run_command();

private:
ifstream *infile;
ofstream *outfile;
char user_command;

// auxiliary functions
Error_code next_line();
Error_code previous_line();
Error_code goto_line();
Error_code insert_line();
Error_code substitute_line();
Error_code change_line();
void read_file();
void write_file();
void find_string();

};

The class specification sets up a number of auxiliary member functions. These will
be used to implement various editor commands.

The constructor links input and output streams to the editor.

193

Editor :: Editor(ifstream *file_in, ofstream *file_out)
/* Post: Initialize the Editor members infile and outfile with the parameters. */
{

infile = file_in;
outfile = file_out;

}

Section 6.4 • Application: A Text Editor 245

3. Receiving a Command

We now turn to the method that requests a command from the user. Since a text
editor must be tolerant of invalid input, we must carefully check the commands
typed in by the user and make sure that they are legal. Since the user cannot be
expected to be consistent in typing uppercase or lowercase letters, our first step is
to translate an uppercase letter into lowercase, as is done by the standard routine
tolower from the library <cctype>. The method get_command needs to print the
current line, print a prompt, obtain a response from the user, translate a letter to
lowercase, and check that the response is valid.193

bool Editor :: get_command()
/* Post: Sets member user_command; returns true unless the user’s command is q.

Uses: C library function tolower. */
{

if (current != NULL)
cout << current_position << " : "

<< current->entry.c_str() << "\n??" << flush;
else

cout << "File is empty.\n??" << flush;

cin >> user_command; // ignores white space and gets command
user_command = tolower(user_command);
while (cin.get() != ′\n′)

; // ignore user’s enter key
if (user_command == ′q′)

return false;
else

return true;
}

4. Performing Commands

The method run_command that does the commands as specified consists essentially
of one large switch statement that sends the work out to a different function for
each command. Some of these functions (like remove) are just members of the class
List. Others are closely based on corresponding list-processing functions but have
additional processing to handle user selections and erroneous cases. The functions
that find and change strings require considerable new programming effort.194

void Editor :: run_command()
/* Post: The command in user_command has been performed.

Uses: methods and auxiliary functions of the class Editor, the class String, and
the String processing functions. */

246 Chapter 6 • Lists and Strings

{
String temp_string;
switch (user_command) {

beginning of buffer case ′b′:
if (empty())

cout << " Warning: empty buffer " << endl;
else

while (previous_line() == success)
;

break;

change a line case ′c′:
if (empty())

cout << " Warning: Empty file" << endl;
else if (change_line() != success)

cout << " Error: Substitution failed " << endl;
break;

delete a line case ′d′:
if (remove(current_position, temp_string) != success)

cout << " Error: Deletion failed " << endl;
break;

go to end of buffer case ′e′:
if (empty())

cout << " Warning: empty buffer " << endl;
else

while (next_line() == success)
;

break;

find a target string case ′f′:
if (empty())

cout << " Warning: Empty file" << endl;
else

find_string();
break;

go to a specified line case ′g′:
if (goto_line() != success)

cout << " Warning: No such line" << endl;
break;

print a help message case ′?′:
case ′h′:

cout << "Valid commands are: b(egin) c(hange) d(el) e(nd)" << endl
<< "f(ind) g(o) h(elp) i(nsert) l(ength) n(ext) p(rior) " << endl
<< "q(uit) r(ead) s(ubstitute) v(iew) w(rite) " << endl;

Section 6.4 • Application: A Text Editor 247

insert a new line case ′i′:
if (insert_line() != success)

cout << " Error: Insertion failed " << endl;
break;

show buffer length
and line length

case ′l′:
cout << "There are " << size() << " lines in the file." << endl;
if (!empty())

cout << "Current line length is "
<< strlen((current->entry).c_str()) << endl;

break;

go to next line case ′n′:
if (next_line() != success)

cout << " Warning: at end of buffer" << endl;
break;

go to previous line case ′p′:
if (previous_line() != success)

cout << " Warning: at start of buffer" << endl;
break;

read a file case ′r′:
read_file();
break;

substitute a new line case ′s′:
if (substitute_line() != success)

cout << " Error: Substitution failed " << endl;
break;

view entire buffer case ′v′:
traverse(write);
break;

write buffer to file case ′w′:
if (empty())

cout << " Warning: Empty file" << endl;
else

write_file();
break;

invalid input default :
cout << "Press h or ? for help or enter a valid command: ";

}
}

To complete the project, we must, in turn, write each of the auxiliary Editor functions
invoked by do_command.

248 Chapter 6 • Lists and Strings

5. Reading and Writing Files
Since reading destroys any previous contents of the buffer, it requests confirmation
before proceeding unless the buffer is empty when it begins.197

void Editor :: read_file()
/* Pre: Either the Editor is empty or the user authorizes the command.

Post: The contents of *infile are read to the Editor. Any prior contents of the
Editor are overwritten.

Uses: String and Editor methods and functions. */
{

bool proceed = true;
if (!empty()) {

cout << "Buffer is not empty; the read will destroy it." << endl;
cout << " OK to proceed? " << endl;
if (proceed = user_says_yes()) clear();

}
int line_number = 0, terminal_char;
while (proceed) {

String in_string = read_in(*infile, terminal_char);
if (terminal_char == EOF) {

proceed = false;
if (strlen(in_string.c_str()) > 0) insert(line_number, in_string);

}
else insert(line_number++, in_string);

}
}

The function write_file is somewhat simpler than read_file, and it is left as anwriting a file
exercise.

6. Inserting a Line
For insertion of a new line at the current line number, we first read a string with the
auxiliary String function read_in that we discussed in Section 6.3. After reading in
the string, we insert it with the List method insert. There is no need for us to check
directly whether the buffer is full since this is carried out by the List operations.198

Error_code Editor :: insert_line()
/* Post: A string entered by the user is inserted as a user-selected line number.

Uses: String and Editor methods and functions. */
{

int line_number;
cout << " Insert what line number? " << flush;
cin >> line_number;
while (cin.get() != ′\n′);
cout << " What is the new line to insert? " << flush;
String to_insert = read_in(cin);
return insert(line_number, to_insert);

}

Section 6.4 • Application: A Text Editor 249

7. Searching for a String
Now we come to a more difficult task, that of searching for a line that contains a
target string that the user will provide. We use our String function strstr to check
whether the current line contains the target. If the target does not appear in the
current line, then we search the remainder of the buffer. If and when the target
is found, we highlight it by printing out the line where it was found, which now
becomes the current line, together with a series of upward arrows (^) showing
where in the line the target appears.199

void Editor :: find_string()
/* Pre: The Editor is not empty.

Post: The current line is advanced until either it contains a copy of a user-selected
string or it reaches the end of the Editor. If the selected string is found,
the corresponding line is printed with the string highlighted.

Uses: String and Editor methods and functions. */
{

int index;
cout << "Enter string to search for:" << endl;
String search_string = read_in(cin);
while ((index = strstr(current->entry, search_string)) == −1)

if (next_line() != success) break;
if (index == −1) cout << "String was not found.";
else {

cout << (current->entry).c_str() << endl;
for (int i = 0; i < index; i++)

cout << " ";
for (int j = 0; j < strlen(search_string.c_str()); j++)

cout << "ˆ";
}
cout << endl;

}

8. Changing One String to Another
In accordance with the practice of several text editors, we shall allow the searches
instituted by the find command to be global, starting at the present position and
continuing to the end of the buffer. We shall, however, treat the change_string
command differently, so that it will make changes only in the current line. It is very
easy for the user to make a mistake while typing a target or its replacement text.
The find_string command changes nothing, so such a mistake is not too serious.
If the change_string command were to work globally, a spelling error might cause
changes in far different parts of the buffer from the previous location of the current
line.

The function change_line first obtains the target from the user and then locates
it in the current string. If it is not found, the user is informed; otherwise, the
user is requested to give the replacement text, after which a series of String and
C-string operations remove the target from the current line and replace it with the
replacement text.

250 Chapter 6 • Lists and Strings

Error_code Editor :: change_line()
/* Pre: The Editor is not empty.

Post: If a user-specified string appears in the current line, it is replaced by a new
user-selected string. Else: an Error_code is returned.

Uses: String and Editor methods and functions. */
{

Error_code result = success;
cout << " What text segment do you want to replace? " << flush;
String old_text = read_in(cin);
cout << " What new text segment do you want to add in? " << flush;
String new_text = read_in(cin);

int index = strstr(current->entry, old_text);
if (index == −1) result = fail;
else {

String new_line;
strncpy(new_line, current->entry, index);
strcat(new_line, new_text);
const char *old_line = (current->entry).c_str();
strcat(new_line, (String)(old_line + index + strlen(old_text.c_str())));
current->entry = new_line;

}
return result;

}

The tricky statement

strcat(new_line, (String)(old_line + index + strlen(old_text.c_str())));

calculates a temporary pointer to the part of the C-string old_line that follows the
replaced string. The C-string referenced by this temporary pointer is cast to a String
that is immediately concatenated onto new_line.

Programming
Projects 6.4

P1. Supply the following functions; test and exercise the text editor.
(a) next_line
(b) previous_line
(c) goto_line

(d) substitute_line
(e) write_file

P2. Add a feature to the text editor to put text into two columns, as follows. The
user will select a range of line numbers, and the corresponding lines from the
buffer will be placed into two queues, the first half of the lines in one, and the
second half in the other. The lines will then be removed from the queues, one
at a time from each, and combined with a predetermined number of blanks
between them to form a line of the final result. (The white space between the
columns is called the gutter.)

Section 6.5 • Linked Lists in Arrays 251

6.5 LINKED LISTS IN ARRAYS

Several of the older but widely-used computer languages, such as FORTRAN, COBOL,
and BASIC, do not provide facilities for dynamic storage allocation or pointers. Evenold languages
when implemented in these languages, however, there are many problems where
the methods of linked lists are preferable to those of contiguous lists, where, for
example, the ease of changing a pointer rather than copying a large entry proves
advantageous. We will even find that in C++ applications, it is sometimes best
to use an array-based implementation of linked lists. This section shows how to

201

implement linked lists using only integer variables and arrays.

1. The Method

The idea is to begin with a large workspace array (or several arrays to hold different
parts of each list entry, in the case when the programming language does not
support structures) and regard the array as our allocation of unused space. We
then set up our own functions to keep track of which parts of the array are unused
and to link entries of the array together in the desired order.

The one feature of linked lists that we must invariably lose in this implementa-
tion method is the dynamic allocation of storage, since we must decide in advance
how much space to allocate to each array. All the remaining advantages of linkeddynamic memory
lists, such as flexibility in rearranging large entries or ease in making insertions or
deletions anywhere in the list, will still apply, and linked lists still prove a valuable
method.

The implementation of linked lists within arrays even proves valuable in lan-
guages like C++ that do provide pointers and dynamic memory allocation. The
applications where arrays may prove preferable are those where

➥ the number of entries in a list is known in advance,advantages

➥ the links are frequently rearranged, but relatively few additions or
deletions are made, or

➥ the same data are sometimes best treated as a linked list and other
times as a contiguous list.

An example of such an application is illustrated in Figure 6.7, which shows a small
part of a student record system. Identification numbers are assigned to students
first come, first served, so neither the names nor the marks in any particular course
are in any special order. Given an identification number, a student’s records maymultiple linkages
be found immediately by using the identification number as an index to look in
the arrays. Sometimes, however, it is desired to print out the student records
alphabetically by name, and this can be done by following the links stored in the

252 Chapter 6 • Lists and Strings

Clark, F.

name next_name math next_math CS next_CS

5 70

8 5 1

Smith, A.

−
Garcia, T.

Hall, W.

Evans, B.

−
−

Arthur, E.

−

−1

−
4

75

−
83

1

3

−

50

92

−
−
0

−

−
40

−

4

0

−
1

8

3

−
−

−1

−

−1

3

−
5

0

8

−
−
4

−

50

92

−
90

55

85

−
−

60

−

0

1

2

3

4

5

6

7

8

9

Figure 6.6. Linked lists in arrays

array next_name. Similarly, student records can be ordered by marks in any course
by following the links in the appropriate array.

202

To show how this implementation of linked lists works, let us traverse the
linked list next_name shown in the first part of Figure 6.6. The list header (shown
below the table) contains the value 8, which means that the entry in position 8,
Arthur, E., is the first entry on the list. Position 8 of next_name then contains the
value 0, which means that the name in position 0, Clark, F., comes next. In position
0, next_name contains 5, so Evans, B. comes next. Position 5 points to position 3
(Garcia, T.), which points to position 4 (Hall, W.), and position 4 points to position
1 (Smith, A.). In position 1, next_name contains a −1, which means that position 1
is the last entry on the linked list.

The array next_math, similarly, describes a linked list giving the scores in the
array math in descending order. The first entry is 5, which points to entry 3, and
the following nodes in the order of the linked list are 1, 0, 4, and 8.

In the same way, the order in which the nodes appear in the linked list described
by next_CS is 1, 3, 5, 8, 4, and 0.

As the example in Figure 6.6 shows, implementation of linked lists in arrays
can achieve the flexibility of linked lists for making changes, the ability to share the
same information fields (such as the names in Figure 6.6) among several linkedshared lists and

random access lists, and, by using indices to access entries directly, the advantage of random access
otherwise available only for contiguous lists.

indices In the implementation of linked lists in arrays, pointers become indices relative
to the start of arrays, and the links of a list are stored in an array, each entry of
which gives the index where, within the array, the next entry of the list is stored. To
distinguish these indices from the pointers of a linked list in dynamic storage, we

Section 6.5 • Linked Lists in Arrays 253

shall refer to links within arrays as indices and reserve the word pointer for links
in dynamic storage.

For the sake of writing programs we could declare two arrays for each linked
list, entry[] to hold the information in the nodes and next_node[] to give the
index of the next node. For most applications, entry is an array of structured entries,
or it is split into several arrays in the case when the programming language does
not provide for structures. Both the arrays entry and next_node would be indexed
from 0 to max_list − 1, where max_list is a symbolic constant.

Since we begin the indices with 0, we make another arbitrary choice and use
the index value −1 to indicate the end of the list, just as the pointer value NULL isnull indices
used in dynamic storage. This choice is also illustrated in Figure 6.6.

You should take a moment to trace through Figure 6.6, checking that the index
values as shown correspond to the colored arrows shown from each entry to its
successor.

2. Operations: Space Management
To obtain the flavor of implementing linked lists in arrays, let us rewrite some of
the functions of this chapter with this implementation.

Our first task is to set up a list of available space and write auxiliary functions
to obtain a new node and to return a node to available space. For the sake of
programming consistently with Section 6.2, we shall change our point of view
slightly. All the space that we use will come from a single array called workspace,workspace for linked

lists whose entries correspond to the nodes of the linked list. To emphasize this analogy,
we shall refer to entries of workspace as nodes, and we shall design a data type
called Node to store entry data. Each Node will be a structure with two members,
entry of type List_entry and next of type index. The type index is implemented as
an integer, but its values are interpreted as array locations so that it replaces the
pointer type of other linked lists.

The available space in workspace comes in two varieties.

➥ First, there are nodes that have never been allocated.

➥ Second, there are nodes that have previously been used but have now been
released.

We shall initially allocate space starting at the beginning of the array; hence we cancount of used positions
keep track of how much space has been used at some time by an index last_used that
indicates the position of the last node that has been used at some time. Locations
with indices greater than last_used have never been allocated.

For the nodes that have been used and then returned to available space, we
need to use some kind of linked structure to allow us to go from one to the next.linked stack of

previously-used space Since linked stacks are the simplest kind of such structure, we shall use a linked
stack to keep track of the nodes that have been previously used and then returned
to available space. This stack will be linked by means of the next indices in the
nodes of the array workspace.

254 Chapter 6 • Lists and Strings

To keep track of the stack of available space, we need an integer variable avail-
able that gives the index of its top. If this stack is empty (which will be represented
by available == −1), then we will need to obtain a new Node, that is, a position
within the array that has not yet been used for any Node. We do so by increasing
the index variable last_used that will count the total number of positions within our
array that have been used to hold list entries. When last_used reaches max_list − 1
(the bound we have assumed for array size) and available == −1, the workspace
is full and no further space can be allocated.

We declare the array workspace and the indices available and last_used asprotected members
protected data members of our List class. When a List object is initialized, both
members available and last_used should be initialized to −1, available to indicate
that the stack of space previously used but now available is empty, and last_used
to indicate that no space from the array has yet been assigned.

The available-space list is illustrated in Figure 6.7. The arrows shown on the
left of the array next_node describe a linked list that produces the names in the
list in alphabetical order. The arrows on the right side of array next_node, with
header variable available, show the nodes in the stack of (previously used but now)
available space. Notice that the indices that appear in the available-space list are
precisely the indices in positions 10 or earlier that are not assigned to names in
the array workspace. Finally, none of the entries in positions 11 or later has been
assigned. This fact is indicated by the value last_used = 10. If we were to insert
additional names into the List, we would first pop nodes from the stack with top
available, and only when the stack is empty would we increase last_used to insert
a name in previously unused space.202

entry

max_list = = 13

next_node

8

7

10

head

available

last_used

Clark, F.

Smith, A.

-

Garcia, T.

Hall, W.

Evans, B.

-

-

Arthur, E.

-

5

−1

−1

4

1

3

9

6

0

10

2-

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6.7. The array and stack of available space

The decisions we have made translate into the following declarations to be
placed in the linked list specification file:

Section 6.5 • Linked Lists in Arrays 255

203
typedef int index;
const int max_list = 7; // small value for testing purposes

template <class List_entry>
class Node {
public:

List_entry entry;
index next;

};

template <class List_entry>
class List {
public:
// Methods of the list ADT

List();
int size() const;
bool full() const;
bool empty() const;
void clear();
void traverse(void (*visit)(List_entry &));
Error_code retrieve(int position, List_entry &x) const;
Error_code replace(int position, const List_entry &x);
Error_code remove(int position, List_entry &x);
Error_code insert(int position, const List_entry &x);

protected:

// Data members
Node<List_entry> workspace[max_list];
index available, last_used, head;
int count;

// Auxiliary member functions
index new_node();
void delete_node(index n);
int current_position(index n) const;
index set_position(int position) const;

};

We observe that the publicly available methods are exactly the same as those of
our other list implementations. This means that our new implementation is inter-compatibility
changeable with any of our earlier List ADT implementations. We have added a
number of protected member functions. Most of these functions manage the nodes
in workspace. We use them as tools for building the methods; however, they are not
accessible to a client. With these declarations, we can now write the functions for
keeping track of unused space. The functions new_node and delete_node play the
roles of the C++ operators new and delete. Thus, for example, new_node returns
a previously unallocated index from workspace. These functions take the form:

256 Chapter 6 • Lists and Strings

204
template <class List_entry>
index List<List_entry> :: new_node()

/* Post: The index of the first available Node in workspace is returned; the data
members available, last_used, and workspace are updated as necessary. If
the workspace is already full, −1 is returned. */

{
index new_index;

if (available != −1) {
new_index = available;
available = workspace[available].next;

} else if (last_used < max_list − 1) {
new_index = ++last_used;

} else return −1;
workspace[new_index].next = −1;
return new_index;

}

template <class List_entry>
void List<List_entry> :: delete_node(index old_index)
/* Pre: The List has a Node stored at index old_index.

Post: The List index old_index is pushed onto the linked stack of available space;
available, last_used, and workspace are updated as necessary. */

{
index previous;
if (old_index == head) head = workspace[old_index].next;

else {
previous = set_position(current_position(old_index) − 1);
workspace[previous].next = workspace[old_index].next;

}

workspace[old_index].next = available;
available = old_index;

}

These two functions, of course, simply pop and push a stack. We could, if we
wished, write functions for processing stacks and use those functions.

The other protected member functions are set_position and current_position.
As in our earlier implementations, the set_position operation is used to locate the
index of workspace that stores the element of our list with a given position number.
The current_position operation uses an index in workspace as its parameter; it
calculates the position of any list entry stored there. We leave these operations as
exercises; their specifications are as follows:

Section 6.5 • Linked Lists in Arrays 257

index List<List_entry> :: set_position(int position) const;

205

precondition: position is a valid position in the list; 0 ≤ position < count.

postcondition: Returns the index of the node at position in the list.

int List<List_entry> :: current_position(index n) const;

postcondition: Returns the position number of the node stored at index n, or
−1 if there no such node.

3. Other Operations

The coding of all methods to manipulate linked lists implemented within arrays
proceeds by translating linked list methods, and most of these will be left as ex-
ercises. To provide models, however, let us write translations of the functions to
traverse a List and to insert a new entry into a List.

template <class List_entry>
void List<List_entry> :: traverse(void (*visit)(List_entry &))
/* Post: The action specified by function *visit has been performed on every entry

of the List, beginning at position 0 and doing each in turn. */
{

for (index n = head; n != −1; n = workspace[n].next)
(*visit)(workspace[n].entry);

}

Compare this method with the corresponding one for simply linked lists with
pointers and dynamic memory presented in Section 6.2. You will quickly see that
each statement in this implementation is a simple translation of a corresponding
statement in our earlier implementation. A similar translation process turns our
earlier insertion method into an insertion method for the array-based linked-list
implementation.

206

template <class List_entry>
Error_code List<List_entry> :: insert(int position, const List_entry &x)
/* Post: If the List is not full and 0 ≤ position ≤ n, where n is the number of

entries in the List, the function succeeds: Any entry formerly at position
and all later entries have their position numbers increased by 1 and x is
inserted at position of the List.
Else: the function fails with a diagnostic error code. */

258 Chapter 6 • Lists and Strings

{
index new_index, previous, following;
if (position < 0 || position > count) return range_error;

if (position > 0) {
previous = set_position(position − 1);
following = workspace[previous].next;

}
else following = head;
if ((new_index = new_node()) == −1) return overflow;
workspace[new_index].entry = x;
workspace[new_index].next = following;
if (position == 0)

head = new_index;
else

workspace[previous].next = new_index;
count++;
return success;

}

4. Linked-List Variations
Arrays with indices are not restricted to the implementation of simply linked lists.
They are equally effective with doubly linked lists or with any other variation.
For doubly linked lists, in fact, the ability to do arithmetic with indices allows an
implementation (which uses negative as well as positive values for the indices) in
which both forward and backward links can be included in a single index field.
(See Exercise E5.)

Exercises 6.5 E1. Draw arrows showing how the list entries are linked together in each of the
following next node tables.

(a) (c) (d) (e)

head4 7 8

2

8headheadhead

head

(b)

0

1

2

3

4

1

3

0

4

−1

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

−1

0

1

2

3

−1

2

0

-

1

-

4

8

10

-

6

3

-

-

9

0

-

-

-

10

−1

4

1

−1

3

0

7

2

9

5

6

4

Section 6.5 • Linked Lists in Arrays 259

E2. Construct next tables showing how each of the following lists is linked into
alphabetical order. Also, in each case, give the value of the variable head that
starts the list.

(a) 1 array (c) 1 the (d) 1 London
2 stack 2 of 2 England
3 queue 3 and 3 Rome
4 list 4 to 4 Italy
5 deque 5 a 5 Madrid
6 scroll 6 in 6 Spain

7 that 7 Oslo
(b) 1 push 8 is 8 Norway

2 pop 9 I 9 Paris
3 add 10 it 10 France
4 remove 11 for 11 Warsaw
5 insert 12 as 12 Poland

E3. For the list of cities and countries in part (d) of the previous question, con-
struct a next node table that produces a linked list, containing all the cities in
alphabetical order followed by all the countries in alphabetical order.

E4. Write versions of each of the following functions for linked lists in arrays. Be
sure that each function conforms to the specifications given in Section 6.1 and
the declarations in this section.
(a) set_position
(b) List (a constructor)
(c) clear
(d) empty

(e) full
(f) size
(g) retrieve

(h) remove
(i) replace
(j) current_position

E5. It is possible to implement a doubly linked list in a workspace array by using
only one index next. That is, we do not need to keep a separate field back in
the nodes that make up the workspace array to find the backward links. The
idea is to put into workspace[current] not the index of the next entry on the
list but, instead, a member workspace[current].difference giving the index of
the next entry minus the index of the entry preceding current. We also must
maintain two pointers to successive nodes in the list, the current index and the
index previous of the node just before current in the linked list. To find the next
entry of the list, we calculate

workspace[current].difference + previous;

Similarly, to find the entry preceding previous, we calculate

current − workspace[previous].difference;

An example of such a list is shown in the first part of the following diagram.
Inside each box is shown the value stored in difference; on the right is the
corresponding calculation of index values.

260 Chapter 6 • Lists and Strings

(a)

head:

(b)

head: 5

Example

head: 5

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

−9

3

3

−2

4

−5

4

8

−8

(a) For the doubly linked list shown in the second part of the preceding dia-
gram, show the values that will be stored in list.head and in the difference
fields of occupied nodes of the workspace.

(b) For the values of list.head and difference shown in the third part of the
preceding diagram, draw links showing the corresponding doubly linked
list.

(c) With this implementation, write the function set_position.
(d) With this implementation, write the function insert.
(e) With this implementation, write the function remove.

6.6 APPLICATION: GENERATING PERMUTATIONS

Our final sample project in this chapter illustrates the use both of general lists
and of linked lists in arrays in a highly application-specific way. This project is to
generate all the n! permutations of n objects as efficiently as possible. Recall that
the permutations of n different objects are all the ways to put them in different
orders.1

The reason why there are n! permutations of n objects is that we can choose any
of the n objects to be first, then choose any of the n− 1 remaining objects second,
and so on. These choices are independent, so the number of choices multiply. If
we think of the number n! as the product

n! = 1 × 2 × 3 × · · · × n,
then the process of multiplication can be pictured as the tree in Figure 6.8. (Ignore
the labels for the moment.)

1 For more information on permutations, see Appendix A.

Section 6.6 • Application: Generating Permutations 261

207
(1)

(21) (12)

(321) (231) (213) (312) (123)

(4
32

1)

(132)

(3
42

1)

(3
24

1)

(3
21

4)

(4
23

1)

(2
43

1)

(2
34

1)

(2
31

4)

(4
21

3)

(2
41

3)

(2
14

3)

(2
13

4)

(4
31

2)

(3
41

2)

(3
14

2)

(3
12

4)

(4
13

2)

(1
43

2)

(1
34

2)

(1
32

4)

(4
12

3)

(1
42

3)

(1
24

3)

(1
23

4)

Figure 6.8. Permutation generation by multiplication, n = 4

1. The Idea

We can identify permutations with the nodes as given by the labels in Figure 6.8.
At the top is 1 by itself. We can obtain the two permutations of {1, 2} by writing 2
first on the left, then on the right of 1. Similarly, the six permutations of {1,2, 3} can
be obtained by starting with one of the permutations (2, 1) or (1, 2) and inserting 3
into one of the three possible positions (left, center, or right). The task of generating
permutations of {1, 2, . . . , k} can now be summarized as

Take a given permutation of {1, 2, . . . , k− 1} and put its entries into a list. Insert k,
in turn, into each of the k possible positions in this list, thereby obtaining k distinct
permutations of {1, 2, . . . , k}.

This algorithm illustrates the use of recursion to complete tasks that have been
temporarily postponed. That is, we shall write a function that will first insert 1
into an empty list, and then use a recursive call to insert the remaining numbers
from 2 to n into the list. This first recursive call will insert 2 into the list containing
only 1 and postpone further insertions to a recursive call. On the nth recursive
call, finally, the integer n will be inserted. In this way, having begun with a tree
structure as motivation, we have now developed an algorithm for which the given
tree becomes the recursion tree.

2. Refinement

Let us restate the algorithm in slightly more formal terms. We shall invoke our
function as

permute(1, n)

262 Chapter 6 • Lists and Strings

which will mean to insert all integers from 1 to n to build all the n! permutations.
When it is time to insert the integer k, the remaining task is

207

void permute(int k, int n)
/* Pre: 1 through k− 1 are already in the permutation list;

Post: inserts the integers from k through n into the permutation list */
{

outline for // each of the k possible positions in the list
{

// Insert k into the given position.
if (k == n) process_permutation;
else permute(k + 1, n);
// Remove k from the given position.

}
}

The function process_permutation will make whatever disposition is desired of a
complete permutation of {1, 2, . . . , n}. We might wish only to print it out, or we
might wish to send it as input to some other task.

3. The General Procedure

To translate this algorithm into C++, we shall change some of the notation. We
shall create permutations in a variable permutation of type List<int>. Instead of k
we shall let new_entry denote the integer being inserted, and write degree instead
of n for the total number of objects being permuted. We then obtain the following
function:

208

void permute(int new_entry, int degree, List<int> &permutation)
/* Pre: permutation contains a permutation with entries in positions 1 through

new_entry − 1.
Post: All permutations with degree entries, built from the given permutation,

have been constructed and processed.
Uses: permute recursively, process_permutation, and List functions. */

{
for (int current = 0; current < permutation.size() + 1; current++) {

permutation.insert(current, new_entry);
if (new_entry == degree)

process_permutation(permutation);
else

permute(new_entry + 1, degree, permutation);
permutation.remove(current, new_entry);

}
}

Embedding this function into a working program is left as a project. For the required
list functions, any of the implementations from Section 6.2 will be acceptable.

Section 6.6 • Application: Generating Permutations 263

4. Data Structures: Optimization

The number n! increases very rapidly with n; the number of permutations goes
up very quickly indeed with n. Hence this project is one of the few applications
where optimization to increase the speed may be worth the effort, especially if
we wish to use the program to study interesting questions concerning generating
permutations.

Let us now make some decisions regarding representation of the data with the
view of increasing the program’s speed as much as possible, even at the expense of
readability. We use a list to hold the numbers being permuted. This list is available
to the recursive invocations of the function as permutation, and each recursive
call updates the entries in this list. Since we must continually insert and remove
entries into and from the list, linked storage will be more flexible than keeping the
entries in a contiguous list. But the total number of entries in the list never exceeds
n, so we can (probably) improve efficiency by keeping the linked list within an
array, rather than using dynamic memory allocation. Our links are thus integer
indices relative to the start of the array. With an array, furthermore, the index oflinked list in array
each entry, as it is assigned, will happen to be the same as the value of the number
being inserted, so there is no longer any need to keep this numerical value. Hence
only the links need to be kept in the array.

This representation of a permutation as a linked list within an array is illustrated
in Figure 6.9. The top diagram shows the permutation (3, 2, 1, 4) as a linked list,
and the second diagram shows it as a linked list inside an array. The third diagram
omits the actual entries being permuted, since they are the same as the locations in
the array, and keeps only the links describing the linked list.208

1

Representation of

As linked list

Within an

Within reduced

2 3 4

4 1 2 03

3 4 1 2 0

1 2 3 4

1 2 3 40

1 2 3 4

permutation (3214):

in order of
creation of nodes:

array with
separate header:

array with artificial
first node as header:

Figure 6.9. Permutation as a linked list in an array

264 Chapter 6 • Lists and Strings

artificial node Insertions and deletions are further simplified if we put an artificial first node
at the beginning of the list, so that insertions and deletions at the beginning of the
(actual) list can be treated in the same way as those at other positions, always as
insertions or deletions after a node. Hence we can obtain increased efficiency by
using all these special conditions and writing the insertions and deletions into the
function permute, instead of using a generic list implementation.

5. Final Program
With these decisions we can write an optimized version of permute.

209

void permute(int new_entry, int degree, int *permutation)
/* Pre: permutation contains a linked permutation with entries in positions 1

through new_entry − 1.
Post: All permutations with degree entries, built from the given permutation,

have been constructed and processed.
Uses: Functions permute (recursively) and process_permutation. */

{
int current = 0;
do {

permutation[new_entry] = permutation[current];
permutation[current] = new_entry;
if (new_entry == degree)

process_permutation(permutation);
else

permute(new_entry + 1, degree, permutation);
permutation[current] = permutation[new_entry];
current = permutation[current];

} while (current != 0);
}

The main program does little except to establish the declarations and initiate the
process.

210

main()
/* Pre: The user specifies the degree of permutations to construct.

Post: All permutations of a user-supplied degree are printed to the terminal. */
{

int degree;
int permutation[max_degree + 1];
cout << "Number of elements to permute? ";
cin >> degree;
if (degree < 1 || degree > max_degree)

cout << "Number must be between 1 and " << max_degree << endl;
else {

permutation[0] = 0;
permute(1, degree, permutation);

}
}

Chapter 6 • Pointers and Pitfalls 265

Recall that the array permutation describes a linked list of pointers and does not
contain the objects being permuted. If, for example, it is desired to print the integers
1, . . . , n being permuted, then the auxiliary function becomes

210

void process_permutation(int *permutation)
/* Pre: permutation is in linked form.

Post: The permutation has been printed to the terminal. */
{

int current = 0;
while (permutation[current] != 0) {

cout << permutation[current] << " ";
current = permutation[current];

}
cout << endl;

}

With this, we have a complete program, and, in fact, one of the most efficient
available programs for generating permutations at high speed.

Programming
Projects 6.6

P1. Complete a version of the permutation-generation program that uses one of
the general list implementations by writing its main program and a function
process_permutation that prints the permutation at the terminal. After testing
your program, suppress printing the permutations and include the CPU timer
functions provided with your compiler. Compare the performance of your
program with each of the list implementations in Section 6.2. Also compare
the performance with that of the optimized program written in the text.

P2. Modify the general version of permute so that the position occupied by each
number does not change by more than one to the left or to the right from any
permutation to the next one generated. [This is a simplified form of one rule
for campanology (ringing changes on church bells).]

POINTERS AND PITFALLS

1. Use C++ templates to implement generic data structures.
211

2. Don’t confuse contiguous lists with arrays.

3. Choose your data structures as you design your algorithms, and avoid making
premature decisions.

4. Always be careful about the extreme cases and handle them gracefully. Trace
through your algorithm to determine what happens when a data structure is
empty or full.

266 Chapter 6 • Lists and Strings

5. Don’t optimize your code until it works perfectly, and then only optimize it if
211 improvement in efficiency is definitely required. First try a simple implemen-

tation of your data structures. Change to a more sophisticated implementation
only if the simple one proves too inefficient.

6. When working with general lists, first decide exactly what operations are
needed, and then choose the implementation that enables those operations
to be done most easily.

7. In choosing between linked and contiguous implementations of lists, consider
the necessary operations on the lists. Linked lists are more flexible in regard
to insertions, deletions, and rearrangement; contiguous lists allow random
access.

8. Contiguous lists usually require less computer memory, computer time, and
programming effort when the items in the list are small and the algorithms are
simple. When the list holds large data entries, linked lists usually save space,
time, and often programming effort.

9. Dynamic memory and pointers allow a program to adapt automatically to
a wide range of application sizes and provide flexibility in space allocation

212

among different data structures. Static memory (arrays and indices) is some-
times more efficient for applications whose size can be completely specified in
advance.

10. For advice on programming with linked lists in dynamic memory, see the
guidelines in Chapter 4.

11. Avoid sophistication for sophistication’s sake. If a simple method is adequate
for your application, use it.

12. Don’t reinvent the wheel. If a ready-made class template or function is ade-
quate for your application, consider using it.

REVIEW QUESTIONS

1. Which of the operations possible for general lists are also possible for queues?6.1
for stacks?

2. List three operations possible for general lists that are not allowed for either
stacks or queues.

3. If the items in a list are integers (one word each), compare the amount of space6.2
required altogether if (a) the list is kept contiguously in an array 90 percent
full, (b) the list is kept contiguously in an array 40 percent full, and (c) the list
is kept as a linked list (where the pointers take one word each).

4. Repeat the comparisons of the previous exercise when the items in the list are
entries taking 200 words each.

5. What is the major disadvantage of linked lists in comparison with contiguous
lists?

Chapter 6 • References for Further Study 267

6. What are the major disadvantages of C-strings?6.3

7. What are some reasons for implementing linked lists in arrays with indices6.5
instead of in dynamic memory with pointers?

REFERENCES FOR FURTHER STUDY

The references given for stacks and queues continue to be appropriate for the cur-
rent chapter. In particular, for many topics concerning list manipulation, the best
source for additional information, historical notes, and mathematical analysis is
KNUTH, volume 1. This book, however, does not take the principles of data abstrac-
tion into account.
For details regarding the C++ standard string implementation and library, see
Chapter 20 of

B. STROUSTRUP, The C++ Programming Language, third edition, Addison-Wesley,
Reading, Mass., 1997.

For a careful discussion of the advantages and drawbacks of the various imple-
mentation strategies for a conversion from strings to C-strings, see:

SCOTT MEYERS, Effective C++, second edition, Addison-Wesley, Reading, Mass., 1997.

The algorithm that generates permutations by insertion into a linked list was pub-
lished in the ACM SIGCSE Bulletin 14 (February 1982), 92–96. Useful surveys of
many methods for generating permutations are

R. SEDGEWICK, “Permutation generation methods,” Computing Surveys 9 (1977), 137–
164; addenda, ibid., 314–317.

R. W. TOPOR, “Functional programs for generating permutations,” Computer Journal
25 (1982), 257–263.

The applications of permutations to campanology (change ringing of bells) produce
interesting problems amenable to computer study. An excellent source for further
information is

F. J. BUDDEN, The Fascination of Groups, Cambridge University Press, Cambridge,
England, 1972, pp. 451–479.

Searching 7

T
HIS CHAPTER introduces the problem of searching a list to find a particular
entry. Our discussion centers on two well-known algorithms: sequential
search and binary search. We shall develop several sophisticated mathe-
matical tools, used both to demonstrate the correctness of algorithms and

to calculate how much work they must do. These mathematical tools include in-
variant assertions, comparison trees, and the big-O , Θ, and Ω notations. Finally,
we shall obtain lower bounds showing conditions under which any searching
algorithm must do at least as much work as binary search.

7.1 Searching: Introduction and Notation 269

7.2 Sequential Search 271

7.3 Binary Search 278
7.3.1 Ordered Lists 278
7.3.2 Algorithm Development 280
7.3.3 The Forgetful Version 281
7.3.4 Recognizing Equality 284

7.4 Comparison Trees 286
7.4.1 Analysis for n = 10 287
7.4.2 Generalization 290
7.4.3 Comparison of Methods 294

7.4.4 A General Relationship 296

7.5 Lower Bounds 297

7.6 Asymptotics 302
7.6.1 Introduction 302
7.6.2 Orders of Magnitude 304
7.6.3 The Big-O and Related Notations 310
7.6.4 Keeping the Dominant Term 311

Pointers and Pitfalls 314
Review Questions 315
References for Further Study 316

268

7.1 SEARCHING: INTRODUCTION AND NOTATION
Information retrieval is one of the most important applications of computers. We
are given a name and are asked for an associated telephone listing. We are given an
account number and are asked for the transactions occurring in that account. We
are given an employee name or number and are asked for the personnel records of
the employee.

1. Keys
In these examples and a host of others, we are given one piece of information,
which we shall call a key, and we are asked to find a record that contains otherkeys and records
information associated with the key. We shall allow both the possibility that there
is more than one record with the same key and that there is no record at all with a
given key. See Figure 7.1.214

Jackson

Leblanc
Sanchez

Johnson

Dodge
Roberts

Smith
Jones

Figure 7.1. Records and their keys

2. Analysis
Searching for the keys that locate records is often the most time-consuming action
in a program, and, therefore, the way the records are arranged and the choice
of method used for searching can make a substantial difference in the program’s
performance. For this reason, we shall spend some time in this chapter studying
how much work is done by each of the algorithms we develop. We shall find that
counting the number of times that one key is compared with another gives us an
excellent measure of the total amount of work that the algorithm will do and of the
total amount of computer time it will require when it is run.

3. External and Internal Searching
The searching problem falls naturally into two cases. If there are many records,
perhaps each one quite large, then it will be necessary to store the records in files
on disk or tape, external to the computer memory. This case is called external
searching. In the other case, the records to be searched are stored entirely within
the computer memory. This case is called internal searching. In this book, we
consider only internal searching. Although many of the methods we shall develop
in this and later chapters are useful for external searching, a comprehensive study
of methods for external searching lies beyond the scope of this book.

269

270 Chapter 7 • Searching

4. Implementation in C++

To implement our programs in C++, we establish some conventions.
Certain searching algorithms are inefficient when applied to linked list im-

plementations. Thus, in this chapter, we shall tacitly assume that any lists have
contiguous implementations. Searching a linked structure is the major concern of
Chapter 10, and we postpone consideration of linked structures until then.

We shall be concerned only with searches of lists in this chapter. Some of our
programs search lists that meet the ADT specifications of Chapter 6, while other
programs apply to a slightly different category of lists. However, in every case,
we shall always search a contiguous list of records that we generally call the_list.contiguous only
The records that are stored in a list being searched must conform to the following
minimal standards:

215

➥ Every record is associated to a key.

➥ Keys can be compared for equality or relative ordering.

➥ Records can be compared to each other or to keys by first converting records
to their associated keys.

We shall therefore implement searching programs to work with objects of a type
Record that reflects this behavior. In particular, there is an associated type called
Key (that might be the same as Record) and a conversion operation to turn a Record
into its associated Key. In applications the conversion operation could be one of
the following:

➥ A method of the class Record, with the declaration operator Key() const;

➥ A constructor for the class Key, with the declaration Key(const Record &);

➥ Or, if the classes Key and Record are identical, no conversion needs to be de-
fined, since any Record is automatically a Key.

We shall require that any pair of objects of type Key can be compared with the
standard operators: == , != , <, >, <= , >= . Further, since any Record can becomparison operators
converted by the compiler to a Key, the Key comparison operators apply to compare
records or to compare records to keys.

For example, to select existing types as records and keys, a client could use
type definition statements such as:

217

typedef int Key;
typedef int Record;

Alternatively, a client can design new classes that display appropriate behavior
based on the following skeletons:

Section 7.2 • Sequential Search 271
217

// Definition of a Key class:
class Key{

public:
// Add any constructors and methods for key data.

private:
// Add declaration of key data members here.

};
// Declare overloaded comparison operators for keys.

bool operator == (const Key &x, const Key &y);
bool operator > (const Key &x, const Key &y);
bool operator < (const Key &x, const Key &y);
bool operator >= (const Key &x, const Key &y);
bool operator <= (const Key &x, const Key &y);
bool operator != (const Key &x, const Key &y);

// Definition of a Record class:
class Record{

public:
operator Key(); // implicit conversion from Record to Key.

// Add any constructors and methods for Record objects.
private:
// Add data components.

};

We note that we do not assume that a Record necessarily has a Key object as a data
member, although this will often be the case. We merely assume that the compiler
is able to turn a Record into its corresponding Key.

5. Parameters
Each searching function that we write will have two input parameters. The firstparameters
parameter gives the list to be searched. The second parameter gives the key for
which we are searching. This key is always called the target of the search.target

The search function will also have an output parameter and a returned value.
The returned value has type Error_code and indicates whether or not the search is
successful in finding an entry with the target key. If the search is successful, then

216

the output parameter called position will locate the target within the list. If the
search is unsuccessful, then this output parameter may have an undefined value
or a value that will differ from one method to another.

7.2 SEQUENTIAL SEARCH

1. Algorithm and Procedure
Beyond doubt, the simplest way to do a search is to begin at one end of the list and
scan down it until the desired key is found or the other end is reached. This is our
first method.

272 Chapter 7 • Searching

218
Error_code sequential_search(const List<Record> &the_list,

const Key &target, int &position)
/* Post: If an entry in the_list has key equal to target, then return success and the

output parameter position locates such an entry within the list.
Otherwise return not_present and position becomes invalid. */

{
int s = the_list.size();
for (position = 0; position < s; position++) {

Record data;
the_list.retrieve(position, data);
if (data == target) return success;

}
return not_present;

}

The for loop in this function keeps moving through the list as long as the key target
has not been found in a Record but terminates as soon as the target is found. If the
search is unsuccessful, then the value not_present is returned, and at the conclusion
position has moved beyond the end of the list (recall that for an unsuccessful search
the value of position may be left undefined).

2. Analysis
Let us now estimate the amount of work that sequential search will do, so that we
can make comparisons with other techniques later. Suppose that sequential search
was run on a long list. The statements that appear outside the for loop are done
only once, and therefore take insignificant computer time compared to the work
done inside the loop. For each pass through the loop, one key is compared with
the target key, several other statements are executed, and several expressions are
checked. But all these other statements and expressions are executed in lock step
with the comparison of keys: They are all done once for each iteration of the loop.

Hence all the actions that we need to count relate directly to the comparison of
keys. If someone else, using the same method, had written the functions, then dif-
ferences in programming approach would likely make a difference in the running
time. But all these cases still produce the same number of comparisons of keys. If
the length of the list changes, then the work done by any implementation of the
searching method will also change proportionately.

We shall study the way in which the number of comparisons of keys depends
on the length of the list. Doing this study will give us the most useful information
about the algorithm, information that can be applied equally well no matter what
implementation or programming technique we decide to use when we actually
write the program.

importance of
comparison count

Hence, if we wish to estimate how much computer time sequential search
is likely to require, or if we wish to compare it with some other method, then
knowing the number of comparisons of keys that it makes will give us the most
useful information—information actually more useful than the total running time,
which is too dependent on programming variations and on the particular machine
being used.

Section 7.2 • Sequential Search 273

No matter what algorithm for searching we develop, we can make a similar
statement that we take as our fundamental premise in analyzing searching algo-

218

rithms: The total work is reflected by the number of comparisons of keys that the
algorithm makes.

To analyze the behavior of an algorithm that makes comparisons of keys, we shall use
the count of these key comparisons as our measure of the work done.

How many comparisons of keys does sequential search make when it is applied to
a list of n entries? Since sequential search compares the target to each key in the
list in turn, the answer depends on if and where the target may be. If the function
finds the target in the first position of the list, it does only one key comparison. If
the target is second, the function does two key comparisons. If it is the last entry
on the list, then the function does n key comparisons. If the search is unsuccessful,
then the target will have been compared to all entries in the list, for a total of n
comparisons of keys.

Our question, then, has several answers depending on if and where the target
is found. If the search is unsuccessful, then the answer is n key comparisons.
The best performance for a successful search is 1 comparison, and the worst is n
comparisons.

We have obtained very detailed information about the performance of sequen-
tial search, information that is really too detailed for most uses, in that we generally
will not know exactly where in a list a particular key may appear. Instead, it will
generally be much more helpful if we can determine the average behavior of anaverage behavior
algorithm. But what do we mean by average? One reasonable assumption, the
one that we shall always make, is to take each possibility once and average the
results.

Note, however, that this assumption may be very far from the actual situation.
Not all English words, for example, appear equally often in a typical essay. Theprovisos
telephone operator receives far more requests for the number of a large business
than for that of an average family. The C++ compiler encounters the keywords if,
class, and return far more often than the keywords switch, continue, and auto.

There are a great many interesting, but exceedingly difficult, problems asso-
ciated with analyzing algorithms where the input is chosen according to some
statistical distribution. These problems, however, would take us too far afield to
be considered here. We shall therefore limit our attention to the most important
case, the one where all the possibilities are equally likely.

Under the assumption of equal likelihood we can find the average number of
key comparisons done in a successful sequential search. We simply add the number
needed for all the successful searches, and divide by n, the number of items in the
list. The result is

1 + 2 + 3 + · · · + n
n

.

The first formula established in Appendix A is

1 + 2 + 3 + · · · + n = 1
2n(n + 1).

274 Chapter 7 • Searching

average number of key
comparisons

Hence the average number of key comparisons done by sequential search in the
successful case is

n(n + 1)
2n

= 1
2(n + 1).

3. Testing

An appropriate balance to the theoretical analysis of algorithms is empirical testing

219

of the resulting functions. We set up sample data, run the functions, and compare
the results with those of the analysis.

For searching functions, there are at least two numbers worth calculating, the
average number of key comparisons done over many searches, and the amount
of CPU time required. Let us now develop a function that can be used to test our
sequential search routine.

For test purposes, we shall use integer keys, and we need not store any data
other than a key in a record. In our tests, we need to keep a count of all key com-
parison operations. One way to do this is to modify the sequential search function,
to increment a global counter whenever it makes a key comparison. However, we
prefer an approach that avoids any alteration of the search function being tested.
We shall instead modify the overloaded key comparison operations to increment a
counter whenever they are called. This counter must be available to all Key objects:
Thus, it should be declared as a static class member. In C++, static class membersstatic class member
provide data objects that are shared by every instance of the class.1 Thus, no mat-
ter where keys are compared, the same instance of the counter comparisons will be
incremented.

We have now arrived at the following definition of the class Key for our testing
program.

class Key {
int key;

public:
static int comparisons;
Key (int x = 0);
int the_key() const;

};
bool operator == (const Key &x, const Key &y);
bool operator > (const Key &x, const Key &y);
bool operator < (const Key &x, const Key &y);
bool operator >= (const Key &x, const Key &y);
bool operator <= (const Key &x, const Key &y);
bool operator != (const Key &x, const Key &y);

1 See a C++ textbook for a fuller explanation of static class members.

Section 7.2 • Sequential Search 275

We use the method the_key to inspect a copy of a key’s value. The static counter

220

comparisons is incremented by any call to a Key comparison operator. For example,
the test for equality of keys can be implemented as follows:

bool operator == (const Key &x, const Key &y)
{

Key :: comparisons++;
return x.the_key() == y.the_key();

}

Static data members must be defined and initialized outside of a class definition.
Accordingly, we place the following definition statement, along with the class meth-
ods, in the Key implementation file key.c.

int Key :: comparisons = 0;

Since our program is merely used for testing purposes, there is no reason for a
Record to contain any more data than its Key. Accordingly, we define:

typedef Key Record;

Most of the searching methods later in this chapter require the data to be ordered,
so, in our testing functions, let us use a list with keys in increasing order. We arechoice of test data
interested in both successful and unsuccessful searches, so let us insert only keys
containing odd integers into the list, and then look for odd integers for successful
searches and even integers for unsuccessful searches. If the list has n entries,

221

then the targets for successful searches will be 1, 3,5, . . . ,2n− 1. For unsuccessful
searches, we look for the integers 0, 2, 4, 6, . . . ,2n. In this way we test all possible
failures, including targets less than the smallest key in the list, between each pair,
and greater than the largest. To make the test more realistic, we use pseudo-random
numbers to choose the target, by employing the method Random :: random_integer
from Appendix B.

In our testing, we use the class Timer from Appendix C to provide CPU timing
information. Objects of class Timer have methods including a constructor and aCPU timing
method reset, which both start a timer going, and a method elapsed_time, which
reads the timer. We use the Timer clock to time first a set number of successful
searches and then a similar number of unsuccessful searches. The user supplies
a value for searches as the number of trials to be made. With these decisions, the
following test function results:

void test_search(int searches, List<Record> &the_list)
/* Pre: None.

Post: The number of key comparisons and CPU time for a sequential searching
function have been calculated.

Uses: Methods of the classes List, Random, and Timer, together with an output
function print_out */

276 Chapter 7 • Searching

{
int list_size = the_list.size();
if (searches <= 0 || list_size < 0) {

cout << " Exiting test: " << endl
<< " The number of searches must be positive." << endl
<< " The number of list entries must exceed 0." << endl;

return;
}

int i, target, found_at;
Key :: comparisons = 0;
Random number;
Timer clock;
for (i = 0; i < searches; i++) {

target = 2 * number.random_integer(0, list_size − 1) + 1;
if (sequential_search(the_list, target, found_at) == not_present)

cout << "Error: Failed to find expected target " << target << endl;
}
print_out("Successful", clock.elapsed_time(), Key :: comparisons, searches);
Key :: comparisons = 0;
clock.reset();
for (i = 0; i < searches; i++) {

target = 2 * number.random_integer(0, list_size);
if (sequential_search(the_list, target, found_at) == success)

cout << "Error: Found unexpected target " << target
<< " at " << found_at << endl;

}
print_out("Unsuccessful", clock.elapsed_time(), Key :: comparisons, searches);

}

The details of embedding this function into a working program and writing the
output function, print_out, are left as a project.

Exercises 7.2
E1. One good check for any algorithm is to see what it does in extreme cases.

Determine what sequential search does when

(a) there is only one item in the list.

(b) the list is empty.

(c) the list is full.

E2. Trace sequential search as it searches for each of the keys present in a list con-
taining three items. Determine how many comparisons are made, and thereby
check the formula for the average number of comparisons for a successful
search.

Section 7.2 • Sequential Search 277

E3. If we can assume that the keys in the list have been arranged in order (for
example, numerical or alphabetical order), then we can terminate unsuccessful
searches more quickly. If the smallest keys come first, then we can terminate
the search as soon as a key greater than or equal to the target key has been
found. If we assume that it is equally likely that a target key not in the list is in
any one of the n+1 intervals (before the first key, between a pair of successive
keys, or after the last key), then what is the average number of comparisons
for unsuccessful search in this version?

E4. At each iteration, sequential search checks two inequalities, one a comparison
of keys to see if the target has been found, and the other a comparison of
indices to see if the end of the list has been reached. A good way to speed up the
algorithm by eliminating the second comparison is to make sure that eventually
key target will be found, by increasing the size of the list and inserting an extra
item at the end with key target. Such an item placed in a list to ensure that asentinel
process terminates is called a sentinel. When the loop terminates, the search
will have been successful if target was found before the last item in the list and
unsuccessful if the final sentinel item was the one found.

Write a C++ function that embodies the idea of a sentinel in the contiguous
version of sequential search using lists developed in Section 6.2.2.

E5. Find the number of comparisons of keys done by the function written in
Exercise E4 for

(a) unsuccessful search.

(b) best successful search.

(c) worst successful search.

(d) average successful search.

Programming
Projects 7.2

P1. Write a program to test sequential search and, later, other searching methods
using lists developed in Section 6.2.2. You should make the appropriate decla-
rations required to set up the list and put keys into it. The keys are the odd inte-
gers from 1 to n, where the user gives the value of n. Then successful searches
can be tested by searching for odd integers, and unsuccessful searches can be
tested by searching for even integers. Use the function test_search from the text
to do the actual testing of the search function. Overload the key comparison
operators so that they increment the counter. Write appropriate introduction
and print_out functions and a menu driver. For now, the only options are to
fill the list with a user-given number of entries, to test sequential_search, and
to quit. Later, other searching methods could be added as further options.

Find out how many comparisons are done for both unsuccessful and suc-
cessful searches, and compare these results with the analyses in the text.

Run your program for representative values of n, such as n = 10, n = 100,
n = 1000.

278 Chapter 7 • Searching

P2. Take the driver program written in Project P1 to test searching functions, and
insert the version of sequential search that uses a sentinel (see Exercise E4). Forsentinel search
various values of n, determine whether the version with or without a sentinel
is faster. By experimenting, find the cross-over point between the two versions,
if there is one. That is, for what value of n is the extra time needed to insert
a sentinel at the end of a list of size n about the same as the time needed for
extra comparisons of indices in the version without a sentinel?

P3. What changes are required to our sequential search function and testing pro-
gram in order to operate on simply linked lists as developed in Section 6.2.3?linked sequential

search Make these changes and apply the testing program from Project P1 for linked
lists to test linked sequential search.

7.3 BINARY SEARCH

Sequential search is easy to write and efficient for short lists, but a disaster for long
ones. Imagine trying to find the name “Amanda Thompson” in a large telephone
book by reading one name at a time starting at the front of the book! To find any
entry in a long list, there are far more efficient methods, provided that the keys in
the list are already sorted into order.

One of the best methods for a list with keys in order is first to compare the
target key with one in the center of the list and then restrict our attention to onlymethod
the first or second half of the list, depending on whether the target key comes before
or after the central one. With one comparison of keys we thus reduce the list to
half its original size. Continuing in this way, at each step, we reduce the length of
the list to be searched by half. In only twenty steps, this method will locate any
requested key in a list containing more than a million keys.

The method we are discussing is called binary search. This approach of course
requires that the keys in the list be of a scalar or other type that can be regarded asrestrictions
having an order and that the list already be completely in order.

7.3.1 Ordered Lists

What we are really doing here is introducing a new abstract data type, which is
222 defined in the following way.

Definition An ordered list is a list in which each entry contains a key, such that the keys
are in order. That is, if entry i comes before entry j in the list, then the key of
entry i is less than or equal to the key of entry j .

Section 7.3 • Binary Search 279

The only List operations that do not apply, without modification, to an ordered list
are insert and replace. These standard List operations must fail when they would
otherwise disturb the order of a list. We shall therefore implement an ordered list
as a class derived from a contiguous List. In this derived class, we shall override
the methods insert and replace with new implementations. Hence, we use the
following class specification:

class Ordered_list: public List<Record>{
public:

Ordered_list();
Error_code insert(const Record &data);
Error_code insert(int position, const Record &data);
Error_code replace(int position, const Record &data);

};

As well as overriding the methods insert and replace, we have overloaded the

223

method insert so that it can be used with a single parameter. This overloaded
method places an entry into the correct position, determined by the order of the
keys. We shall study this operation further in Chapter 8, but here is a simple,
implementation-independent version of the overloaded method.

If the list already contains keys equal to the new one being inserted, then the
new key will be inserted as the first of those that are equal.

Error_code Ordered_list :: insert(const Record &data)
/* Post: If the Ordered_list is not full, the function succeeds: The Record data is

inserted into the list, following the last entry of the list with a strictly lesser
key (or in the first list position if no list element has a lesser key).
Else: the function fails with the diagnostic Error_code overflow. */

{
int s = size();
int position;
for (position = 0; position < s; position++) {

Record list_data;
retrieve(position, list_data);
if (data >= list_data) break;

}
return List<Record> :: insert(position, data);

}

Here, we apply the original insert method of the base List class by using the scope
resolution operator. The scope resolution is necessary, because we have overriddenscope resolution
this original insertion method with a new Ordered_list method that is coded as
follows:

280 Chapter 7 • Searching

224
Error_code Ordered_list :: insert(int position, const Record &data)
/* Post: If the Ordered_list is not full, 0 ≤ position ≤ n, where n is the number

of entries in the list, and the Record data can be inserted at position in
the list, without disturbing the list order, then the function succeeds: Any
entry formerly in position and all later entries have their position numbers
increased by 1 and data is inserted at position of the List.
Else: the function fails with a diagnostic Error_code. */

{
Record list_data;
if (position > 0) {

retrieve(position − 1, list_data);
if (data < list_data)

return fail;
}
if (position < size()) {

retrieve(position, list_data);
if (data > list_data)

return fail;
}
return List<Record> :: insert(position, data);

}

Note the distinction between overridden and overloaded methods in a derived
class: The overridden methods replace methods of the base class by methods with
matching names and parameter lists, whereas the overloaded methods merely match
existing methods in name but have different parameter lists.

7.3.2 Algorithm Development

Simple though the idea of binary search is, it is exceedingly easy to program itdangers
incorrectly. The method dates back at least to 1946, but the first version free of
errors and unnecessary restrictions seems to have appeared only in 1962. One
study (see the references at the end of the book) showed that about 90 percent of
professional programmers fail to code binary search correctly, even after working
on it for a full hour. Another study2 found correct solutions in only five out of
twenty textbooks.

Let us therefore take special care to make sure that we make no mistakes. To do
this, we must state exactly what our variables designate; we must state precisely
what conditions must be true before and after each iteration of the loop contained
in the program; and we must make sure that the loop will terminate properly.

Our binary search algorithm will use two indices, top and bottom, to enclose
the part of the list in which we are looking for the target key. At each iteration, we

2 Richard E. Pattis, “Textbook errors in binary searching,” SIGCSE Bulletin, 20 (1988), 190–194.

Section 7.3 • Binary Search 281

shall reduce the size of this part of the list by about half. To help us keep track of the

225

progress of the algorithm, let us write down an assertion that we shall require to be
true before every iteration of the process. Such a statement is called an invariant
of the process.

The target key, provided it is present in the list, will be found between the indices
bottom and top, inclusive.invariant

We establish the initial correctness of this assertion by setting bottom to 0 and top
to the_list.size() − 1.

To do binary search, we first calculate the index mid halfway between bottom
and top as

mid = (bottom + top)/2

Next, we compare the target key against the key at position mid and then we change
the appropriate one of the indices top or bottom so as to reduce the list to either
its bottom or top half.

Next, we note that binary search should terminate when top ≤ bottom; thattermination
is, when the remaining part of the list contains at most one item, providing that we
have not terminated earlier by finding the target.

Finally, we must make progress toward termination by ensuring that the num-progress
ber of items remaining to be searched, top − bottom + 1, strictly decreases at each
iteration of the process.

Several slightly different algorithms for binary search can be written.

7.3.3 The Forgetful Version

Perhaps the simplest variation is to forget the possibility that the Key target might
be found quickly and continue, whether target has been found or not, to subdivide
the list until what remains has length 1.

226

This method is implemented as the following function, which, for simplicity
in programming, we write in recursive form. The bounds on the sublist are given
as additional parameters for the recursive function.

Error_code recursive_binary_1(const Ordered_list &the_list, const Key &target,
int bottom, int top, int &position)

/* Pre: The indices bottom to top define the range in the list to search for the
target.

Post: If a Record in the range of locations from bottom to top in the_list has
key equal to target, then position locates one such entry and a code of
success is returned. Otherwise, the Error_code of not_present is returned
and position becomes undefined.

Uses: recursive_binary_1 and methods of the classes List and Record. */

282 Chapter 7 • Searching

{
Record data;
if (bottom < top) { // List has more than one entry.

int mid = (bottom + top)/2;
the_list.retrieve(mid, data);
if (data < target) // Reduce to top half of list.

return recursive_binary_1(the_list, target, mid + 1, top, position);
else // Reduce to bottom half of list.

return recursive_binary_1(the_list, target, bottom, mid, position);
}
else if (top < bottom)

return not_present; // List is empty.
else { // List has exactly one entry.

position = bottom;
the_list.retrieve(bottom, data);
if (data == target) return success;
else return not_present;

}
}

The division of the list into sublists is described in the following diagram:

227

bottom top

?< target ≥ target

Note that this diagram shows only entries strictly less than target in the first part
of the list, whereas the last part contains entries greater than or equal to target. In
this way, when the middle part of the list is reduced to size 1 and hits the target,
it will be guaranteed to be the first occurrence of the target if it appears more than
once in the list.

If the list is empty, the function fails; otherwise it first calculates the value
of mid. As their average, mid is between bottom and top, and so mid indexes a
legitimate entry of the list.

Note that the if statement that invokes the recursion is not symmetrical, sincetermination
the condition tested puts mid into the lower of the two intervals. On the other
hand, integer division of nonnegative integers always truncates downward. It
is only these two facts together that ensure that the recursion always terminates.
Let us determine what occurs toward the end of the search. The recursion will
continue only as long as top > bottom. But this condition implies that when mid
is calculated we always have

bottom <= mid < top

Section 7.3 • Binary Search 283

since integer division truncates downward. Next, the if statement reduces the size
of the interval from top − bottom either to top − (mid + 1) or to mid − bottom,
both of which, by the inequality, are strictly less than top − bottom. Thus at each
iteration the size of the interval strictly decreases, so the recursion will eventually
terminate.

After the recursion terminates, we must finally check to see if the target key
has been found, since all previous comparisons have tested only inequalities.

To adjust the parameters to our standard search function conventions, we pro-
duce the following search function:

Error_code run_recursive_binary_1(const Ordered_list &the_list,
const Key &target, int &position)

main call to
recursive_binary1

{
return recursive_binary_1(the_list, target, 0, the_list.size() − 1, position);

}

Since the recursion used in the function recursive_binary_1 is tail recursion, we
can easily convert it into an iterative loop. At the same time, we can make the
parameters consistent with other searching methods.228

Error_code binary_search_1 (const Ordered_list &the_list,
const Key &target, int &position)

/* Post: If a Record in the_list has Key equal to target, then position locates one
such entry and a code of success is returned. Otherwise, not_present is
returned and position is undefined.

Uses: Methods for classes List and Record. */
{

Record data;
int bottom = 0, top = the_list.size() − 1;
while (bottom < top) {

int mid = (bottom + top)/2;
the_list.retrieve(mid, data);
if (data < target)

bottom = mid + 1;
else

top = mid;
}
if (top < bottom) return not_present;
else {

position = bottom;
the_list.retrieve(bottom, data);
if (data == target) return success;
else return not_present;

}
}

284 Chapter 7 • Searching

7.3.4 Recognizing Equality

Although binary_search_1 is a simple form of binary search, it seems that it will
often make unnecessary iterations because it fails to recognize that it has found
the target before continuing to iterate. Thus we might hope to save computer time
with a variation that checks at each stage to see if it has found the target.

In recursive form this method becomes:229

Error_code recursive_binary_2(const Ordered_list &the_list, const Key &target,
int bottom, int top, int &position)

/* Pre: The indices bottom to top define the range in the list to search for the
target.

Post: If a Record in the range from bottom to top in the_list has key equal
to target, then position locates one such entry, and a code of success is
returned. Otherwise, not_present is returned, and position is undefined.

Uses: recursive_binary_2, together with methods from the classes Ordered_list
and Record. */

{
Record data;
if (bottom <= top) {

int mid = (bottom + top)/2;
the_list.retrieve(mid, data);
if (data == target) {

position = mid;
return success;

}

else if (data < target)
return recursive_binary_2(the_list, target, mid + 1, top, position);

else
return recursive_binary_2(the_list, target, bottom, mid − 1, position);

}
else return not_present;

}

As with run_recursive_binary_1, we need a function run_recursive_binary_2 to ad-
just the parameters to our standard conventions.

Error_code run_recursive_binary_2(const Ordered_list &the_list,
const Key &target, int &position)

main call to
recursive_binary2

{
return recursive_binary_2(the_list, target, 0, the_list.size() − 1, position);

}

Again, this function can be translated into nonrecursive form with only the standard
parameters:

Section 7.3 • Binary Search 285
230

Error_code binary_search_2(const Ordered_list &the_list,
const Key &target, int &position)

/* Post: If a Record in the_list has key equal to target, then position locates one
such entry and a code of success is returned. Otherwise, not_present is
returned and position is undefined.

Uses: Methods for classes Ordered_list and Record. */
{

Record data;
int bottom = 0, top = the_list.size() − 1;
while (bottom <= top) {

position = (bottom + top)/2;
the_list.retrieve(position, data);
if (data == target) return success;
if (data < target) bottom = position + 1;
else top = position − 1;

}
return not_present;

}

The operation of this version is described in the following diagram:231

bottom top

?< target > target

Notice that this diagram (in contrast to that for the first method) is symmetrical
in that the first part contains only entries strictly less than target, and the last
part contains only entries strictly greater than target. With this method, therefore,
if target appears more than once in the list, then the algorithm may return any
instance of the target.

Proving that the loop in binary_search_2 terminates is easier than the proof forloop termination
binary_search_1. In binary_search_2, the form of the if statement within the loop
guarantees that the length of the interval is reduced by at least half in each iteration.

comparison of methods Which of these two versions of binary search will do fewer comparisons of
keys? Clearly binary_search_2 will, if we happen to find the target near the begin-
ning of the search. But each iteration of binary_search_2 requires two comparisons
of keys, whereas binary_search_1 requires only one. Is it possible that if many it-
erations are needed, then binary_search_1 may do fewer comparisons? To answer
this question we shall develop new analytic tools in the next section.

Exercises 7.3
E1. Suppose that the_list contains the integers 1, 2, . . . , 8. Trace through the steps of

binary_search_1 to determine what comparisons of keys are done in searching
for each of the following targets: (a) 3, (b) 5, (c) 1, (d) 9, (e) 4.5.

E2. Repeat Exercise E1 using binary_search_2.

286 Chapter 7 • Searching

E3. [Challenging] Suppose that L1 and L2 are ordered lists containing n1 and n2
integers, respectively.

(a) Use the idea of binary search to describe how to find the median of the
n1 +n2 integers in the combined lists.

(b) Write a function that implements your method.

Programming
Projects 7.3

P1. Take the driver program of Project P1 of Section 7.2 (page 277), and make
binary_search_1 and binary_search_2 the search options. Compare their per-
formance with each other and with sequential search.

P2. Incorporate the recursive versions of binary search (both variations) into the
testing program of Project P1 of Section 7.2 (page 277). Compare the perfor-
mance with the nonrecursive versions of binary search.

7.4 COMPARISON TREES

The comparison tree (also called decision tree or search tree) of an algorithm is
obtained by tracing through the action of the algorithm, representing each com-
parison of keys by a vertex of the tree (which we draw as a circle). Inside thedefinitions
circle we put the index of the key against which we are comparing the target key.
Branches (lines) drawn down from the circle represent the possible outcomes of
the comparison and are labeled accordingly. When the algorithm terminates, we
put either F (for failure) or the position where the target is found at the end of

232

the appropriate branch, which we call a leaf, and draw as a square. Leaves are
also sometimes called end vertices or external vertices of the tree. The remaining
vertices are called the internal vertices of the tree.

The comparison tree for sequential search is especially simple; it is drawn in
Figure 7.2.

The number of comparisons done by an algorithm in a particular search is
the number of internal (circular) vertices traversed in going from the top of the
tree (which is called its root) down the appropriate path to a leaf. The number ofdefinitions
branches traversed to reach a vertex from the root is called the level of the vertex.
Thus the root itself has level 0, the vertices immediately below it have level 1, and
so on.

The number of vertices in the longest path that occurs is called the height of
the tree. Hence a tree with only one vertex has height 1. In future chapters we shall
sometimes allow trees to be empty (that is, to consist of no vertices at all), and we
adopt the convention that an empty tree has height 0.

To complete the terminology we use for trees we shall now, as is traditional,
mix our metaphors by thinking of family trees as well as botanical trees: We call the
vertices immediately below a vertex v the children of v and the vertex immediately
above v the parent of v . Hence we can use oxymorons like “the parent of a leaf”
or “a child of the root.”

Section 7.4 • Comparison Trees 287
233

1

2

3

1

2

3

n

n

=

=

=

≠

≠

≠

≠

=

F

.. .

Figure 7.2. Comparison tree for sequential_search

7.4.1 Analysis for n = 10

1. Shape of Trees
That sequential search on average does far more comparisons than binary search
is obvious from comparing the shape of its tree with the shape of the trees for
binary_search_1 and binary_search_2, which for n = 10 are drawn in Figure 7.3 and
Figure 7.4, respectively. Sequential search has a long, narrow tree, which means
many comparisons, whereas the trees for binary search are much wider and shorter.234

1 2F F

1 2 3 F 6 7 8

≠

≠>

6 7F F

4 F 5 F 9 10F FF

1 3 6 84 5 9 10

2 74 9

3 8

5

≠≠ ≠== ==

≠≠≠≠≠ = = == =>≤ ≤

≤ > ≤ > ≤ >

≤ > ≤ >

≤ >

≤ >

=

Figure 7.3. Comparison tree for binary_search_1, n = 10

288 Chapter 7 • Searching

FF F F FF

7 10

1 63 9

2 8

5

F F FF 4 F

2

2

=

>

> >

>>

>

>

>

>>= >>

=

>>

> >= > >= > >=

==

=

=

= ≠

>>
2

……

Figure 7.4. Comparison tree for binary_search_2, n = 10

2. Three-Way Comparisons and Compact Drawings
In the tree drawn for binary_search_2 we have shown the algorithm structure more
clearly (and reduced the space needed) by combining two comparisons to obtain
one three-way comparison for each pass through the loop. Drawing the tree this
way means that every vertex that is not a leaf terminates some successful search
and the leaves correspond to unsuccessful searches. Thus the drawing in Figure 7.4expanded and

condensed trees is more compact, but remember that two comparisons are really done for each of
the vertices shown, except that only one comparison is done at the vertex at which
the search succeeds in finding the target.

It is this compact way of drawing comparison trees that will become our stan-
dard method in future chapters.

It is also often convenient to show only part of a comparison tree. Figure 7.5
shows the top of a comparison tree for the recursive version of binary_search_2,
with all the details of the recursive calls hidden in the subtrees. The comparison tree
and the recursion tree for a recursive algorithm are often two ways of consideringschematic tree
the same thing.

233

Target
less than

key at mid:
Search from
1 to mid –1.

Target
greater than
key at mid:

Search from
mid +1 to top.

< >

< >

S

= ≠ =

Figure 7.5. Top of the comparison tree, recursive binary_search_2

Section 7.4 • Comparison Trees 289

From the trees shown for binary_search_1 and binary_search_2 with n = 10,
it is easy to read off how many comparisons will be done by each algorithm. In
the worst case search, this number is simply one more than the height of the tree;
in fact, for every search it is the number of interior vertices lying between the root
and the vertex that terminates the search.

3. Comparison Count for binary_search_1

In binary_search_1, every search terminates at a leaf; to obtain the average number
of comparisons for both successful and unsuccessful searches, we need what is
called the external path length of the tree: the sum of the number of branchesexternal path length
traversed in going from the root once to every leaf in the tree. For the tree in
Figure 7.3, the external path length is

(4 × 5)+(6 × 4)+(4 × 5)+(6 × 4)= 88.

Half the leaves correspond to successful searches, and half to unsuccessful searches.
Hence the average number of comparisons needed for either a successful or un-
successful search by binary_search_1 is 44

10 = 4.4 when n = 10.

4. Comparison Count for binary_search_2

In the tree as it is drawn for binary_search_2, all the leaves correspond to unsuccess-
ful searches; hence the external path length leads to the number of comparisons for
an unsuccessful search. For successful searches, we need the internal path length,internal path length
which is defined to be the sum, over all vertices that are not leaves, of the number
of branches from the root to the vertex. For the tree in Figure 7.4, the internal path
length is

0 + 1 + 2 + 2 + 3 + 1 + 2 + 3 + 2 + 3 = 19.

Recall that binary_search_2 does two comparisons for each non-leaf except for the
vertex that finds the target, and note that the number of these internal vertices
traversed is one more than the number of branches (for each of the n = 10 internal
vertices). We thereby obtain the average number of comparisons for a successful
search to be

2 ×
(19

10
+ 1

)
− 1 = 4.8.average successful

count
The subtraction of 1 corresponds to the fact that one fewer comparison is made
when the target is found.

For an unsuccessful search by binary_search_2, we need the external path
length of the tree in Figure 7.4. This is

(5 × 3)+(6 × 4)= 39.

290 Chapter 7 • Searching

We shall assume for unsuccessful searches that the n + 1 intervals (less than the
first key, between a pair of successive keys, or greater than the largest) are all
equally likely; for the diagram we therefore assume that any of the 11 failure leaves
are equally likely. Thus the average number of comparisons for an unsuccessfulaverage unsuccessful

count search is
2 × 39

11
≈ 7.1.

5. Comparison of Algorithms
For n = 10, binary_search_1 does slightly fewer comparisons both for successful
and for unsuccessful searches. To be fair, however, we should note that the two
comparisons done by binary_search_2 at each internal vertex are closely related
(the same keys are being compared), so that an optimizing compiler may not do as
much work as two full comparisons. In that case, in fact, binary_search_2 may be
a slightly better choice than binary_search_1 for successful searches when n = 10.

7.4.2 Generalization
What happens when n is larger than 10? For longer lists, it may be impossible to
draw the complete comparison tree, but from the examples with n = 10, we can
make some observations that will always be true.

1. 2-Trees
Let us define a 2-tree as a tree in which every vertex except the leaves has exactly two

235 children. Both versions of comparison trees that we have drawn fit this definition
and are 2-trees. We can make several observations about 2-trees that will provide
information about the behavior of binary search methods for all values of n.

terminology Other terms for 2-tree are strictly binary tree and extended binary tree, but we
shall not use these terms, because they are too easily confused with the term binary
tree, which (when introduced in Chapter 10) has a somewhat different meaning.

number of vertices
in a 2-tree

In a 2-tree, the number of vertices on any level can be no more than twice the
number on the level above, since each vertex has either 0 or 2 children (depending
on whether it is a leaf or not). Since there is one vertex on level 0 (the root), the
number of vertices on level t is at most 2t for all t ≥ 0. We thus have the facts:

Lemma 7.1 The number of vertices on each level of a 2-tree is at most twice the number on the
level immediately above. Hence, in a 2-tree, the number of vertices on level t is at
most 2t for t ≥ 0.

If we wish, we can turn this last observation around by taking logarithms. Let us
assume that we have k vertices on level t . Since (by the second half of Lemma 7.1)
k ≤ 2t , we obtain t ≥ lgk, where lg denotes a logarithm with base 2.3

Lemma 7.2 If a 2-tree has k vertices on level t , then t ≥ lgk, where lg denotes a logarithm with
base 2.

3 For a review of properties of logarithms, see Appendix A.

Section 7.4 • Comparison Trees 291

The notation for base 2 logarithms just used will be our standard notation through-
out this book. In analyzing algorithms we shall also sometimes need natural loga-
rithms (taken with base e = 2.71828 . . .). We shall denote a natural logarithm by ln.
We shall rarely need logarithms to any other base. We thus summarize as follows:logarithms

Conventions

Unless stated otherwise, all logarithms will be taken with base 2.
The symbol lg denotes a logarithm with base 2,
and the symbol ln denotes a natural logarithm.

When the base for logarithms is not specified (or is not important),
then the symbol log will be used.

After we take logarithms, we frequently need to move either up or down to thefloor and ceiling
next integer. To specify this action, we define the floor of a real number x to be
the largest integer less than or equal to x , and the ceiling of x to be the smallest
integer greater than or equal to x . We denote the floor of x by bxc and the ceiling
of x by dxe.

For an integer n, note that

bn/2c + dn/2e = n
(n − 1)/2 ≤ bn/2c ≤ n/2
n/2 ≤ dn/2e ≤ (n + 1)/2.

2. Analysis of binary_search_1

We can now turn to the general analysis of binary_search_1 on a list of n entries.
The final step done in binary_search_1 is always a check for equality with the target;
hence both successful and unsuccessful searches terminate at leaves, and so there
are exactly 2n leaves altogether. As illustrated in Figure 7.3 for n = 10, all these
leaves must be on the same level or on two adjacent levels. (This observation can
be proved by using mathematical induction to establish the following stronger
statement: If T1 and T2 are the comparison trees of binary_search_1 operating on
lists L1 and L2 whose lengths differ by at most 1, then all leaves of T1 and T2 are
on the same or adjacent levels. The statement is clearly true when L1 and L2 are
lists with length at most 2. Moreover, if binary_search_1 divides two larger lists
whose sizes differ by at most one, the sizes of the four halves also differ by at
most 1, and the induction hypothesis shows that their leaves are all on the same or
adjacent levels.) From Lemma 7.2 it follows that the maximum level t of leaves in
the comparison tree satisfies t = dlg 2ne.

Since one comparison of keys is done at the root (which is level 0), but no
comparisons are done at the leaves (level t), it follows that the maximum number
of key comparisons is also t = dlg 2ne. Furthermore, the maximum number is at
most one more than the average number, since all leaves are on the same or adjacent
levels.

292 Chapter 7 • Searching

Hence we have:

The number of comparisons of keys done by binary_search_1 in searching a list of ncomparison count,
binary_search_1 items is approximately

lgn + 1

in the worst case and
lgn

in the average case. The number of comparisons is essentially independent of whether

236

the search is successful or not.

3. Analysis of binary_search_2, Unsuccessful Search
To count the comparisons made by binary_search_2 for a general value of n for an
unsuccessful search, we shall examine its comparison tree. For reasons similar to
those given for binary_search_1, this tree is again full at the top, with all its leaves
on at most two adjacent levels at the bottom. For binary_search_2, all the leaves
correspond to unsuccessful searches, so there are exactly n+1 leaves, correspond-
ing to the n+ 1 unsuccessful outcomes: less than the smallest key, between a pair
of keys, and greater than the largest key. Since these leaves are all at the bottom of
the tree, Lemma 7.1 implies that the number of leaves is approximately 2h , where
h is the height of the tree. Taking (base 2) logarithms, we obtain that h ≈ lg(n+1).comparison count for

binary_search_2,
unsuccessful case

This value is the approximate distance from the root to one of the leaves. Since,
in binary_search_2, two comparisons of keys are performed for each internal ver-
tex, the number of comparisons done in an unsuccessful search is approximately
2 lg(n+ 1).

The number of comparisons done in an unsuccessful search by binary_search_2 is
approximately 2 lg(n+ 1).

4. The Path-Length Theorem
To calculate the average number of comparisons for a successful search by bi-

237

nary_search_2, we first obtain an interesting and important relationship that holds
for any 2-tree.

Theorem 7.3 Denote the external path length of a 2-tree by E , the internal path length by I , and
let q be the number of vertices that are not leaves. Then

E = I + 2q.

Proof To prove the theorem we use the method of mathematical induction, using the
number of vertices in the tree to do the induction.

If the tree contains only its root, and no other vertices, then E = I = q = 0, and
the base case of the theorem is trivially correct.

Now take a larger tree, and let v be some vertex that is not a leaf, but for which
both the children of v are leaves. Let k be the number of branches on the path
from the root to v . See Figure 7.6.

Section 7.4 • Comparison Trees 293

q non-leaves

k

v

Delete

Original
2-tree

q – 1 non-leaves

k

v

Reduced
2-tree

Figure 7.6. Path length in a 2-tree

Now let us delete the two children of v from the 2-tree. Since v is not a leaf but
its children are, the number of non-leaves goes down from q to q− 1. The internal
path length I is reduced by the distance to v ; that is, to I −k. The distance to each
child of v is k + 1, so the external path length is reduced from E to E − 2(k + 1),
but v is now a leaf, so its distance, k, must be added, giving a new external path
length of

E − 2(k + 1)+k = E − k − 2.

Since the new tree has fewer vertices than the old one, by the induction hypothesis
we know that

E − k − 2 = (I − k)+2(q − 1).

Rearrangement of this equation gives the desired result.end of proof

5. Analysis of binary_search_2, Successful Search
In the comparison tree of binary_search_2, the distance to the leaves is lg(n+1), as
we have seen. The number of leaves is n+ 1, so the external path length is about

(n + 1)lg(n + 1).

Theorem 7.3 then shows that the internal path length is about

(n + 1)lg(n + 1)−2n.

To obtain the average number of comparisons done in a successful search, we must
first divide by n (the number of non-leaves) and then add 1 and double, since two
comparisons were done at each internal node. Finally, we subtract 1, since only
one comparison is done at the node where the target is found. The result is:

294 Chapter 7 • Searching

In a successful search of a list of n entries, binary_search_2 does approximately
236

2(n + 1)
n

lg(n + 1)−3

comparisons of keys.

7.4.3 Comparison of Methods

Note the similarities and differences in the formulas for the two versions of binary
search. Recall, first, that we have already made some approximations in our cal-
culations, and hence our formulas are only approximate. For large values of n the
difference between lgn and lg(n+1) is insignificant, and (n+1)/n is very nearlysimplified counts
1. Hence we can simplify our results as follows:

Successful search Unsuccessful search
binary_search_1 lgn+ 1 lgn+ 1
binary_search_2 2 lgn− 3 2 lgn

In all four cases the times are proportional to lgn, except for small constant terms,
and the coefficients of lgn are, in all cases, the number of comparisons inside the
loop. The fact that the loop in binary_search_2 can terminate early contributes
disappointingly little to improving its speed for a successful search; it does not
reduce the coefficient of lgn at all, but only reduces the constant term from +1 to
−3.

A moment’s examination of the comparison trees will show why. More than
half of the vertices occur at the bottom level, and so their loops cannot terminate
early. More than half the remaining ones could terminate only one iteration early.
Thus, for large n, the number of vertices relatively high in the tree, say, in the top
half of the levels, is negligible in comparison with the number at the bottom level.
It is only for this negligible proportion of the vertices that binary_search_2 can
achieve better results than binary_search_1, but it is at the cost of nearly doubling
the number of comparisons for all searches, both successful and unsuccessful.

With the smaller coefficient of lgn, binary_search_1 will do fewer comparisons
when n is sufficiently large, but with the smaller constant term, binary_search_2
may do fewer comparisons when n is small. But for such a small value of n,
the overhead in setting up binary search and the extra programming effort prob-
ably make it a more expensive method to use than sequential search. Thus we
arrive at the conclusion, quite contrary to what we would intuitively conclude,
that binary_search_2 is probably not worth the effort, since for large problems bi-
nary_search_1 is better, and for small problems, sequential_search is better. To
be fair, however, with some computers and optimizing compilers, the two com-
parisons needed in binary_search_2 will not take double the time of the one in
binary_search_1, so in such a situation binary_search_2 might prove the better
choice.

Section 7.4 • Comparison Trees 295

Our object in doing analysis of algorithms is to help us decide which may be
better under appropriate circumstances. Disregarding the foregoing provisos, we
have now been able to make such a decision, and have available to us information
that might otherwise not be obvious.

The numbers of comparisons of keys done in the average successful case by
sequential_search, binary_search_1, and binary_search_2 are graphed in Figure 7.7.
The numbers shown in the graphs are from test runs of the functions; they are not
approximations. The first graph in Figure 7.7 compares the three functions forlogarithmic graphs
small values of n, the number of items in the list. In the second graph we compare
the numbers over a much larger range by employing a log-log graph in which each
unit along an axis represents doubling the corresponding coordinate. In the third
graph we wish to compare the two versions of binary search; a semilog graph is
appropriate here, so that the vertical axis maintains linear units while the horizontal

238

axis is logarithmic.

+

+
+

+ ++

+

+

+

+

+

+

+ ++
+

+
+

+++++

+

++

6

5

4

3

2

1

Sequential
Binary 2

Binary 1

Sequential

Binary

2048

1024

512

256

128

64

32

16

8

4

2

1

1 2 4 8 32 128 512 2048

Sequential

Binary 2

Binary 1

22

20

18

16

14

12

10

8

6

4

2

0 1 2 4 8 24 26 28 210 212 214

linear scale log-log scale

semilog scale

2 4 6 8 10 120

Sequential

Binary 2

Binary 1

Figure 7.7. Numbers of comparisons for average successful searches

296 Chapter 7 • Searching

7.4.4 A General Relationship

Before leaving this section, let us use Theorem 7.3 to obtain a relationship be-
tween the average number of key comparisons for successful and for unsuccessful
searches, a relationship that holds for any searching method for which the com-
parison tree can be drawn as we did for binary_search_2. That is, we shall assumehypotheses
that the leaves of the comparison tree correspond to unsuccessful searches, that the
internal vertices correspond to successful searches, and that two comparisons of
keys are made for each internal vertex, except that only one is made at the vertex
where the target is found. If I and E are the internal and external path lengths of
the tree, respectively, and n is the number of items in the list, so that n is also the
number of internal vertices in the tree, then, as in the analysis of binary_search_2,
we know that the average number of comparisons in a successful search is

237

S = 2
(
I
n
+ 1

)
− 1 = 2I

n
+ 1

and the average number for an unsuccessful search is U = 2E/(n+1). By Theorem
7.3, E = I + 2n. Combining these expressions, we can therefore conclude that

Theorem 7.4 Under the specified conditions, the average numbers of key comparisons done in suc-
cessful and unsuccessful searches are related by

S =
(

1 + 1
n

)
U − 3.

In other words, the average number of comparisons for a successful search is almost
exactly the same as that for an unsuccessful search. Knowing that an item is in the
list is very little help in finding it, if you are searching by means of comparisons of
keys.

Exercises 7.4
E1. Draw the comparison trees for (i) binary_search_1 and (ii) binary_search_2

when (a) n = 5, (b) n = 7, (c) n = 8, (d) n = 13. Calculate the external
and internal path lengths for each of these trees, and verify that the conclusion
of Theorem 7.3 holds.

E2. Sequential search has less overhead than binary search, and so may run faster
for small n. Find the break-even point where the same number of comparisons
of keys is made between sequential_search and binary_search_1. Compute in
terms of the formulas for the number of comparisons done in the average
successful search.

E3. Suppose that you have a list of 10,000 names in alphabetical order in an array
and you must frequently look for various names. It turns out that 20 percent
of the names account for 80 percent of the retrievals. Instead of doing a binary
search over all 10,000 names every time, consider the possibility of splitting the

Section 7.5 • Lower Bounds 297

list into two: a high-frequency list of 2000 names and a low-frequency list of
the remaining 8000 names. To look up a name, you will first use binary search
on the high-frequency list, and 80 percent of the time you will not need to go
on to the second stage, where you use binary search on the low-frequency list.
Is this scheme worth the effort? Justify your answer by finding the number of
comparisons done by binary_search_1 for the average successful search, both
in the new scheme and in a binary search of a single list of 10,000 names.

E4. Use mathematical induction on n to prove that, in the comparison tree for
binary_search_1 on a list of n entries, n > 0, all the leaves are on levels blg 2nc
and dlg 2ne. [Hence, if n is a power of 2 (so that lg 2n is an integer), then all
the leaves are on one level; otherwise, they are all on two adjacent levels.]

E5. If you modified binary search so that it divided the list not essentially in half at
each pass, but instead into two pieces of sizes about one-third and two-thirds
of the remaining list, then what would be the approximate effect on its average
count of comparisons?

Programming
Projects 7.4

P1. (a) Write a “ternary” search function analogous to binary_search_2 that ex-
amines the key one-third of the way through the list, and if the target key is
greater, then examines the key two-thirds of the way through, and thus in any
case at each pass reduces the length of the list by a factor of three. (b) Include
your function as an additional option in the testing program of Project P1 of
Section 7.2 (page 277), and compare its performance with other methods.

P2. (a) Write a program that will do a “hybrid” search, using binary_search_1 for
large lists and switching to sequential search when the search is reduced to a
sufficiently small sublist. (Because of different overhead, the best switch-over
point is not necessarily the same as your answer to Exercise E2.) (b) Include
your function as an additional option in the testing program of Project P1 of
Section 7.2 (page 277), and compare its performance to other methods.

7.5 LOWER BOUNDS

We know that for an ordered contiguous list, binary search is much faster than
sequential search. It is only natural to ask if we can find another method that is
much faster than binary search.

1. Polishing Programs

One approach is to attempt to polish and refine our programs to make them run
faster. By being clever we may be able to reduce the work done in each iteration by
a bit and thereby speed up the algorithm. One method, called Fibonacci search,
even manages to replace the division inside the loop of binary search by certain
subtractions (with no auxiliary table needed), which on some computers will speed
up the function.

298 Chapter 7 • Searching

basic algorithms and
small variations

Fine tuning of a program may be able to cut its running time in half, or perhaps
reduce it even more, but limits will soon be reached if the underlying algorithm
remains the same. The reason why binary search is so much faster than sequential
search is not that there are fewer steps within its loop (there are actually more)
or that the code is optimized, but that the loop is iterated fewer times, about lgn
times instead of n times, and as the number n increases, the value of lgn grows
much more slowly than does the value of n.

In the context of comparing underlying methods, the differences between bi-
nary_search_1 and binary_search_2 become insignificant in comparison with the
difference between either binary search and sequential search. For large lists, bi-
nary_search_2 may require nearly double the time of binary_search_1, but the dif-
ference between 2 lgn and lgn is negligible compared to the difference between
2 lgn comparisons and the n comparisons sometimes needed by sequential search.

2. Arbitrary Searching Algorithms
Let us now ask whether it is possible for any search algorithm to exist that will,
in the worst and the average cases, be able to find its target using significantly
fewer comparisons of keys than binary search. We shall see that the answer is no,
providing that we stay within the class of algorithms that rely only on comparisons
of keys to determine where to look within an ordered list.

general algorithms
and comparison trees

Let us start with an arbitrary algorithm that searches an ordered list by making
comparisons of keys, and imagine drawing its comparison tree in the same way as
we drew the tree for binary_search_1. That is, each internal node of the tree will
correspond to one comparison of keys and each leaf to one of the possible final
outcomes. (If the algorithm is formulated as three-way comparisons like those
of binary_search_2, then we expand each internal vertex into two, as shown for
one vertex in Figure 7.4.) The possible outcomes to which the leaves correspond
include not only the successful discovery of the target but also the different kinds
of failure that the algorithm may distinguish. Binary search of a list of length n
produces k = 2n + 1 outcomes, consisting of n successful outcomes and n + 1
different kinds of failure (less than the smallest key, between each pair of keys,
or larger than the largest key). On the other hand, our sequential search function
produced only k = n + 1 possible outcomes, since it distinguished only one kind
of failure.

height and external
path length

As with all search algorithms that compare keys, the height of our tree will equal
the number of comparisons that the algorithm does in its worst case, and (since all
outcomes correspond to leaves) the external path length of the tree divided by the
number of possible outcomes will equal the average number of comparisons done
by the algorithm. We therefore wish to obtain lower bounds on the height and the
external path length in terms of k, the number of leaves.

239

3. Observations on 2-Trees
Here is the result on 2-trees that we shall need:

Lemma 7.5 Let T be a 2-tree with k leaves. Then the height h of T satisfies h ≥ dlgke and the
external path length E(T) satisfies E(T)≥ k lgk. The minimum values for h and
E(T) occur when all the leaves of T are on the same level or on two adjacent levels.

Section 7.5 • Lower Bounds 299

Proof We begin the proof by establishing the assertion in the last sentence. For suppose
that some leaves of T are on level r and some are on level s , where r > s + 1.
Now take two leaves on level r that are both children of the same vertex v , detach
them from v , and attach them as children of some (former) leaf on level s . Then
we have changed T into a new 2-tree T ′ that still has k leaves, the height of T ′ is
certainly no more than that of T , and the external path length of T ′ satisfies

E(T ′)= E(T)−2r + (r − 1)−s + 2(s + 1)= E(T)−r + s + 1 < E(T)

since r > s + 1. The terms in this expression are obtained as follows. Since two
leaves at level r are removed, E(T) is reduced by 2r . Since vertex v has become a
leaf, E(T) is increased by r −1. Since the vertex on level s is no longer a leaf, E(T)
is reduced by s . Since the two leaves formerly on level r are now on level s + 1,
the term 2(s + 1) is added to E(T). This process is illustrated in Figure 7.8.

239

v

s

r

Figure 7.8. Moving leaves higher in a 2-tree

We can continue in this way to move leaves higher up the tree, reducing the
external path length and possibly the height each time, until finally all the leaves
are on the same or adjacent levels, and then the height and the external path length
will be minimal amongst all 2-trees with k leaves.

proof of h ≥ dlgke To prove the remaining assertions in Lemma 7.5, let us from now on assume
that T has minimum height and path length amongst the 2-trees with k leaves, so
all leaves of T occur on levels h and (possibly) h− 1, where h is the height of T .
By Lemma 7.2, the number of vertices on level h (which are necessarily leaves) is
at most 2h . If all the leaves are on level h, then k ≤ 2h . If some of the leaves are
on level h− 1, then each of these (since it has no children) reduces the number of
possible vertices on level h by 2, so the bound k ≤ 2h continues to hold. We take
logarithms to obtain h ≥ lgk and, since the height is always an integer, we move
up to the ceiling h ≥ dlgke.

proof of E(T)≥ k lgk For the bound on the external path length, let x denote the number of leaves
of T on level h− 1, so that k−x leaves are on level h. These vertices are children
of exactly 1

2(k− x) vertices on level h− 1, which, with the x leaves, comprise all
vertices on level h− 1. Hence, by Lemma 7.2,

1
2(k − x)+x ≤ 2h−1,

300 Chapter 7 • Searching

which becomes x ≤ 2h − k. We now have

E(T) = (h − 1)x + h(k − x)
= kh − x
≥ kh − (2h − k)
= k(h + 1)−2h.

From the bound on the height, we already know that 2h−1 < k ≤ 2h . If we set
h = lgk+ ε, then ε satisfies 0 ≤ ε < 1, and substituting ε into the bound for E(T)
we obtain

E(T)≥ k(lgk + 1 + ε − 2ε).

It turns out that, for 0 ≤ ε < 1, the quantity 1+ε−2ε is between 0 and 0.0861. Thus
the minimum path length is quite close to k lgk and, in any case, is at least k lgk,
as was to be shown. With this, the proof of Lemma 7.5 is complete.end of proof

4. Lower Bounds for Searching

Finally, we return to the study of our arbitrary searching algorithm. Its comparison
tree may not have all leaves on two adjacent levels, but, even if not, the bounds in
Lemma 7.5 will still hold. Hence we may translate these bounds into the language
of comparisons, as follows.

Theorem 7.6 Suppose that an algorithm uses comparisons of keys to search for a target in a list. If
there are k possible outcomes, then the algorithm must make at least dlgke compar-
isons of keys in its worst case and at least lgk in its average case.

Observe that there is very little difference between the worst-case bound and the
average-case bound. By Theorem 7.4, moreover, for many algorithms it does not
much matter whether the search is successful or not, in determining the bound
in the preceding theorem. When we apply Theorem 7.6 to algorithms like binary

239

search for which, on an ordered list of length n, there are n successful and n + 1
unsuccessful outcomes, we obtain a worst-case bound of

dlg(2n + 1)e ≥ dlg(2n)e = dlgne + 1

and an average-case bound of lgn + 1 comparisons of keys. When we compare
these numbers with those obtained in the analysis of binary_search_1, we obtain

Corollary 7.7 binary_search_1 is optimal in the class of all algorithms that search an ordered list by
making comparisons of keys. In both the average and worst cases, binary_search_1
achieves the optimal bound.

Section 7.5 • Lower Bounds 301

An informal way to see why Corollary 7.7 is true is to start with an arbitrary
searching algorithm and imagine drawing its comparison tree for a list of length n.
Since the algorithm is arbitrary, we can’t really draw the tree, but it still would exist,
and we can imagine working with it. If this tree happens to have some leaves that
are at least two levels higher in the tree than other leaves, then we could modify the
tree by deleting a pair of sibling leaves from the lowest level and reattaching them
as the children of a former leaf at least two levels higher. (This process is illustrated
in Figure 7.8.) Doing this will shorten the path length of the tree. Now imagine that
we can even modify the arbitrary algorithm so that its comparison tree becomes the
modified tree. Doing this will improve the performance of the algorithm, since the
number of key comparisons is closely related to the path length of the tree. Now
let us keep on optimizing the algorithm in the same way, as long as there are any
leaves at least two levels higher than other leaves in the comparison tree. Doing so
will make the algorithm better and better, until finally it cannot be optimized any
further in this way because all the leaves in its comparison tree are on one level
or two adjacent levels. But binary_search_1 already has a tree like that. In other
words, by starting with an arbitrary searching algorithm and optimizing it as much
as possible, we might be able to bring its performance up to that of binary_search_1,
and that is therefore as good as we can ever get.

5. Other Ways to Search

The bounds in Theorem 7.6 do not imply that no algorithm can run faster than
binary search, only those that rely only on comparisons of keys. As a simple
example, suppose that the keys are the integers from 0 to n− 1 themselves. If we
know that the target key x is an integer in this range, then we would never perform
a search algorithm to locate its entry; we would simply store the entries in an array
of size n and immediately look in index x to find the desired entry.

interpolation search This idea can be extended to obtain another method called interpolation search.
We assume that the keys are either numerical or are information, such as words,
that can be readily encoded as numbers. The method also assumes that the keys
in the list are uniformly distributed, that is, that the probability of a key being in
a particular range equals its probability of being in any other range of the same
size. To find the target key target, interpolation search then estimates, according to
the magnitude of the number target relative to the first and last entries of the list,
about where target would be in the list and looks there. It then reduces the size of
the list according as target is less than or greater than the key examined. It can be
shown that on average, with uniformly distributed keys, interpolation search will
take about lg lgn comparisons of keys, which, for large n, is somewhat fewer than
binary search requires. If, for example, n = 1,000,000, then binary_search_1 will
require about lg 106 + 1 ≈ 21 comparisons, while interpolation search may need
only about lg lg 106 ≈ 4.32 comparisons.

Interpolation sort is the method a person would normally use to find a specific
page in a book. If you guess that a book is about 500 pages long and you want to
find page 345, you would normally first look about two-thirds of the way through
the book, and search from there. If you wished to find page 10, you would start
near the beginning, or near the end for page 487.

302 Chapter 7 • Searching

Finally, we should repeat that, even for search by comparisons, our assumption
that requests for all keys are equally likely may be far from correct. If one or two
keys are much more likely than the others, then even sequential search, if it looks
for those keys first, may be faster than any other method. The importance of search
or, more generally, information retrieval is so fundamental that much research has
been applied to its methods. In later chapters we shall return to these problems
again and again.

Exercise 7.5 E1. Suppose that, like binary_search_2, a search algorithm makes three-way com-
parisons. Let each internal node of its comparison tree correspond to a suc-
cessful search and each leaf to an unsuccessful search.
(a) Use Lemma 7.5 to obtain a theorem like Theorem 7.6 giving lower bounds

for worst and average case behavior for an unsuccessful search by such an
algorithm.

(b) Use Theorem 7.4 to obtain a similar result for successful searches.
(c) Compare the bounds you obtain with the analysis of binary_search_2.

Programming
Project 7.5

P1. (a) Write a program to do interpolation search and verify its correctness (espe-
cially termination). See the references at the end of the chapter for suggestions
and program analysis. (b) Include your function as another option in the test-
ing program of Project P1 of Section 7.2 (page 277) and compare its performance
with the other methods.

7.6 ASYMPTOTICS

7.6.1 Introduction
The time has come to distill important generalizations from our analyses of search-
ing algorithms. As we have progressed, we have been able to see more clearly
which aspects of algorithm analysis are of great importance and which parts can
safely be neglected. If a section of a program is performed only once outside any
loops or recursion, for example, then the amount of time it uses is negligible com-
pared to the amount of time used inside loops or recursion. We have found that,
although binary search is more difficult to program and to analyze than sequential
search, and even though it runs more slowly when applied to a very short list, for
a longer list it will run far faster than sequential search.

The design of efficient methods to work on small problems is an important
subject to study, because a large program may need to do the same or similardesigning algorithms

for small problems small tasks many times during its execution. As we have discovered, however,
for small problems, the large overhead of a sophisticated method may make it
inferior to a simpler method. For a list of three or four entries, sequential search
is certainly superior to binary search. To improve efficiency in the algorithm for a

Section 7.6 • Asymptotics 303

small problem, the programmer must necessarily devote attention to details specific
to the computer system and programming language, and there are few general
observations that will help with this task.

choice of method for
large problems

The design of efficient algorithms for large problems is an entirely different
matter, and it is this matter that concerns us now. In studying search methods, for
example, we have seen that the overhead becomes relatively unimportant as the
size of the list increases; it is the basic idea that will make all the difference between
an efficient algorithm and one that runs too slowly to be practical.

asymptotics The word asymptotics that titles this section means the study of functions
of a parameter n, as n becomes larger and larger without bound. Typically, we
study a function f(n) that gives the amount of work done by an algorithm in
solving a problem of size n, as the parameter n increases. In comparing searching

240

algorithms on a list of n entries, for example, we have seen that the count f(n)
of the number of comparisons of keys accurately reflects the total running time for
large problems, since it has generally been true that all the other operations (such
as incrementing and comparing indices) have gone in lock step with comparison
of keys.

basic actions In fact, the frequency of such basic actions is much more important than is
a total count of all operations, including the housekeeping. The total including
housekeeping is too dependent on the choice of programming language and on the
programmer’s particular style, so dependent that it tends to obscure the general
methods. Variations in housekeeping details or programming technique can easily
triple the running time of a program, but such a change probably will not make theprogram variation
difference between whether the computation is feasible or not. If we wait a little
while or invest a little more money, we can obtain a computer three times as fast
and so will not be inconvenienced by a program that takes three times as long as it
might.

A change in fundamental method, on the other hand, can make a vital differencechoice of method
in the resources required to solve a problem. If the number of basic actions done
by an algorithm is proportional to the size n of the input, then doubling n will
about double the running time, no matter how the housekeeping is done. If the
number of basic actions is proportional to lgn, then doubling n will hardly change
the running time at all. If the number of basic actions is proportional to n2 , then
the running time will quadruple, and the computation may still be feasible, but it
may be uncomfortably long. But now suppose that the number of basic actions is
proportional to 2n , that is, is an exponential function of n. In this case, doubling n
will square the number of basic actions that the program must do. A computation
that took 1 second might involve a million (106) basic actions, and doubling the
size of the input would then require 1012 basic actions, increasing the running time
from 1 second to 11 1

2 days. Doubling the input again raises the count of basic
actions to 1024 and the time to about 30 billion years. The function 2n grows very
rapidly indeed as n increases.

Our desire in formulating general principles that will apply to the analysis ofgeneralization
many classes of algorithms, then, is to have a notation that will accurately reflect
the way in which the computation time will increase with the size, but that will
ignore superfluous details with little effect on the total. We wish to concentrate on
one or two basic operations within the algorithm, without too much concern for

304 Chapter 7 • Searching

all the housekeeping operations that will accompany them. If an algorithm does
f(n) basic operations when the size of its input is n, then its total running time
will be at most cf(n), where c is a constant that depends on the way the algorithm
is programmed and on the computer used, but c does not depend on the size n of
the input as n increases.

Our goal is now to obtain a concise, easy-to-understand notation that will tell
us how rapidly a function f(n) grows as n increases, a notation that will give us
useful information about the amount of work an algorithm does.

7.6.2 Orders of Magnitude

1. Definitions
The idea is for us to compare our function f(n) with some well-known function
g(n) whose behavior we already understand. In fact, some of the most common
choices for the function g(n) against which we compare f(n) are:

➥ g(n)= 1 Constant function

➥ g(n)= logn Logarithmic function

➥ g(n)= n Linear function

➥ g(n)= n2 Quadratic function

➥ g(n)= n3 Cubic function

➥ g(n)= 2n Exponential function

To compare f(n) against g(n), we take their quotient f(n)/g(n) and take the

240

limit of this quotient as n increases without bound. Depending on the outcome,
we have one of the following cases:

Definition If lim
n→∞

f(n)
g(n)

= 0 then:

f(n) has strictly smaller order of magnitude than g(n).

If lim
n→∞

f(n)
g(n)

is finite and nonzero then:

f(n) has the same order of magnitude as g(n).

If lim
n→∞

f(n)
g(n)

= ∞ then:

f(n) has strictly greater order of magnitude than g(n).

The term order of magnitude is often shortened to order when the context makes the
meaning clear.

Note that the second case, when f(n) and g(n) have the same order of mag-
nitude, includes all values of the limit except 0 and ∞. In this way, changing the
running time of an algorithm by any nonzero constant factor will not affect its order
of magnitude.

Section 7.6 • Asymptotics 305

2. Assumptions

In this definition, and always throughout this book, we make two assumptions:

➥ We assume that f(n)> 0 and g(n)> 0 for all sufficiently large n.

➥ We assume that lim
n→∞

f(n)
g(n)

exists.

The reason for assuming that f(n) and g(n) are strictly positive (for large n) is to
avoid the possibility of division by 0 and the need to worry about whether limits
are positive or negative. Since operation counts and timings for algorithms are

241

always positive, this is really no restriction.
The assumption that the limit exists avoids the possibility that the quotient

might turn out to be a function like x sinx , part of whose graph is shown in Figure
7.9. This function takes on every possible value an infinite number of times, and,
no matter how large you require x to be, it still takes on every possible value an
infinite number of times for even larger values of x . Hence there is no way that
x sinx can be considered to be approaching any fixed limit as x tends to infinity.

0

Figure 7.9. Graph of x sinx

306 Chapter 7 • Searching

Note that we are following the convention that the limit of a function that grows
larger and larger without bound does exist and is infinite. (Some mathematicians
consider that such a limit does not exist.) The following defines an infinite limit in

241

terms of finite limits:

Definition lim
n→∞

f(n)
g(n)

= ∞ means the same as lim
n→∞

g(n)
f(n)

= 0.

3. Polynomials
For our first example, let us take a polynomial

f(n)= 3n2 − 100n − 25.

First, let us note that, for small values of n, f(n) is negative; for example, f(1)=
3 − 100 − 25 = −122. This is because 3n2 < 100n for small n. However, as
n increases—anytime, in fact, after n ≥ 34—3n2 dominates 100n, and, in fact,
f(n)> 0 for all n ≥ 34.

Suppose g(n)= n3 . Then

lim
n→∞

f(n)
g(n)

= lim
n→∞

3n2 − 100n − 25
n3 = lim

n→∞

(3
n
− 100
n2 − 25

n3

)
= 0

since each term goes to 0 as n → ∞. Hence 3n2 − 100n − 25 has strictly smaller
order than n3 .

On the other hand, for g(n)= n we have

lim
n→∞

f(n)
g(n)

= lim
n→∞

3n2 − 100n − 25
n

= lim
n→∞

(
3n − 100 − 25

n

)
= ∞

since the first term goes to ∞ as n→∞, whereas the second term does not change
and the third goes to 0. Hence 3n2 − 100n− 25 has strictly greater order than n.

If we choose g(n)= n2 we obtain the same order as f(n), since

242

lim
n→∞

f(n)
g(n)

= lim
n→∞

3n2 − 100n − 25
n

= lim
n→∞

(
3 − 100

n
− 25
n2

)
= 3.

It is easy to generalize this example to obtain:

If f(n) is any polynomial in n with degree r , then f(n) has the same order ofpolynomials
magnitude as nr .

We can also see that

If r < s , then nr has strictly smaller order of magnitude than ns .powers of n

Section 7.6 • Asymptotics 307

4. Logarithms and L’Hôpital’s Rule
Logarithms form a second class of functions that appear frequently in studying
algorithms. We have already used logarithms in the analysis of binary search, and
we have seen that the logarithm of n grows much more slowly than n itself. We
shall now generalize this observation, but first let us note the following:

The order of magnitude of a logarithm does not depend on the base for the logarithms.change of base

To see why this is true, let loga n and logb n be logarithms to two different bases
a > 1 and b > 1. As observed in Section A.2.6, logb n = (logb a)(loga n). Hence,

lim
n→∞

logb n
loga n

= lim
n→∞

(logb a)(loga n)
loga n

= logb a,

which is a nonzero constant, so logb n has the same order of magnitude as loga a,
which was to be shown.

Since the base for logarithms makes no difference to the order of magnitude, we
shall generally write log rather than lg or ln in any order-of-magnitude expression.

Next, let us compare the order of magnitude of logn with a power of n, say
nr where r > 0 is any positive real number. When we take the quotient we see
that both logn → ∞ and nr → ∞ as n → ∞. The limit of the quotient is called
indeterminate because it is not possible to determine the limit without further
information. We shall borrow an important tool from calculus, called L’Hôpital’s
Rule, to help with this problem.

Theorem 7.8 L’Hôpital’s Rule Suppose that:

➥ f(x) and g(x) are differentiable functions for all sufficiently large x , with
derivatives f ′(x) and g′(x), respectively.243

➥ lim
x→∞f(x)= ∞ and lim

x→∞g(x)= ∞.

➥ lim
x→∞

f ′(x)
g′(x)

exists.

Then lim
x→∞

f(x)
g(x)

exists and lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

.

When we apply L’Hôpital’s Rule to f(x)= lnx and g(x)= xr , r > 0, we have
f ′(x)= 1/x and g′(x)= rxr−1 , and hence

lim
x→∞

lnx
xr

= lim
x→∞

1/x
rxr−1 = lim

x→∞
1
rxr

= 0

since r > 0. Since the base for logarithms doesn’t matter, we have:

242

logn has strictly smaller order of magnitude than any positive power nr of n, r > 0.logarithms

308 Chapter 7 • Searching

5. Exponential Functions
We can again apply L’Hôpital’s Rule to try verifying that an exponential function
has strictly greater order of magnitude than a power of n. Specifically, let f(x)=
ax , where a > 1 is a real number, and let g(x)= xr , where r is a positive integer.
Since f(x)→∞ and g(x)→∞ as x →∞, we calculate the derivatives

f ′(x)= d
dx

ax = d
dx

(
elna

)x = d
dx

e(lna)x = (lna)e(lna)x = (lna)ax

and g′(x)= rxr−1 .
Unfortunately, both f ′(x)→ ∞ and (if r > 1) g′(x)→ ∞ as x → ∞, so L’Hô-

pital’s Rule does not immediately provide the solution. We can, however, apply
L’Hôpital’s Rule to f ′(x) and g′(x). Again, the quotient f ′(x)/g′(x) may be
indeterminate, but we can continue all the way to the r th derivative, where we
find

f (r)(x)= (lna)rax and g(r)(x)= r !.

This quotient, finally, is no longer indeterminate: f (r)(x)→ ∞ and g(r)(x) is the

243

constant r !. Hence

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

= · · · = lim
x→∞

f (r)(x)
g(r)(x)

= lim
x→∞

(lna)rax

r !
= ∞.

Therefore:

Any exponential function an for any real number a > 1 has strictly greater order ofexponentials
magnitude than any power nr of n, for any positive integer r .

Finally, let us compare exponential functions for two different bases, an and bn .
Again, we could try to apply L’Hôpital’s Rule, but now we would find that the
derivatives always tend to infinity as x → ∞. Fortunately, we can determine the
limit directly. We assume 0 ≤ a < b .

lim
n→∞

an

bn
= lim

n→∞

(
a
b

)n
= 0

since a < b . Hence:

If 0 ≤ a < b then an has strictly smaller order of magnitude than bn .two exponentials

6. Common Orders
We could continue to compare many other functions for order of magnitude, but,
fortunately, for almost algorithm analyses that we need, a very short list of func-
tions is all we need. We have already seen six of these functions, the functions 1
(constant), logn (logarithmic), n (linear), n2 (quadratic), n3 (cubic), and 2n (ex-
ponential). From the work we have done, we can conclude that these six functions
are listed in strictly increasing order of magnitude.

Starting in Section 8.5, we shall see that one more function is important, the
function g(n)= n logn. In order of magnitude, where does this function fit in this
list? To answer, we shall use the following easy fact:

Section 7.6 • Asymptotics 309

If h(n) is any function for which h(n)> 0 for all sufficiently large n, then the orderproduct with a
function of magnitude of f(n)h(n) is related to the order of g(n)h(n) in the same way (less

than, equal to, or greater than) as the order of f(n) is related to the order of g(n).

The proof of this is simply the observation that

lim
n→∞

f(x)h(x)
g(x)h(x)

= lim
n→∞

f(x)
g(x)

.

First, let us compare the order of n logn with n. We let h(n)= n, and we
see that the comparison is the same as between logn and 1, so we conclude that
n logn has strictly greater order than n. But, if we take any ε > 0, logn has strictly
smaller order than nε , so (again with h(n)= n) n logn has strictly smaller order
than n1+ε .244

4000

3000

2000

1000

0
0 5 10 15 20

n32n

n2

108

107

106

105

104

103

102

101

1
1 10 100 1000 10,000

2n n3 n2

n

lg n

n lg n

Linear scale Logarithmic scale

1
n

Figure 7.10. Growth rates of common functions

Figure 7.10 shows how these seven functions (with constant 1 and base 2 for
logarithms) grow with n, and the relative sizes of some of these numbers are
shown in Figure 7.11. The number in the lower right corner of the table in Figure
7.11 is beyond comprehension: If every electron in the universe (1050 of them) were
a supercomputer doing a hundred million (108) operations per second since the
creation of the universe (perhaps 30 billion years, or about 1018 seconds), then a
computation requiring 21000 operations would have done only about 1076 oper-
ations, so it would have to go 10225 times as long! A computation requiring 2n

operations is feasible only for very small values of n.

310 Chapter 7 • Searching

n 1 lgn n n lgn n2 n3 2n

1 1 0.00 1 0 1 1 2
10 1 3.32 10 33 100 1000 1024

100 1 6.64 100 664 10,000 1,000,000 1.268× 1030

1000 1 9.97 1000 9970 1,000,000 109 1.072× 10301

Figure 7.11. Relative sizes of functions

Notice especially how much slower lgn grows than n; this is essentially the
reason why binary search is superior to sequential search for large lists. Notice
how the functions 1 and lgn become farther and farther below all the others for
large n.

7.6.3 The Big-O and Related Notations

To use orders of magnitude effectively in calculations, we need a notation more
compact than writing phrases like

strictly smaller order of magnitude than.

We compare magnitudes in the same way as numbers are compared with the stan-
dard comparison symbols <, ≤, =, ≥, and >. Unfortunately, no such system of

245

comparison symbols for orders of magnitude is in common use. Instead, a system
of certain greek and latin letters is used. And, as we shall see, this system does
have its own advantages, even though it takes a bit of practice at first to learn its
use.

Here are the four terms commonly used:

Notation: Pronounce: Meaning: Value of
f(n) is f(n) is Order of f compared to g is lim

n→∞
(
f(n)/g(n)

)

o
(
g(n)

)
little oh of g(n) < strictly smaller 0

O
(
g(n)

)
Big Oh of g(n) ≤ smaller or equal finiteΘ(g(n)) Big Theta of g(n) = equal nonzero finiteΩ(g(n)) Big Omega of g(n) ≥ larger or equal nonzero

To illustrate how these notations are used, let us recast some of the algorithm
analyses we have done into the new notation:

Section 7.6 • Asymptotics 311

➥ On a list of length n, sequential search has running time Θ(n).
➥ On an ordered list of length n, binary search has running time Θ(logn).

➥ Retrieval from a contiguous list of length n has running time O(1).

➥ Retrieval from a linked list of length n has running time O(n).

➥ Any algorithm that uses comparisons of keys to search a list of length n must
make Ω(logn) comparisons of keys (Theorem 7.6).

➥ Any algorithm for the Towers of Hanoi (see Section 5.1.4) requires time Ω(2n)
in order to move n disks.

The general observations we have made about order of magnitude can also be
recast as follows:

246

➥ If f(n) is a polynomial in n of degree r , then f(n) is Θ(nr).polynomials

➥ If r < s , then nr is o(ns).powers of n

➥ If a > 1 and b > 1 then loga(n) is Θ(logb(n)
)
.change of base

➥ logn is o(nr) for any r > 0.logarithms

➥ For any real number a > 1 and any positive integer r , nr is o(an).exponentials

➥ If 0 ≤ a < b then an is o(bn).two exponentials

7.6.4 Keeping the Dominant Term

Note that, in all three notations O , Θ , and Ω where the limit may have a finite,
nonzero value, the notations make no distinction between one nonzero value and
another. This is usually appropriate for algorithm analyses, since multiplying the
result by a constant may reflect only a change in programming style or a change in
computer speed.

Sometimes, however, we would like to have a more precise measure of the
amount of work done by an algorithm, and we can obtain one by using the big-O
notation within an expression, as follows. We define

f(n)= g(n)+O(h(n))

to mean that f(n)−g(n) is O
(
h(n)

)
. Instead of thinking of O

(
h(n)

)
as the class

of all functions growing no faster than ch(n) for some constant c , we think of
O
(
h(n)

)
as a single but arbitrary such function. We then use this function to

represent all the terms of our calculation in which we are not interested, generally
all the terms except the one that grows the most quickly.search comparisons

312 Chapter 7 • Searching

The results of some of our algorithm analyses can now be summarized as
follows:

246

➥ For a successful search in a list of length n, sequential search has running time
1
2n+O(1).

➥ For a successful search in an ordered list of length n, binary search has running
time 2 lgn+O(1).

➥ Retrieval from a contiguous list of length n has running time O(1).

➥ Retrieval from a simply linked list of length n has average running time 1
2n+

O(1).

In using the big-O notation in expressions, it is necessary always to remember thatdanger
O
(
h(n)

)
does not stand for a well-defined function, but for an arbitrary function

from a large class. Hence ordinary algebra cannot be done with O
(
h(n)

)
. For

example, we might have two expressions

n2 + 4n − 5 = n2 + O(n) and n2 − 9n + 7 = n2 + O(n)

but O(n) represents different functions in the two expressions, so we cannot equate
the right sides or conclude that the left sides are equal.

Exercises 7.6
E1. For each of the following pairs of functions, find the smallest integer value of

n > 1 for which the first becomes larger than the second. [For some of these,
use a calculator to try various values of n.]

(a) n2 and 15n+ 5
(b) 2n and 8n4

(c) 0.1n and 10 lgn
(d) 0.1n2 and 100n lgn

E2. Arrange the following functions into increasing order; that is, f(n) should
come before g(n) in your list if and only if f(n) is O

(
g(n)

)
.

100000 (lgn)3 2n

n lgn n3 − 100n2 n+ lgn
lg lgn n0.1 n2

E3. Divide the following functions into classes so that two functions f(n) and
g(n) are in the same class if and only if f(n) is Θ(g(n)). Arrange the classes
from the lowest order of magnitude to the highest. [A function may be in a
class by itself, or there may be several functions in the same class.]

5000 (lgn)5 3n

lgn n+ lgn n3

n2 lgn n2 − 100n 4n+√n
lg lgn2 n0.3 n2

lgn2
√
n2 + 4 2n

Section 7.6 • Asymptotics 313

E4. Show that each of the following is correct.

(a) 3n2 − 10n lgn− 300 is Θ(n2).

(b) 4n lgn+ 100n−√n+ 5 is Ω(n).
(c) 4n lgn+ 100n−√n+ 5 is o

(√
n3
)
.

(d) (n− 5)(n+ lgn+√n) is O(n2).

(e)
√
n2 + 5n+ 12 is Θ(n).

E5. Decide whether each of the following is correct or not.

(a) (3 lgn)3−10
√
n+ 2n is O(n).

(b) (3 lgn)3−10
√
n+ 2n is Ω(√n).

(c) (3 lgn)3−10
√
n+ 2n is o(n logn).

(d)
√
n2 − 10n+ 100 is Ω(n).

(e) 3n− 10
√
n+

√
n lgn is O(n).

(f) 2n −n3 is Ω(n4).

(g)
√

3n− 12n lgn− 2n3 +n4 is Θ(n2).

(h) (n+ 10)3 is O
(
(n− 10)3).

E6. Suppose you have programs whose running times in microseconds for an input
of size n are 1000 lgn, 100n, 10n2 , and 2n . Find the largest size n of input that
can be processed by each of these programs in (a) one second, (b) one minute,
(c) one day, and (d) one year.

E7. Prove that a function f(n) is Θ(g(n)) if and only if f(n) is O
(
g(n)

)
and f(n)

is Ω(g(n))
E8. Suppose that f(n) is Θ(g(n)) and h(n) is o

(
g(n)

)
. Prove that f(n)+h(n) isΘ(g(n)).

E9. Find functions f(n) and h(n) that are both Θ(n) but f(n)+h(n) is not Θ(n).
E10. Suppose that f(n) is O

(
g(n)

)
and h(n) is O

(
g(n)

)
. Prove that f(n)+h(n)

is O
(
g(n)

)
.

E11. Show that the relation O is transitive; that is, from the assumption that f(n)
is O

(
g(n)

)
and g(n) is O

(
h(n)

)
, prove that f(n) is O

(
h(n)

)
. Are any of the

other relations o , Θ , and Ω transitive? If so, which one(s)?

E12. Show that the relation Θ is symmetric; that is, from the assumption that f(n)
is Θ(g(n)) prove that g(n) is Θ(f(n)). Are any of the other relations o , O ,
and Ω symmetric? If so, which one(s)?

E13. Show that the relation Ω is reflexive; that is, prove that any function f(n) isΩ(f(n)). Are any of the other relations o , O , and Θ reflexive? If so, which
one(s)?

314 Chapter 7 • Searching

E14. A relation is called an equivalence relation if it is reflexive, symmetric, and
transitive. On the basis of the three preceding exercises, which (if any) of o , O ,Θ , and Ω is an equivalence relation?

E15. Suppose you are evaluating computer programs by running them without
seeing the source code. You run each program for several sizes n of input and
obtain the operation counts or times shown. In each case, on the basis of the
numbers given, find a constant c and a function g(n) (which should be one
of the seven common functions shown in Figure 7.10) so that cg(n) closely
approximates the given numbers.

(a) n: 10 50 200 1000
count: 201 998 4005 19987

(b) n: 10 100 1000 10000
count: 3 6 12 24

(c) n: 10 20 40 80
count: 10 40 158 602

(d) n: 10 11 12 13
count: 3 6 12 24

E16. Two functions f(n) and g(n) are called asymptotically equal if

lim
n→∞

f(n)
g(n)

= 1,

in which case we write f(n)� g(n). Show each of the following:
(a) 3x2 − 12x + 7 � 3x2 .
(b)

√
x2 + 1 � x .

(c) If f(n)� g(n) then f(n) is Θ(g(n)).
(d) If f(n)� g(n) and g(n)� h(n), then f(n)� h(n).Programming

Project 7.6
P1. Write a program to test on your computer how long it takes to do n lgn, n2 ,

n5 , 2n , and n! additions for n = 5, 10, 15, 20.

POINTERS AND PITFALLS

1. In designing algorithms be very careful of the extreme cases, such as empty
247 lists, lists with only one item, or full lists (in the contiguous case).

2. Be sure that all your variables are properly initialized.

3. Double check the termination conditions for your loops, and make sure that
progress toward termination always occurs.

4. In case of difficulty, formulate statements that will be correct both before and
after each iteration of a loop, and verify that they hold.

Chapter 7 • Review Questions 315

5. Avoid sophistication for sophistication’s sake. If a simple method is adequate
for your application, use it.

6. Don’t reinvent the wheel. If a ready-made function is adequate for your appli-
cation, use it.

7. Sequential search is slow but robust. Use it for short lists or if there is any
doubt that the keys in the list are properly ordered.

8. Be extremely careful if you must reprogram binary search. Verify that your
algorithm is correct and test it on all the extreme cases.

9. Drawing trees is an excellent way both to trace the action of an algorithm and
to analyze its behavior.

10. Rely on the big-O analysis of algorithms for large applications but not for small
applications.

REVIEW QUESTIONS

1. Name three conditions under which sequential search of a list is preferable to7.4
binary search.

2. In searching a list of n items, how many comparisons of keys are done, on av-7.5
erage, by (a) sequential_search, (b) binary_search_1, and (c) binary_search_2?

3. Why was binary search implemented only for contiguous lists, not for linked
lists?

4. Draw the comparison tree for binary_search_1 for searching a list of length
(a) 1, (b) 2, and (c) 3.

5. Draw the comparison tree for binary_search_2 for searching a list of length
(a) 1, (b) 2, and (c) 3.

6. If the height of a 2-tree is 3, what are (a) the largest and (b) the smallest number
of vertices that can be in the tree?

7. Define the terms internal and external path length of a 2-tree. State the path
length theorem.

8. What is the smallest number of comparisons that any method relying on com-7.6
parisons of keys must make, on average, in searching a list of n items?

9. If binary_search_2 does 20 comparisons for the average successful search, then
about how many will it do for the average unsuccessful search, assuming that
the possibilities of the target less than the smallest key, between any pair of
keys, or larger than the largest key are all equally likely?

10. What is the purpose of the big-O notation?7.7

316 Chapter 7 • Searching

REFERENCES FOR FURTHER STUDY

The primary reference for this chapter is KNUTH, Volume 3. (See the end of Chapter 2
for bibliographic details.) Sequential search occupies pp. 389–405; binary search
is covered in pp. 406–414; then comes Fibonacci search, and a section on history.
KNUTH studies every method we have touched, and many others besides. He does
algorithm analysis in considerably more detail than we have, writing his algorithms
in a pseudo-assembly language and counting operations in detail there.

Proving the correctness of the binary search algorithm is the topic of

JON BENTLEY, “Programming pearls: Writing correct programs” (regular column),
Communications of the ACM 26 (1983), 1040–1045.

In this column BENTLEY shows how to formulate a binary search algorithm from its
requirements, points out that about 90 percent of professional programmers whom
he has taught were unable to write the program correctly in one hour, and gives a
formal verification of correctness.

The following paper studies 26 published versions of binary search, pointing
out correct and erroneous reasoning and drawing conclusions applicable to other
algorithms:

R. LESUISSE, “Some lessons drawn from the history of the binary search algorithm,”
The Computer Journal 26 (1983), 154–163.

Theorem 7.4 (successful and unsuccessful searches take almost the same time on
average) is due to

T. N. HIBBARD, Journal of the ACM 9 (1962), 16–17.

Interpolation search is presented in

C. C. GOTLIEB and L. R. GOTLIEB, Data Types and Structures, Prentice Hall, Englewood
Cliffs, N. J., 1978, pp. 133–135.

The following book gives further information on the asymptotic relations o , O , Θ ,
and Ω, presented in entertaining style:

GREGORY J. E. RAWLINS, Compared to What? An Introduction to the Analysis of Al-
gorithms, Computer Science Press (imprint of W. H. Freeman), New York, 1992,
pp. 38–77.

Sorting 8

T
HIS CHAPTER studies several important methods for sorting lists, both con-
tiguous lists and linked lists. At the same time, we shall develop further
tools that help with the analysis of algorithms and apply these to determine
which sorting methods perform better under different circumstances.

8.1 Introduction and Notation 318
8.1.1 Sortable Lists 319

8.2 Insertion Sort 320
8.2.1 Ordered Insertion 320
8.2.2 Sorting by Insertion 321
8.2.3 Linked Version 323
8.2.4 Analysis 325

8.3 Selection Sort 329
8.3.1 The Algorithm 329
8.3.2 Contiguous Implementation 330
8.3.3 Analysis 331
8.3.4 Comparisons 332

8.4 Shell Sort 333

8.5 Lower Bounds 336

8.6 Divide-and-Conquer Sorting 339
8.6.1 The Main Ideas 339
8.6.2 An Example 340

8.7 Mergesort for Linked Lists 344

8.7.1 The Functions 345
8.7.2 Analysis of Mergesort 348

8.8 Quicksort for Contiguous Lists 352
8.8.1 The Main Function 352
8.8.2 Partitioning the List 353
8.8.3 Analysis of Quicksort 356
8.8.4 Average-Case Analysis of Quicksort 358
8.8.5 Comparison with Mergesort 360

8.9 Heaps and Heapsort 363
8.9.1 Two-Way Trees as Lists 363
8.9.2 Development of Heapsort 365
8.9.3 Analysis of Heapsort 368
8.9.4 Priority Queues 369

8.10 Review: Comparison of Methods 372

Pointers and Pitfalls 375
Review Questions 376
References for Further Study 377

317

8.1 INTRODUCTION AND NOTATION

We live in a world obsessed with keeping information, and to find it, we must
keep it in some sensible order. Librarians make sure that no one misplaces a book;
income tax authorities trace down every dollar we earn; credit bureaus keep track
of almost every detail of our actions. I once saw a cartoon in which a keen filing
clerk, anxious to impress the boss, said frenetically, “Let me make sure these files
are in alphabetical order before we throw them out.” If we are to be the masters of
this explosion instead of its victims, we had best learn how to keep track of it all!

Several years ago, it was estimated, more than half the time on many com-practical importance
mercial computers was spent in sorting. This is perhaps no longer true, since
sophisticated methods have been devised for organizing data, methods that do
not require that the data be kept in any special order. Eventually, nonetheless, the

249

information does go out to people, and then it must often be sorted in some way.
Because sorting is so important, a great many algorithms have been devised

for doing it. In fact, so many good ideas appear in sorting methods that an entire
course could easily be built around this one theme. Amongst the differing environ-
ments that require different methods, the most important is the distinction between
external and internal; that is, whether there are so many records to be sorted thatexternal and internal

sorting they must be kept in external files on disks, tapes, or the like, or whether they
can all be kept internally in high-speed memory. In this chapter, we consider only
internal sorting.

It is not our intention to present anything close to a comprehensive treatment
of internal sorting methods. For such a treatment, see Volume 3 of the monumen-reference
tal work of D. E. KNUTH (reference given at end of Chapter 2). KNUTH expounds
about twenty-five sorting methods and claims that they are “only a fraction of the
algorithms that have been devised so far.” We shall study only a few methods in
detail, chosen because:

➥ They are good—each one can be the best choice under some circumstances.

➥ They illustrate much of the variety appearing in the full range of methods.

➥ They are relatively easy to write and understand, without too many details to
complicate their presentation.

A considerable number of variations of these methods also appear as exercises.
Throughout this chapter we use the notation and classes set up in Chapter 6

and Chapter 7. Thus we shall sort lists of records into the order determined by keysnotation
associated with the records. The declarations for a list and the names assigned to
various types and operations will be the same as in previous chapters.

In one case we must sometimes exercise special care: Two or more of the
entries in a list may have the same key. In this case of duplicate keys, sorting
might produce different orders of the entries with duplicate keys. If the order of
entries with duplicate keys makes a difference to an application, then we must be
especially careful in constructing sorting algorithms.

318

Section 8.1 • Introduction and Notation 319

In studying searching algorithms, it soon became clear that the total amount
of work done was closely related to the number of comparisons of keys. The samebasic operations
observation is true for sorting algorithms, but sorting algorithms must also either
change pointers or move entries around within the list, and therefore time spent
this way is also important, especially in the case of large entries kept in a contiguous
list. Our analyses will therefore concentrate on these two basic actions.

As before, both the worst-case performance and the average performance of
a sorting algorithm are of interest. To find the average, we shall consider whatanalysis
would happen if the algorithm were run on all possible orderings of the list (with
n entries, there are n! such orderings altogether) and take the average of the results.

8.1.1 Sortable Lists

Throughout this chapter we shall be particularly concerned with the performance
of our sorting algorithms. In order to optimize performance of a program for
sorting a list, we shall need to take advantage of any special features of the list’s
implementation. For example, we shall see that some sorting algorithms work
very efficiently on contiguous lists, but different implementations and different
algorithms are needed to sort linked lists efficiently. Hence, to write efficient sorting
programs, we shall need access to the private data members of the lists being
sorted. Therefore, we shall add sorting functions as methods of our basic List data

250

structures. The augmented list structure forms a new ADT that we shall call a
Sortable_List. The class definition for a Sortable_List takes the following form.

template <class Record>
class Sortable_list: public List<Record> {
public: // Add prototypes for sorting methods here.
private: // Add prototypes for auxiliary functions here.
};

This definition shows that a Sortable_list is a List with extra sorting methods. As
usual, the auxiliary functions of the class are functions, used to build up the meth-
ods, that are unavailable to client code. The base list class can be any of the List
implementations of Chapter 6.

We use a template parameter class called Record to stand for entries of theRecord and Key
Sortable_list. As in Chapter 7, we assume that the class Record has the following
properties:

Every Record has an associated key of type Key. A Record can be implicitly convertedrequirements
to the corresponding Key. Moreover, the keys (hence also the records) can be compared
under the operations ‘ < ,’ ‘ > ,’ ‘ >= ,’ ‘ <= ,’ ‘ == ,’ and ‘ != .’

320 Chapter 8 • Sorting

Any of the Record implementations discussed in Chapter 7 can be supplied, by a
client, as the template parameter of a Sortable_list. For example, a program for
testing our Sortable_list might simply declare:

Sortable_list<int> test_list;

Here, the client uses the type int to represent both records and their keys.

8.2 INSERTION SORT

8.2.1 Ordered Insertion

When first introducing binary search in Section 7.3, we mentioned that an ordered
list is just a new abstract data type, which we defined as a list in which each entry
has a key, and such that the keys are in order; that is, if entry i comes before entry
j in the list, then the key of entry i is less than or equal to the key of entry j .
We assume that the keys can be compared under the operations ‘<’ and ‘>’ (for

251

example, keys could be numbers or instances of a class with overloaded comparison
operators).

For ordered lists, we shall often use two new operations that have no counter-
parts for other lists, since they use keys rather than positions to locate the entry.

➥ One operation retrieves an entry with a specified key from the ordered list.retrieval by key

➥ The second operation inserts a new entry into an ordered list by using the keyinsertion by key
in the new entry to determine where in the list to insert it.

Note that insertion is not uniquely specified if the list already contains an entry
with the same key as the new entry, since the new entry could go into more than
one position.

Retrieval by key from an ordered list is exactly the same as searching. We have
already studied this problem in Chapter 7. Ordered insertion will serve as the basis
for our first sorting method.

First, let us consider a contiguous list. In this case, it is necessary to move entriesordered insertion,
contiguous list in the list to make room for the insertion. To find the position where the insertion

is to be made, we must search. One method for performing ordered insertion into
a contiguous list is first to do a binary search to find the correct location, then move
the entries as required and insert the new entry. This method is left as an exercise.
Since so much time is needed to move entries no matter how the search is done, it
turns out in many cases to be just as fast to use sequential search as binary search.
By doing sequential search from the end of the list, the search and the movement of
entries can be combined in a single loop, thereby reducing the overhead required
in the function.

Section 8.2 • Insertion Sort 321

New
entry

Ordered
list Move

last entry
Move

previous
entry

Complete
insertion

cat

cow

dog

pig

ram

cat

cow

dog

pig

ram

cat

cow

dog

pig

ram

cat

cow

dog

hen

pig

ram

hen

(a) (b) (c) (d)

Figure 8.1. Ordered insertion

An example of ordered insertion appears in Figure 8.1. We begin with the
ordered list shown in part (a) of the figure and wish to insert the new entry hen. Inexample
contrast to the implementation-independent version of insert from Section 7.3, we
shall start comparing keys at the end of the list, rather than at its beginning. Hence
we first compare the new key hen with the last key ram shown in the colored box in
part (a). Since hen comes before ram, we move ram one position down, leaving the
empty position shown in part (b). We next compare hen with the key pig shown
in the colored box in part (b). Again, hen belongs earlier, so we move pig down
and compare hen with the key dog shown in the colored box in part (c). Since hen
comes after dog, we have found the proper location and can complete the insertion
as shown in part (d).

8.2.2 Sorting by Insertion

Our first sorting method for a list is based on the idea of insertion into an ordered
list. To sort an unordered list, we think of removing its entries one at a time and
then inserting each of them into an initially empty new list, always keeping the
entries in the new list in the proper order according to their keys.

This method is illustrated in Figure 8.2, which shows the steps needed to sortexample
a list of six words. At each stage, the words that have not yet been inserted into
the sorted list are shown in colored boxes, and the sorted part of the list is shown
in white boxes. In the initial diagram, the first word hen is shown as sorted, since
a list of length 1 is automatically ordered. All the remaining words are shown as
unsorted at this stage. At each step of the process, the first unsorted word (shown
in the uppermost gray box) is inserted into its proper position in the sorted part of
the list. To make room for the insertion, some of the sorted words must be moved
down the list. Each move of a word is shown as a colored arrow in Figure 8.2. By
starting at the end of the sorted part of the list, we can move entries at the same
time as we do comparisons to find where the new entry fits.

322 Chapter 8 • Sorting

cat

cow

dog

ewe

hen

ram

Initial
order

Insert
second
entry

Insert
third
entry

Insert
fourth
entry

Insert
fifth
entry

Insert
sixth
entry

sorted hen

cow

cat

ram

ewe

dog

cat

cow

hen

ram

ewe

dog

cat

cow

hen

ram

ewe

dog

cat

cow

ewe

hen

ram

dog

cow

hen

cat

ram

ewe

dog

sorted
.
.
.
.
.
.
.

sorted

unsorted
.
.
.
.
.
.

Figure 8.2. Example of insertion sort

The main step required to insert an entry denoted current into the sorted part of
the list is shown in Figure 8.3. In the method that follows, we assume that the class
Sorted_list is based on the contiguous List implementation of Section 6.2.2. Both
the sorted list and the unsorted list occupy the same List, member array, which
we recall from Section 6.2.2 is called entry. The variable first_unsorted marks the
division between the sorted and unsorted parts of this array. Let us now write the
algorithm.253

template <class Record>
void Sortable_list<Record> :: insertion_sort()
/* Post: The entries of the Sortable_list have been rearranged so that the keys in

all the entries are sorted into nondecreasing order.
Uses: Methods for the class Record; the contiguous List implementation of

Chapter 6 */
{

int first_unsorted; // position of first unsorted entry
int position; // searches sorted part of list
Record current; // holds the entry temporarily removed from list
for (first_unsorted = 1; first_unsorted < count; first_unsorted++)

if (entry[first_unsorted] < entry[first_unsorted − 1]) {
position = first_unsorted;
current = entry[first_unsorted]; // Pull unsorted entry out of the list.
do { // Shift all entries until the proper position is found.

entry[position] = entry[position − 1];
position−−; // position is empty.

} while (position > 0 && entry[position − 1] > current);
entry[position] = current;

}
}

The action of the program is nearly self-explanatory. Since a list with only one entry
is automatically sorted, the loop on first_unsorted starts with the second entry. If
it is in the correct position, nothing needs to be done. Otherwise, the new entry

Section 8.2 • Insertion Sort 323

UnsortedSorted

 ≤ current

 > current

Remove current;
shift entries right

Before:

Sorted

current

UnsortedSorted

Sorted Unsorted
 ≤ current

Reinsert current;

 > current

Figure 8.3. The main step of contiguous insertion sort

is pulled out of the list into the variable current, and the do . . . while loop pushes

252

entries one position down the list until the correct position is found, and finally
current is inserted there before proceeding to the next unsorted entry. The case
when current belongs in the first position of the list must be detected specially,
since in this case there is no entry with a smaller key that would terminate the
search. We treat this special case as the first clause in the condition of the do . . .
while loop.

8.2.3 Linked Version
For a linked version of insertion sort, since there is no movement of data, there
is no need to start searching at the end of the sorted sublist. Instead, we shall
traverse the original list, taking one entry at a time and inserting it in the proper
position in the sorted list. The pointer variable last_sorted will reference the end of
the sorted part of the list, and last_sorted->next will reference the first entry thatalgorithm
has not yet been inserted into the sorted sublist. We shall let first_unsorted also
point to this entry and use a pointer current to search the sorted part of the list to
find where to insert *first_unsorted. If *first_unsorted belongs before the current
head of the list, then we insert it there. Otherwise, we move current down the

254

list until first_unsorted->entry <= current->entry and then insert *first_unsorted
before *current. To enable insertion before *current we keep a second pointer
trailing in lock step one position closer to the head than current.

A sentinel is an extra entry added to one end of a list to ensure that a loop willstopping the loop
terminate without having to include a separate check. Since we have

last_sorted->next = first_unsorted,

324 Chapter 8 • Sorting

the node *first_unsorted is already in position to serve as a sentinel for the search,
and the loop moving current is simplified.

Finally, let us note that a list with 0 or 1 entry is already sorted, so that we can
check these cases separately and thereby avoid trivialities elsewhere. The details
appear in the following function and are illustrated in Figure 8.4.

255
template <class Record>
void Sortable_list<Record> :: insertion_sort()
/* Post: The entries of the Sortable_list have been rearranged so that the keys in

all the entries are sorted into nondecreasing order.
Uses: Methods for the class Record. The linked List implementation of

Chapter 6. */
{

Node <Record> *first_unsorted, // the first unsorted node to be inserted
*last_sorted, // tail of the sorted sublist
*current, // used to traverse the sorted sublist
*trailing; // one position behind current

if (head != NULL) { // Otherwise, the empty list is already sorted.
last_sorted = head; // The first node alone makes a sorted sublist.
while (last_sorted->next != NULL) {

first_unsorted = last_sorted->next;
if (first_unsorted->entry < head->entry) {

// Insert *first_unsorted at the head of the sorted list:
last_sorted->next = first_unsorted->next;
first_unsorted->next = head;
head = first_unsorted;

}
else {

// Search the sorted sublist to insert *first_unsorted:
trailing = head;
current = trailing->next;
while (first_unsorted->entry > current->entry) {

trailing = current;
current = trailing->next;

}
// *first_unsorted now belongs between *trailing and *current.

if (first_unsorted == current)
last_sorted = first_unsorted; // already in right position

else {
last_sorted->next = first_unsorted->next;
first_unsorted->next = current;
trailing->next = first_unsorted;

}
}

}
}

}

Section 8.2 • Insertion Sort 325

last_sorted first_unsorted

last_sorted
Case 1:

Case 2:

head

Partially sorted:

*first_unsorted belongs at head of list

*first_unsorted belongs between *trailing and *current

head first_unsorted

head trailing current last_sorted first_unsorted

Figure 8.4. Trace of linked insertion sort

Even though the mechanics of the linked version are quite different from those of
the contiguous version, you should be able to see that the basic method is the same.
The only real difference is that the contiguous version searches the sorted sublist

256

in reverse order, while the linked version searches it in increasing order of position
within the list.

8.2.4 Analysis

Since the basic ideas are the same, let us analyze only the performance of the
contiguous version of the program. We also restrict our attention to the case whenassumptions
the list is initially in random order (meaning that all possible orderings of the keys
are equally likely). When we deal with entry i, how far back must we go to insert
it? There are i possible ways to move it: not moving it at all, moving it one position,
up to moving it i− 1 positions to the front of the list. Given randomness, these are
equally likely. The probability that it need not be moved is thus 1/i, in which case
only one comparison of keys is done, with no moving of entries.

The remaining case, in which entry i must be moved, occurs with probability
(i − 1)/i. Let us begin by counting the average number of iterations of the do . . .inserting one entry
while loop. Since all of the i − 1 possible positions are equally likely, the average
number of iterations is

1 + 2 + · · · + (i − 1)
i − 1

= (i − 1)i
2(i − 1)

= i
2
.

326 Chapter 8 • Sorting

(This calculation uses Theorem A.1 on page 647.) One key comparison and one
assignment are done for each of these iterations, with one more key comparison
done outside the loop, along with two assignments of entries. Hence, in this second
case, entry i requires, on average, 1

2 i+ 1 comparisons and 1
2 i+ 2 assignments.

When we combine the two cases with their respective probabilities, we have

1
i
× 1 + i − 1

i
×
(
i
2
+ 1

)
= i + 1

2

comparisons and

1
i
× 0 + i − 1

i
×
(
i
2
+ 2

)
= i + 3

2
− 2
i

assignments.
We wish to add these numbers from i = 2 to i = n, but to avoid complicationsinserting all entries

in the arithmetic, we first use the big-O notation (see Section 7.6.3) to approximate
each of these expressions by suppressing the terms bounded by a constant; that is,
terms that are O(1). We thereby obtain 1

2 i+O(1) for both the number of compar-
isons and the number of assignments of entries. In making this approximation, we
are really concentrating on the actions within the main loop and suppressing any
concern about operations done outside the loop or variations in the algorithm that
change the amount of work only by some bounded amount.

To add 1
2 i+O(1) from i = 2 to i = n, we apply Theorem A.1 on page 647 (the

sum of the integers from 1 to n). We also note that adding n terms, each of which
is O(1), produces as result that is O(n). We thus obtain

257

n∑
i=2

(
1
2 i + O(1)

)
= 1

2

n∑
i=2
i + O(n)= 1

4n
2 + O(n)

for both the number of comparisons of keys and the number of assignments of
entries.

So far we have nothing with which to compare this number, but we can note
that as n becomes larger, the contributions from the term involving n2 become
much larger than the remaining terms collected as O(n). Hence as the size of the
list grows, the time needed by insertion sort grows like the square of this size.

The worst-case analysis of insertion sort will be left as an exercise. We canbest and worst cases
observe quickly that the best case for contiguous insertion sort occurs when the list
is already in order, when insertion sort will do nothing except n− 1 comparisons
of keys. We can now show that there is no sorting method that can possibly do
better in its best case.

Theorem 8.1. Verifying that a list of n entries is in the correct order requires at least n−1 compar-
isons of keys.

Section 8.2 • Insertion Sort 327

Proof Consider an arbitrary program that checks whether a list of n entries is in order or
not (and perhaps sorts it if it is not). The program will first do some comparison of
keys, and this comparison will involve some two entries from the list. Sometime
later, at least one of these two entries must be compared with a third, or else there
would be no way to decide where these two should be in the list relative to the
third. Thus this second comparison involves only one new entry not previously in a
comparison. Continuing in this way, we see that there must be another comparison
involving some one of the first three entries and one new entry. Note that we are
not necessarily selecting the comparisons in the order in which the algorithm does
them. Thus, except for the first comparison, each one that we select involves only
one new entry not previously compared. All n of the entries must enter some
comparison, for there is no way to decide whether an entry is in the right position
unless it is compared to at least one other entry. Thus to involve all n entries
requires at least n− 1 comparisons, and the proof is complete.end of proofend of proof

With this theorem we find one of the advantages of insertion sort: It verifies
that a list is correctly sorted as quickly as can be done. Furthermore, insertion sort
remains an excellent method whenever a list is nearly in the correct order and few
entries are many positions away from their correct locations.

Exercises 8.2 E1. By hand, trace through the steps insertion sort will use on each of the following
lists. In each case, count the number of comparisons that will be made and the
number of times an entry will be moved.
(a) The following three words to be sorted alphabetically:

triangle square pentagon

(b) The three words in part (a) to be sorted according to the number of sides
of the corresponding polygon, in increasing order

(c) The three words in part (a) to be sorted according to the number of sides
of the corresponding polygon, in decreasing order

(d) The following seven numbers to be sorted into increasing order:

26 33 35 29 19 12 22

(e) The same seven numbers in a different initial order, again to be sorted into
increasing order:

12 19 33 26 29 35 22

(f) The following list of 14 names to be sorted into alphabetical order:

Tim Dot Eva Roy Tom Kim Guy Amy Jon Ann Jim Kay Ron Jan

E2. What initial order for a list of keys will produce the worst case for insertion
sort in the contiguous version? In the linked version?

E3. How many key comparisons and entry assignments does contiguous insertion
sort make in its worst case?

E4. Modify the linked version of insertion sort so that a list that is already sorted,
or nearly so, will be processed rapidly.

328 Chapter 8 • Sorting

Programming
Projects 8.2

P1. Write a program that can be used to test and evaluate the performance of
insertion sort and, later, other methods. The following outline should be used.

(a) Create several files of integers to be used to test sorting methods. Make
files of several sizes, for example, sizes 20, 200, and 2000. Make files that
are in order, in reverse order, in random order, and partially in order. Bytest program for

sorting keeping all this test data in files (rather than generating it with random
numbers each time the testing program is run), the same data can be used
to test different sorting methods, and hence it will be easier to compare
their performance.

(b) Write a menu-driven program for testing various sorting methods. One
option is to read a file of integers into a list. Other options will be to run one
of various sorting methods on the list, to print the unsorted or the sorted
list, and to quit. After the list is sorted and (perhaps) printed, it should
be discarded so that testing a later sorting method will start with the same
input data. This can be done either by copying the unsorted list to a second
list and sorting that one, or by arranging the program so that it reads the
data file again before each time it starts sorting.

(c) Include code in the program to calculate and print (1) the CPU time, (2)
the number of comparisons of keys, and (3) the number of assignments of
list entries during sorting a list. Counting comparisons can be achieved, as
in Section 7.2, by overloading the comparison operators for the class Key
so that they increment a counter. In a similar way we can overload the
assignment operator for the class Record to keep a count of assignments of
entries.

(d) Use the contiguous list package as developed in Section 6.2.2, include the
contiguous version of insertion sort, and assemble statistics on the perfor-
mance of contiguous insertion sort for later comparison with other meth-
ods.

(e) Use the linked list package as developed in Section 6.2.3, include the linked
version of insertion sort, assemble its performance statistics, and compare
them with contiguous insertion sort. Why is the count of entry assignments
of little interest for this version?

P2. Rewrite the contiguous version of the function insertion_sort so that it uses
binary search to locate where to insert the next entry. Compare the time neededbinary insertion sort
to sort a list with that of the original function insertion_sort. Is it reasonable to
use binary search in the linked version of insertion_sort? Why or why not?

P3. There is an even easier sorting method, which, instead of using two pointers to
move through the list, uses only one. We can call it scan sort, and it proceedsscan sort
by starting at one end and moving forward, comparing adjacent pairs of keys,
until it finds a pair out of order. It then swaps this pair of entries and starts
moving the other way, continuing to swap pairs until it finds a pair in the
correct order. At this point it knows that it has moved the one entry as far back
as necessary, so that the first part of the list is sorted, but, unlike insertion sort,

Section 8.3 • Selection Sort 329

it has forgotten how far forward has been sorted, so it simply reverses direction
and sorts forward again, looking for a pair out of order. When it reaches the
far end of the list, then it is finished.
(a) Write a C++ program to implement scan sort for contiguous lists. Your

program should use only one position variable (other than the list’s count
member), one variable of type entry to be used in making swaps, and no
other local variables.

(b) Compare the timings for your program with those of insertion_sort.

P4. A well-known algorithm called bubble sort proceeds by scanning the list from
left to right, and whenever a pair of adjacent keys is found to be out of order,
then those entries are swapped. In this first pass, the largest key in the listbubble sort
will have “bubbled” to the end, but the earlier keys may still be out of order.
Thus the pass scanning for pairs out of order is put in a loop that first makes the
scanning pass go all the way to count, and at each iteration stops it one position
sooner. (a) Write a C++ function for bubble sort. (b) Find the performance of
bubble sort on various kinds of lists, and compare the results with those for
insertion sort.

8.3 SELECTION SORT

Insertion sort has one major disadvantage. Even after most entries have been sorted
properly into the first part of the list, the insertion of a later entry may require that
many of them be moved. All the moves made by insertion sort are moves of only
one position at a time. Thus to move an entry 20 positions up the list requires 20
separate moves. If the entries are small, perhaps a key alone, or if the entries are
in linked storage, then the many moves may not require excessive time. But if the
entries are very large, records containing hundreds of components like personnel
files or student transcripts, and the records must be kept in contiguous storage,
then it would be far more efficient if, when it is necessary to move an entry, it could
be moved immediately to its final position. Our next sorting method accomplishes
this goal.

8.3.1 The Algorithm
An example of this sorting method appears in Figure 8.5, which shows the steps
needed to sort a list of six words alphabetically. At the first stage, we scan the list
to find the word that comes last in alphabetical order. This word, ram, is shown in
a colored box. We then exchange this word with the word in the last position, as
shown in the second part of Figure 8.5. Now we repeat the process on the shorter
list obtained by omitting the last entry. Again the word that comes last is shown in
a colored box; it is exchanged with the last entry still under consideration; and so
we continue. The words that are not yet sorted into order are shown in gray boxes
at each stage, except for the one that comes last, which is shown in a colored box.
When the unsorted list is reduced to length 1, the process terminates.

330 Chapter 8 • Sorting

258
Initial order

Colored box denotes largest unsorted key.
Gray boxes denote other unsorted keys.

Sorted

hen

cow

cat

dog

ewe

ram

ewe

cow

cat

dog

hen

ram

dog

cow

cat

ewe

hen

ram

cat

cow

dog

ewe

hen

ram

cat

cow

dog

ewe

hen

ram

hen

cow

cat

ram

ewe

dog

Figure 8.5. Example of selection sort

This method translates into an algorithm called selection sort. The general
step in selection sort is illustrated in Figure 8.6. The entries with large keys will
be sorted in order and placed at the end of the list. The entries with smaller keys
are not yet sorted. We then look through the unsorted entries to find the one with
the largest key and swap it with the last unsorted entry. In this way, at each pass
through the main loop, one more entry is placed in its final position.

Unsorted
small keys

Sorted,
large keys

Maximum
unsorted key

Swap

Current position

Unsorted small keys Sorted, large keys

Figure 8.6. The general step in selection sort

8.3.2 Contiguous Implementation
Since selection sort minimizes data movement by putting at least one entry in its
final position at every pass, the algorithm is primarily useful for contiguous lists
with large entries for which movement of entries is expensive. If the entries are
small, or if the list is linked, so that only pointers need be changed to sort the list,
then insertion sort is usually faster than selection sort. We therefore give only a
contiguous version of selection sort. The algorithm uses an auxiliary Sortable_list
member function called max_key, which finds the maximum key on a part of the
list that is specified by parameters. The auxiliary function swap simply swaps the
two entries with the given indices. For convenience in the discussion to follow, we
write these two as separate auxiliary member functions:

Section 8.3 • Selection Sort 331

259
template <class Record>
void Sortable_list<Record> :: selection_sort()
/* Post: The entries of the Sortable_list have been rearranged so that the keys in

all the entries are sorted into nondecreasing order.
Uses: max_key, swap. */

{
for (int position = count − 1; position > 0; position−−) {

int max = max_key(0, position);
swap(max, position);

}
}

Note that when all entries but one are in the correct position in a list, then the
remaining one must be also. Thus the for loop stops at 1.

template <class Record>
int Sortable_list<Record> :: max_key(int low, int high)
/* Pre: low and high are valid positions in the Sortable_list and low <= high.

Post: The position of the entry between low and high with the largest key is
returned.

Uses: The class Record. The contiguous List implementation of Chapter 6. */
{

int largest, current;
largest = low;
for (current = low + 1; current <= high; current++)

if (entry[largest] < entry[current])
largest = current;

return largest;
}

260

template <class Record>
void Sortable_list<Record> :: swap(int low, int high)
/* Pre: low and high are valid positions in the Sortable_list.

Post: The entry at position low is swapped with the entry at position high.
Uses: The contiguous List implementation of Chapter 6. */

{
Record temp;
temp = entry[low];
entry[low] = entry[high];
entry[high] = temp;

}

8.3.3 Analysis
À propos of algorithm analysis, the most remarkable fact about this algorithm is
that both of the loops that appear are for loops with completely predictable ranges,
which means that we can calculate in advance exactly how many times they will
iterate. In the number of comparisons it makes, selection sort pays no attention to

332 Chapter 8 • Sorting

the original ordering of the list. Hence for a list that is in nearly correct order toordering unimportant
begin with, selection sort is likely to be much slower than insertion sort. On the
other hand, selection sort does have the advantage of predictability: Its worst-case
time will differ little from its best.

The primary advantage of selection sort regards data movement. If an entryadvantage of
selection sort is in its correct final position, then it will never be moved. Every time any pair

of entries is swapped, then at least one of them moves into its final position, and
therefore at most n−1 swaps are done altogether in sorting a list of n entries. This
is the very best that we can expect from any method that relies entirely on swaps
to move its entries.

We can analyze the performance of function selection_sort in the same wayanalysis
that it is programmed. The main function does nothing except some bookkeeping
and calling the subprograms. The function swap is called n−1 times, and each call
does 3 assignments of entries, for a total count of 3(n− 1). The function max_key
is called n−1 times, with the length of the sublist ranging from n down to 2. If t is
the number of entries on the part of the list for which it is called, then max_key does
exactly t − 1 comparisons of keys to determine the maximum. Hence, altogether,comparison count for

selection sort there are (n − 1)+(n − 2)+· · · + 1 = 1
2n(n − 1) comparisons of keys, which we

approximate to 1
2n

2 +O(n).

8.3.4 Comparisons
Let us pause for a moment to compare the counts for selection sort with those for
insertion sort. The results are:260

Selection Insertion (average)

Assignments of entries 3.0n+O(1) 0.25n2 +O(n)
Comparisons of keys 0.5n2 +O(n) 0.25n2 +O(n)

The relative advantages of the two methods appear in these numbers. When n
becomes large, 0.25n2 becomes much larger than 3n, and if moving entries is a
slow process, then insertion sort will take far longer than will selection sort. But
the amount of time taken for comparisons is, on average, only about half as much
for insertion sort as for selection sort. If the list entries are small, so that moving
them is not slow, then insertion sort will be faster than selection sort.

Exercises 8.3 E1. By hand, trace through the steps selection sort will use on each of the following
lists. In each case, count the number of comparisons that will be made and the
number of times an entry will be moved.
(a) The following three words to be sorted alphabetically:

triangle square pentagon

(b) The three words in part (a) to be sorted according to the number of sides
of the corresponding polygon, in increasing order

Section 8.4 • Shell Sort 333

(c) The three words in part (a) to be sorted according to the number of sides
of the corresponding polygon, in decreasing order

(d) The following seven numbers to be sorted into increasing order:

26 33 35 29 19 12 22

(e) The same seven numbers in a different initial order, again to be sorted into
increasing order:

12 19 33 26 29 35 22
(f) The following list of 14 names to be sorted into alphabetical order:

Tim Dot Eva Roy Tom Kim Guy Amy Jon Ann Jim Kay Ron Jan

E2. There is a simple algorithm called count sort that begins with an unsorted list
and constructs a new, sorted list in a new array, provided we are guaranteedcount sort
that all the keys in the original list are different from each other. Count sort
goes through the list once, and for each record scans the list to count how many
records have smaller keys. If c is this count, then the proper position in the
sorted list for this key is c . Determine how many comparisons of keys will be
done by count sort. Is it a better algorithm than selection sort?

Programming
Projects 8.3

P1. Run the test program written in Project P1 of Section 8.2 (page 328), to compare
selection sort with insertion sort (contiguous version). Use the same files of
test data used with insertion sort.

P2. Write and test a linked version of selection sort.

8.4 SHELL SORT

As we have seen, in some ways insertion sort and selection sort behave in opposite
ways. Selection sort moves the entries very efficiently but does many redundant
comparisons. In its best case, insertion sort does the minimum number of compar-
isons, but it is inefficient in moving entries only one position at a time. Our goal
now is to derive another method that avoids, as much as possible, the problems
with both of these. Let us start with insertion sort and ask how we can reduce the
number of times it moves an entry.

The reason why insertion sort can move entries only one position is that it
compares only adjacent keys. If we were to modify it so that it first compares
keys far apart, then it could sort the entries far apart. Afterward, the entries closer
together would be sorted, and finally the increment between keys being compared
would be reduced to 1, to ensure that the list is completely in order. This is the idea
implemented in 1959 by D. L. SHELL in the sorting method bearing his name. This
method is also sometimes called diminishing-increment sort. Before describingdiminishing

increments the algorithm formally, let us work through a simple example of sorting names.
example Figure 8.7 shows what will happen when we first sort all names that are at

distance 5 from each other (so there will be only two or three names on each such
list), then re-sort the names using increment 3, and finally perform an ordinary
insertion sort (increment 1).

334 Chapter 8 • Sorting

Unsorted
Tim
Dot
Eva
Roy
Tom
Kim
Guy
Amy
Jon
Ann
Jim
Kay
Ron
Jan

Sublists incr. 5

Sublists incr. 3 3-Sorted

Dot
Eva

Tim

Roy
Tom

Recombined
Jim
Dot
Amy
Jan
Ann
Kim
Guy
Eva
Jon
Tom
Tim
Kay
Ron
Roy

List incr. 1
Guy
Ann
Amy
Jan
Dot
Jon
Jim
Eva
Kay
Ron
Roy
Kim
Tom
Tim

Sorted
Amy
Ann
Dot
Eva
Guy
Jan
Jim
Jon
Kay
Kim
Ron
Roy
Tim
Tom

5-Sorted

Dot
Amy

Jim

Jan
Ann

Guy
Amy

Kim

Jon
Ann

Kay
Ron

Jim

Jan

Guy
Eva

Kim

Jon
Tom

Kay
Ron

Tim

Roy

Jim
Dot

Amy
Jan

Ann
Kim

Guy
Eva

Jon
Tom

Tim
Kay

Ron
Roy

Guy
Ann

Amy
Jan

Dot
Jon

Jim
Eva

Kay
Ron

Roy
Kim

Tom
Tim

Figure 8.7. Example of Shell sort

You can see that, even though we make three passes through all the names, the
261 early passes move the names close to their final positions, so that at the final pass

(which does an ordinary insertion sort), all the entries are very close to their final
positions so the sort goes rapidly.

choice of increments There is no magic about the choice of 5, 3, and 1 as increments. Many other
choices might work as well or better. It would, however, probably be wasteful to
choose powers of 2, such as 8, 4, 2, and 1, since then the same keys compared on one
pass would be compared again at the next, whereas by choosing numbers that are
not multiples of each other, there is a better chance of obtaining new information
from more of the comparisons. Although several studies have been made of Shell
sort, no one has been able to prove that one choice of the increments is greatly
superior to all others. Various suggestions have been made. If the increments are
chosen close together, as we have done, then it will be necessary to make more
passes, but each one will likely be quicker. If the increments decrease rapidly,
then fewer but longer passes will occur. The only essential feature is that the final
increment be 1, so that at the conclusion of the process, the list will be checked to
be completely in order. For simplicity in the following algorithm, we start with
increment == count, where we recall from Section 6.2.2 that count represents the
size of the List being sorted, and at each pass reduce the increment with a statement

increment = increment/3 + 1;

Section 8.4 • Shell Sort 335

Thus the increments used in the algorithm are not the same as those used in Figure
8.7.

We can now outline the algorithm for contiguous lists.262

template <class Record>
void Sortable_list<Record> :: shell_sort()
/* Post: The entries of the Sortable_list have been rearranged so that the keys in

all the entries are sorted into nondecreasing order.
Uses: sort_interval */

{
int increment, // spacing of entries in sublist

start; // starting point of sublist
increment = count;
do {

increment = increment/3 + 1;
for (start = 0; start < increment; start++)

sort_interval(start, increment); // modified insertion sort
} while (increment > 1);

}

The auxiliary member function sort_interval(int start, int increment) is exactly the
function insertion_sort, except that the list starts at the variable start instead of 0
and the increment between successive values is as given instead of 1. The details
of modifying insertion_sort into sort_interval are left as an exercise.

Since the final pass through Shell sort has increment 1, Shell sort really is
insertion sort optimized by the preprocessing stage of first sorting sublists usingoptimized insertion

sort larger increments. Hence the proof that Shell sort works correctly is exactly the
same as the proof that insertion sort works correctly. And, although we have good
reason to think that the preprocessing stage will speed up the sorting considerably
by eliminating many moves of entries by only one position, we have not actually
proved that Shell sort will ever be faster than insertion sort.

analysis The analysis of Shell sort turns out to be exceedingly difficult, and to date,
good estimates on the number of comparisons and moves have been obtained only
under special conditions. It would be very interesting to know how these numbers
depend on the choice of increments, so that the best choice might be made. But
even without a complete mathematical analysis, running a few large examples on
a computer will convince you that Shell sort is quite good. Very large empirical
studies have been made of Shell sort, and it appears that the number of moves,
when n is large, is in the range of n1.25 to 1.6n1.25 . This constitutes a substantial
improvement over insertion sort.

Exercises 8.4 E1. By hand, sort the list of 14 names in the “unsorted” column of Figure 8.7 using
Shell sort with increments of (a) 8, 4, 2, 1 and (b) 7, 3, 1. Count the number of
comparisons and moves that are made in each case.

E2. Explain why Shell sort is ill suited for use with linked lists.

336 Chapter 8 • Sorting

Programming
Projects 8.4

P1. Rewrite the method insertion_sort to serve as the function sort_interval em-
bedded in shell_sort.

P2. Test shell_sort with the program of Project P1 of Section 8.2 (page 328), using
the same data files as for insertion sort, and compare the results.

8.5 LOWER BOUNDS

Now that we have seen a method that performs much better than our first attempts,
it is appropriate to ask,

263

How fast is it possible to sort?

To answer, we shall limit our attention (as we did when answering the same ques-
tion for searching) to sorting methods that rely entirely on comparisons between
pairs of keys to do the sorting.

Let us take an arbitrary sorting algorithm of this class and consider how it sorts
a list of n entries. Imagine drawing its comparison tree. Sample comparison treescomparison tree
for insertion sort and selection sort applied to three numbers a, b , c are shown in
Figure 8.8. As each comparison of keys is made, it corresponds to an interior vertex
(drawn as a circle). The leaves (square nodes) show the order that the numbers
have after sorting.

Insertion sort

Selection sort

F

F

F

T

T

T

a ≤ b

b ≤ c

a ≤ b ≤ c

a ≤ c

b < a ≤ c

c < b < a c < a ≤ b a ≤ c < b

a < ba < c

b < c

c < b a < b

a < c

b ≤ c ≤ a c < b ≤ a

b ≤ c < a

b ≤ a < c impossible a < c ≤ b a < b < cimpossiblec ≤ a < b

F FT T F T

F T

a < b

F

F

F

T

T

T

F T

F T

a ≤ cb ≤ c

Figure 8.8. Comparison trees, insertion and selection sort, n = 3

Section 8.5 • Lower Bounds 337

Note that the diagrams show clearly that, on average, selection sort makes more
comparisons of keys than insertion sort. In fact, selection sort makes redundant
comparisons, repeating comparisons that have already been made.

The comparison tree of an arbitrary sorting algorithm displays several features
of the algorithm. Its height is the largest number of comparisons that will be madecomparison trees:

height and path length and hence gives the worst-case behavior of the algorithm. The external path length,
after division by the number of leaves, gives the average number of comparisons
that the algorithm will do. The comparison tree displays all the possible sequences
of comparisons that can be made as all the different paths from the root to the leaves.
Since these comparisons control how the entries are rearranged during sorting,
any two different orderings of the list must result in some different decisions, and
hence different paths through the tree, which must then end in different leaves. The
number of ways that the list containingn entries could originally have been ordered
is n! (see Section A.3.1), and thus the number of leaves in the tree must be at least n!.
Lemma 7.5 now implies that the height of the tree is at least dlgn!e and its external
path length is at least n! lgn!. (Recall that dke means the smallest integer not less
than k.) Translating these results into the number of comparisons, we obtain

Theorem 8.2 Any algorithm that sorts a list of n entries by use of key comparisons must, in its
worst case, perform at least dlgn!e comparisons of keys, and, in the average case, it
must perform at least lgn! comparisons of keys.

Stirling’s formula (Theorem A.5 on page 658) gives an approximation to the factorial
of an integer, which, after taking the base 2 logarithm, is

lgn! ≈ (n + 1
2)lgn − (lg e)n + lg

√
2π + lg e

12n
.

The constants in this expression have the approximate valuesapproximating lgn!

lg e ≈ 1.442695041 and lg
√

2π ≈ 1.325748069.

Stirling’s approximation to lgn! is very close indeed, much closer than we shall
ever need for analyzing algorithms. For almost all purposes, the following rough
approximation will prove quite satisfactory:

lgn! ≈ (n + 1
2)(lgn − 1 1

2)+2

and often we use only the approximation lgn! = n lgn+O(n).
Before ending this section we should note that there are sometimes methods

for sorting that do not use comparisons and can be faster. For example, if you knowother methods
in advance that you have 100 entries and that their keys are exactly the integers
between 1 and 100 in some order, with no duplicates, then the best way to sort
them is not to do any comparisons, but simply, if a particular entry has key i, then
place it in location i. With this method we are (at least temporarily) regarding the
entries to be sorted as being in a table rather than a list, and then we can use the
key as an index to find the proper position in the table for each entry. Project P1
suggests an extension of this idea to an algorithm.

338 Chapter 8 • Sorting

Exercises 8.5 E1. Draw the comparison trees for (a) insertion sort and (b) selection sort applied
to four objects.

E2. (a) Find a sorting method for four keys that is optimal in the sense of doing the
smallest possible number of key comparisons in its worst case. (b) Find how
many comparisons your algorithm does in the average case (applied to four
keys). Modify your algorithm to make it come as close as possible to achieving
the lower bound of lg 4! ≈ 4.585 key comparisons. Why is it impossible to
achieve this lower bound?

E3. Suppose that you have a shuffled deck of 52 cards, 13 cards in each of 4 suits,
and you wish to sort the deck so that the 4 suits are in order and the 13 cards
within each suit are also in order. Which of the following methods is fastest?

(a) Go through the deck and remove all the clubs; then sort them separately.
Proceed to do the same for the diamonds, the hearts, and the spades.

(b) Deal the cards into 13 piles according to the rank of the card. Stack these
13 piles back together and deal into 4 piles according to suit. Stack these
back together.

(c) Make only one pass through the cards, by placing each card in its proper
position relative to the previously sorted cards.

Programming
Projects 8.5

The sorting projects for this section are specialized methods requiring keys of
a particular type, pseudorandom numbers between 0 and 1. Hence they are
not intended to work with the testing program devised for other methods, nor
to use the same data as the other methods studied in this chapter.

P1. Construct a list of n pseudorandom numbers strictly between 0 and 1. Suitable
values for n are 10 (for debugging) and 500 (for comparing the results with
other methods). Write a program to sort these numbers into an array via the
following interpolation sort. First, clear the array (to all 0). For each numberinterpolation sort
from the old list, multiply it by n, take the integer part, and look in that position
of the table. If that position is 0, put the number there. If not, move left or right
(according to the relative size of the current number and the one in its place)
to find the position to insert the new number, moving the entries in the table
over if necessary to make room (as in the fashion of insertion sort). Show that
your algorithm will really sort the numbers correctly. Compare its running
time with that of the other sorting methods applied to randomly ordered lists
of the same size.

P2. [suggested by B. LEE] Write a program to perform a linked distribution sort,
as follows. Take the keys to be pseudorandom numbers between 0 and 1, as
in the previous project. Set up an array of linked lists, and distribute the keyslinked distribution

sort into the linked lists according to their magnitude. The linked lists can either be
kept sorted as the numbers are inserted or sorted during a second pass, during
which the lists are all connected together into one sorted list. Experiment to
determine the optimum number of lists to use. (It seems that it works well to
have enough lists so that the average length of each list is about 3.)

Section 8.6 • Divide-and-Conquer Sorting 339

8.6 DIVIDE-AND-CONQUER SORTING

8.6.1 The Main Ideas
Making a fresh start is often a good idea, and we shall do so by forgetting (tem-
porarily) almost everything that we know about sorting. Let us try to apply only
one important principle that has shown up in the algorithms we have previously
studied and that we already know from common experience: It is much easier toshorter is easier
sort short lists than long ones. If the number of entries to be sorted doubles, then the
work more than doubles (with insertion or selection sort it quadruples, roughly).
Hence if we can find a way to divide the list into two roughly equal-sized lists and
sort them separately, then we will save work. If, for example, you were working in
a library and were given a thousand index cards to put in alphabetical order, then
a good way would be to distribute them into piles according to the first letter and
sort the piles separately.

Here again we have an application of the idea of dividing a problem into smallerdivide and conquer
but similar subproblems; that is, of divide and conquer.

First, we note that comparisons by computer are usually two-way branches,
so we shall divide the entries to sort into two lists at each stage of the process.

What method, you may ask, should we use to sort the reduced lists? Since we
have (temporarily) forgotten all the other methods we know, let us simply use the
same method, divide and conquer, again, repeatedly subdividing the list. But we
won’t keep going forever: Sorting a list with only one entry doesn’t take any work,
even if we know no formal sorting methods.

In summary, let us informally outline divide-and-conquer sorting:

264

void Sortable_list :: sort()
{

if the list has length greater than 1 {
partition the list into lowlist, highlist;
lowlist.sort();
highlist.sort();
combine(lowlist, highlist);

}
}

We still must decide how we are going to partition the list into two sublists and,
after they are sorted, how we are going to combine the sublists into a single list.
There are two methods, each of which works very well in different circumstances.

➥ Mergesort: In the first method, we simply chop the list into two sublists of
sizes as nearly equal as possible and then sort them separately. Afterward,
we carefully merge the two sorted sublists into a single sorted list. Hence thismergesort
method is called mergesort.

➥ Quicksort: The second method does more work in the first step of partition-
ing the list into two sublists, and the final step of combining the sublists
then becomes trivial. This method was invented and christened quicksortquicksort

340 Chapter 8 • Sorting

by C. A. R. HOARE. To partition the list, we first choose some key from the list
for which, we hope, about half the keys will come before and half after. We
shall use the name pivot for this selected key. We next partition the entries sopivot
that all those with keys less than the pivot come in one sublist, and all those
with greater keys come in another. Finally, then, we sort the two reduced lists
separately, put the sublists together, and the whole list will be in order.

8.6.2 An Example
Before we refine our methods into detailed functions, let us work through a specific
example. We take the following seven numbers to sort:

26 33 35 29 19 12 22.

1. Mergesort Example
The first step of mergesort is to chop the list into two. When (as in this example)convention: left list

may be longer the list has odd length, let us establish the convention of making the left sublist one
entry larger than the right sublist. Thus we divide the list into

26 33 35 29 and 19 12 22

and first consider the left sublist. It is again chopped in half asfirst half

26 33 and 35 29.

For each of these sublists, we again apply the same method, chopping each of
them into sublists of one number each. Sublists of length one, of course, require
no sorting. Finally, then, we can start to merge the sublists to obtain a sorted list.
The sublists 26 and 33 merge to give the sorted list 26 33, and the sublists 35 and 29
merge to give 29 35. At the next step, we merge these two sorted sublists of length
two to obtain a sorted sublist of length four,

26 29 33 35.

Now that the left half of the original list is sorted, we do the same steps on the right
half. First, we chop it into the sublistssecond half

19 12 and 22.

The first of these is divided into two sublists of length one, which are merged to
give 12 19. The second sublist, 22, has length one, so it needs no sorting. It is now
merged with 12 19 to give the sorted list

12 19 22.

Finally, the sorted sublists of lengths four and three are merged to produce

12 19 22 26 29 33 35.

The way that all these sublists and recursive calls are put together is shown
by the recursion tree for mergesort drawn in Figure 8.9. The order in which the
recursive calls occur is shown by the colored path. The numbers in each sublist
passed to a recursive call are shown in black, and the numbers in their order after
the merge is done are shown in color. The calls for which no further recursion is
required (sublists of length 1) are the leaves of the tree and are drawn as squares.

Section 8.6 • Divide-and-Conquer Sorting 341
265

Start Finish

26 33 35 29 19 12

26 33 35 29 191219352926 33 12

26 33 35 29 26 29 33 35 19 12 22 12 19 22

22

29 19 12 22353326 26 29 33 35221912

Figure 8.9. Recursion tree, mergesort of 7 numbers

2. Quicksort Example
Let us again work through the same example, this time applying quicksort and
keeping careful account of the execution of steps from our outline of the method.
To use quicksort, we must first decide, in order to partition the list into two pieces,choice of pivot
what key to choose as the pivot. We are free to choose any number we wish, but, for
consistency, we shall adopt a definite rule. Perhaps the simplest rule is to choose the
first number in a list as the pivot, and we shall do so in this example. For practical
applications, however, other choices are usually better than the first number.

Our first pivot, then, is 26, and the list partitions into sublistspartition

19 12 22 and 33 35 29

consisting, respectively, of the numbers less than and greater than the pivot. We
have left the order of the entries in the sublists unchanged from that in the original
list, but this decision also is arbitrary. Some versions of quicksort put the pivot into
one of the sublists, but we choose to place the pivot into neither sublist.

We now arrive at the next line of the outline, which tells us to sort the first
sublist. We thus start the algorithm over again from the top, but this time applied
to the shorter list

19 12 22.

The pivot of this list is 19, which partitions its list into two sublists of one numberlower half
each, 12 in the first and 22 in the second. With only one entry each, these sublists do
not need sorting, so we arrive at the last line of the outline, whereupon we combine
the two sublists with the pivot between them to obtain the sorted list

12 19 22.

Now the call to the sort function is finished for this sublist, so it returns whence
it was called. It was called from within the sort function for the full list of seven
numbers, so we now go on to the next line of that function.

342 Chapter 8 • Sorting

inner and outer
function calls

We have now used the function twice, with the second instance occurring
within the first instance. Note carefully that the two instances of the function are
working on different lists and are as different from each other as is executing the
same code twice within a loop. It may help to think of the two instances as having
different colors, so that the instructions in the second (inner) call could be written
out in full in place of the call, but in a different color, thereby clearly distinguishing
them as a separate instance of the function. The steps of this process are illustrated
in Figure 8.10.266

Sort (26, 33, 35, 29, 12, 22)

Partition into (19, 12, 22) and (33, 35, 29); pivot = 26
Sort (19, 12, 22)

Sort (33, 35, 29)

Combine into (12, 19, 22, 26, 29, 33 35)

Partition into (12) and (22); pivot = 19

Sort (12)

Sort (22)

Combine into (12, 19, 22)

Partition into (29) and (35); pivot = 33

Sort (29)

Sort (35)

Combine into (29, 33, 35)

Figure 8.10. Execution trace of quicksort

Returning to our example, we find the next line of the first instance of the
function to be another call to sort another list, this time the three numbers

33 35 29.

As in the previous (inner) call, the pivot 33 immediately partitions the list, givingupper half
sublists of length one that are then combined to produce the sorted list

29 33 35.

Finally, this call to sort returns, and we reach the last line of the (outer) instance that
sorts the full list. At this point, the two sorted sublists of length three are combined
with the original pivot of 26 to obtain the sorted list

12 19 22 26 29 33 35.

After this step, the process is complete.recombine

Section 8.6 • Divide-and-Conquer Sorting 343

The easy way to keep track of all the calls in our quicksort example is to draw its
recursion tree, as shown in Figure 8.11. The two calls to sort at each level are shown
as the children of the vertex. The sublists of size 1 or 0, which need no sorting, are
drawn as the leaves. In the other vertices (to avoid cluttering the diagram), we
include only the pivot that is used for the call. It is, however, not hard to read
all the numbers in each sublist (but not necessarily in their original order). The
numbers in the sublist at each recursive call are the number at the corresponding
vertex and those at all descendents of the vertex.

26

19 33

12 22 29 35

Figure 8.11. Recursion tree, quicksort of 7 numbers

If you are still uneasy about the workings of recursion, then you will findexample
it helpful to pause and work through sorting the list of 14 names introduced in
previous sections, using both mergesort and quicksort. As a check, Figure 8.12
provides the tree of calls for quicksort in the same abbreviated form used for the
previous example. This tree is given for two versions, one where the pivot is the
first key in each sublist, and one where the central key (center left for even-sized
lists) is the pivot.

Exercises 8.6 E1. Apply quicksort to the list of seven numbers considered in this section, where
the pivot in each sublist is chosen to be (a) the last number in the sublist and
(b) the center (or left-center) number in the sublist. In each case, draw the tree
of recursive calls.

E2. Apply mergesort to the list of 14 names considered for previous sorting meth-
ods:

Tim Dot Eva Roy Tom Kim Guy Amy Jon Ann Jim Kay Ron Jan

E3. Apply quicksort to this list of 14 names, and thereby sort them by hand into
alphabetical order. Take the pivot to be (a) the first key in each sublist and
(b) the center (or left-center) key in each sublist. See Figure 8.12.

E4. In both divide-and-conquer methods, we have attempted to divide the list
into two sublists of approximately equal size, but the basic outline of sorting
by divide-and-conquer remains valid without equal-sized halves. Consider
dividing the list so that one sublist has size 1. This leads to two methods,
depending on whether the work is done in splitting one element from the list
or in combining the sublists.

344 Chapter 8 • Sorting

Tim

TomDot

Amy Eva

Ann Roy

Kim

Guy Ron

Jon

Jim Kay

Jan

Tim

Tom

Dot

Amy

Eva

Ann Roy

Kim

Guy

Ron

Jon

Jim

Kay

Jan

Pivot is
central key.

Pivot is
first key.

Figure 8.12. Recursion trees, quicksort of 14 names

(a) Split the list by finding the entry with the largest key and making it the sub-
list of size 1. After sorting the remaining entries, the sublists are combined
easily by placing the entry with largest key last.

(b) Split off the last entry from the list. After sorting the remaining entries,
merge this entry into the list.

Show that one of these methods is exactly the same method as insertion sort
and the other is the same as selection sort.

8.7 MERGESORT FOR LINKED LISTS

Let us now turn to the writing of formal functions for each of our divide-and-

267

conquer sorting methods. In the case of mergesort, we shall write a version for
linked lists and leave the case of contiguous lists as an exercise. For quicksort,
we shall do the reverse, writing the code only for contiguous lists. Both of these
methods, however, work well for both contiguous and linked lists.

Mergesort is also an excellent method for external sorting; that is, for problems
in which the data are kept on disks, not in high-speed memory.

Section 8.7 • Mergesort for Linked Lists 345

8.7.1 The Functions

When we sort a linked list, we work by rearranging the links of the list and we
avoid the creation and deletion of new nodes. In particular, our mergesort pro-
gram must call a recursive function that works with subsets of nodes of the list
being sorted. We call this recursive function recursive_merge_sort. Our primary

268

implementation of mergesort simply passes a pointer to the first node of the list in
a call to recursive_merge_sort.

main function template <class Record>
void Sortable_list<Record> :: merge_sort()
/* Post: The entries of the sortable list have been rearranged so that their keys are

sorted into nondecreasing order.
Uses: The linked List implementation of Chapter 6 and recursive_merge_sort. */

{
recursive_merge_sort(head);

}

Our outline of the basic method for mergesort translates directly into the following
recursive sorting function.

template <class Record>
void Sortable_list<Record> :: recursive_merge_sort(Node<Record> * &sub_list)
/* Post: The nodes referenced by sub_list have been rearranged so that their keys

are sorted into nondecreasing order. The pointer parameter sub_list is
reset to point at the node containing the smallest key.

Uses: The linked List implementation of Chapter 6; the functions divide_from,
merge, and recursive_merge_sort. */

{
if (sub_list != NULL && sub_list->next != NULL) {

Node<Record> *second_half = divide_from(sub_list);
recursive_merge_sort(sub_list);
recursive_merge_sort(second_half);
sub_list = merge(sub_list, second_half);

}
}

Observe that the parameter sub_list in the function recursive_merge_sort is a refer-
ence to a pointer to a node. The reference is needed to allow the function to make
a change to the calling argument.

The first subsidiary function called by recursive_merge_sort,

divide_from(Node<Record> *sub_list)

takes the list referenced by the parameter sub_list and divides it in half, by replacing
its middle link by a NULL pointer. The function returns a pointer to the first node

269

of the second half of the original sublist.

346 Chapter 8 • Sorting

chop a linked list
in half

template <class Record>
Node<Record> *Sortable_list<Record> :: divide_from(Node<Record> *sub_list)
/* Post: The list of nodes referenced by sub_list has been reduced to its first half,

and a pointer to the first node in the second half of the sublist is returned.
If the sublist has an odd number of entries, then its first half will be one
entry larger than its second.

Uses: The linked List implementation of Chapter 6. */

{
Node<Record> *position, // traverses the entire list

*midpoint, // moves at half speed of position to midpoint
*second_half;

if ((midpoint = sub_list) == NULL) return NULL; // List is empty.
position = midpoint->next;
while (position != NULL) { // Move position twice for midpoint’s one move.

position = position->next;
if (position != NULL) {

midpoint = midpoint->next;
position = position->next;

}
}
second_half = midpoint->next;
midpoint->next = NULL;
return second_half;

}

The second auxiliary function,

269

Node<Record> *merge(Node<Record> *first, Node<Record> *second)

merges the lists of nodes referenced by first and second, returning a pointer to
the node of the merged list that has the smallest key. Most of the work in this
function consists of comparing a pair of keys, one from each list, and adjoining
the appropriate one to the merged list. Special care, however, is required at both
the start and the end of the list. At the end, one of the lists first and second mayextreme cases in

merging be exhausted before the other, in which case we need only adjoin the rest of the
remaining list to the merged list. At the start, we must remember a pointer to the
first node of the merged list, which is to be returned as the function value.

To keep track of the start of the merged list without needing to consider several
special cases, our merge function declares a temporary Node called combined,
which we place at the start of the merged list before we look at any actual keys.
(That is, we force the merged list to begin with one node already in it.) Then the
actual nodes can be inserted without considering special cases. At the conclusion,
combined will contain a pointer to the first actual node of the merged list, so we can
then return this pointer. The temporary node combined is called a dummy nodedummy node
since it contains no actual data, it is used only to simplify the pointer manipulations.

The action of function merge is illustrated in Figure 8.13.

Section 8.7 • Mergesort for Linked Lists 347
270

Initial situation:

first 4 8 9

second 5 7

After merging:

4 8 9

5 7

3

1

3

1?

Dummy
node

combined

Figure 8.13. Merging two sorted linked lists271

template <class Record>
Node<Record> *Sortable_list<Record> :: merge(Node<Record> *first,

Node<Record> *second)
merge two sorted

linked lists
/* Pre: first and second point to ordered lists of nodes.

Post: A pointer to an ordered list of nodes is returned. The ordered list contains
all entries that were referenced by first and second. The original lists of
nodes referenced by first and second are no longer available.

Uses: Methods for Record class; the linked List implementation of Chapter 6. */
{

Node<Record> *last_sorted; // points to the last node of sorted list
Node<Record> combined; // dummy first node, points to merged list
last_sorted = &combined;
while (first != NULL && second != NULL) { // Attach node with smaller key

if (first->entry <= second->entry) {
last_sorted->next = first;
last_sorted = first;
first = first->next; // Advance to the next unmerged node.

}
else {

last_sorted->next = second;
last_sorted = second;
second = second->next;

}
}

// After one list ends, attach the remainder of the other.
if (first == NULL)

last_sorted->next = second;
else

last_sorted->next = first;
return combined.next;

}

348 Chapter 8 • Sorting

8.7.2 Analysis of Mergesort
Now that we have a working function for mergesort, it is time to pause and deter-
mine its behavior, so that we can make reasonable comparisons with other sorting
methods. As with other algorithms on linked lists, we need not be concerned
with the time needed to move entries. We concentrate instead on the number of
comparisons of keys that the function will do.

1. Counting Comparisons
Comparison of keys is done at only one place in the complete mergesort function.
This place is within the main loop of the merge function. After each comparison,
one of the two nodes is sent to the output list. Hence the number of comparisonsmerge function
certainly cannot exceed the number of entries being merged. To find the total
lengths of these lists, let us again consider the recursion tree of the algorithm,
which for simplicity we show in Figure 8.14 for a case when n = 2m is a power of
2.272

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 = n

22222 2 2 2

4 4 4 4

88

16

Figure 8.14. Lengths of sublist merges

It is clear from the tree of Figure 8.14 that the total lengths of the lists on
each level is precisely n, the total number of entries. In other words, every entry is
treated in precisely one merge on each level. Hence the total number of comparisons
done on each level cannot exceed n. The number of levels, excluding the leaves
(for which no merges are done), is lgn rounded up to the next smallest integer, the
ceiling dlogne. The number of comparisons of keys done by mergesort on a list of
n entries, therefore, is no more than dn lgne.

2. Contrast with Insertion Sort
Recall (Section 8.2.4) that insertion sort does more than 1

4n
2 comparisons of keys, on

average, in sorting n entries. As soon as n becomes greater than 16, lgn becomes
less than 1

4n. When n is of practical size for sorting a list, lgn is far less than 1
4n,

and therefore the number of comparisons done by mergesort is far less than the
number done by insertion sort. When n = 1024, for example, lgn = 10, so that
the bound on comparisons for mergesort is 10,240, whereas the average number

Section 8.7 • Mergesort for Linked Lists 349

that insertion sort will do is more than 250,000. A problem requiring a minute
of computer time using insertion sort will probably require only a second or two
using mergesort.

n lgn The appearance of the expression n lgn in the preceding calculation is by no
means accidental, but relates closely to the lower bounds established in Section 8.5,
where it was proved that any sorting method that uses comparisons of keys must
do at least

lgn! ≈ n lgn − 1.44n + O(logn)

comparisons of keys. When n is large, the first term of this expression becomes
more important than what remains. We have now found, in mergesort, an algo-
rithm that comes within reach of this lower bound.

3. Improving the Count

By being somewhat more careful we can, in fact, obtain a more accurate count
of comparisons made by mergesort, which will show that its actual performance
comes even closer to the best possible number of comparisons of keys allowed by
the lower bound.

First, let us observe that merging two lists of combined size k never requires k
comparisons, but instead at most k− 1, since after the second largest key has been
put out, there is nothing left to which to compare the largest key, so it goes out with-
out another comparison. Hence we should reduce our total count of comparisons
by 1 for each merge that is performed. The total number of merges is essentially

n
2
+ n

4
+ n

8
+ · · · + 1 = n − 1.

(This calculation is exact when n is a power of 2 and is a good approximation
otherwise.) The total number of key comparisons done by mergesort is therefore
less than

n lgn − n + 1.

Second, we should note that it is possible for one of the two lists being merged
to be finished before the other, and then all entries in the second list will go out
with no further comparisons, so that the number of comparisons may well be less
than we have calculated. Every element of one list, for example, might precede
every element of the second list, so that all elements of the second list would come
out using no comparisons. The exercises outline a proof that the total count can be
reduced, on average, to

n lgn − 1.1583n + 1,improved count

and the correct coefficient of n is likely close to −1.25. We thus see that, not only is
the leading term as small as the lower bound permits, but the second term is also
quite close. By refining the merge function even more, the method can be brought

272

within a few percent of the theoretically optimal number of comparisons (see the
references).

350 Chapter 8 • Sorting

4. Conclusions
From these remarks, it may appear that mergesort is the ultimate sorting method,
and, indeed, for linked lists in random order, it is difficult to surpass. We mustadvantages of

linked mergesort remember, however, that considerations other than comparing keys are important.
The program we have written spends significant time finding the center of the list,
so that it can break it in half. The exercises discuss one method for saving some
of this time. The linked version of mergesort uses space efficiently. It needs no
large auxiliary arrays or other lists, and since the depth of recursion is only lgn,
the amount of space needed to keep track of the recursive calls is very small.

5. Contiguous Mergesort
For contiguous lists, unfortunately, mergesort is not such an unqualified success.
The difficulty is in merging two contiguous lists without substantial expense in one
of

➥ space,three-way trade-off
for merging ➥ computer time, or

➥ programming effort.

The first and most straightforward way to merge two contiguous lists is to use an
auxiliary array large enough to hold the combined list and copy the entries into the
array as the lists are merged. This method requires extra space that is Θ(n). For a
second method, we could put the sublists to be merged next to each other, forget
the amount of order they already have, and use a method like insertion sort to put
the combined list into order. This approach uses almost no extra space but uses
computer time proportional to n2 , compared to time proportional to n for a good
merging algorithm. Finally (see the references), algorithms have been invented that
will merge two contiguous lists in time proportional to n while using only a small,
fixed amount of extra space. These algorithms, however, are quite complicated.

Exercises 8.7 E1. An article in a professional journal stated, “This recursive process [mergesort]
takes time O(n logn), and so runs 64 times faster than the previous method
[insertion sort] when sorting 256 numbers.” Criticize this statement.

E2. The count of key comparisons in merging is usually too high, since it does not
account for the fact that one list may be finished before the other. It might
happen, for example, that all entries in the first list come before any in the
second list, so that the number of comparisons is just the length of the first list.
For this exercise, assume that all numbers in the two lists are different and that
all possible arrangements of the numbers are equally likely.

(a) Show that the average number of comparisons performed by our algorithm
to merge two ordered lists of length 2 is 8

3 . [Hint: Start with the ordered
list 1, 2, 3, 4. Write down the six ways of putting these numbers into
two ordered lists of length 2, and show that four of these ways will use 3
comparisons, and two will use 2 comparisons.]

Section 8.7 • Mergesort for Linked Lists 351

(b) Show that the average number of comparisons done to merge two ordered
lists of length 3 is 4.5.

(c) Show that the average number of comparisons done to merge two ordered
lists of length 4 is 6.4.

(d) Use the foregoing results to obtain the improved total count of key com-
parisons for mergesort.

(e) Show that, asm tends to infinity, the average number of comparisons done
to merge two ordered lists of length m approaches 2m− 2.

E3. [Very challenging] The straightforward method for merging two contiguous
lists, by building the merged list in a separate array, uses extra space pro-
portional to the number of entries in the two lists but can be written to run
efficiently, with time proportional to the number of entries. Try to devise afixed-space linear-time

merging merging method for contiguous lists that will require as little extra space as
possible but that will still run in time (linearly) proportional to the number of
entries in the lists. [There is a solution using only a small, constant amount of
extra space. See the references.]

Programming
Projects 8.7

P1. Implement mergesort for linked lists on your computer. Use the same con-
ventions and the same test data used for implementing and testing the linked
version of insertion sort. Compare the performance of mergesort and insertion
sort for short and long lists, as well as for lists nearly in correct order and in
random order.

P2. Our mergesort program for linked lists spends significant time locating the
center of each sublist, so that it can be broken in half. Implement the following
modification that will save some of this time. Rewrite the divide_from function
to use a second parameter giving the length of original list of nodes. Use this
to simplify and speed up the subdivision of the lists. What modifications are
needed in the functions merge_sort() and recursive_merge_sort()?

P3. Our mergesort function pays little attention to whether or not the original list
was partially in the correct order. In natural mergesort the list is broken intonatural mergesort
sublists at the end of an increasing sequence of keys, instead of arbitrarily at
its halfway point. This exercise requests the implementation of two versions
of natural mergesort.

(a) In the first version, the original list is traversed only once, and only two
sublists are used. As long as the order of the keys is correct, the nodes are
placed in the first sublist. When a key is found out of order, the first sublist
is ended and the second started. When another key is found out of order,
the second sublist is ended, and the second sublist merged into the first.one sorted list
Then the second sublist is repeatedly built again and merged into the first.
When the end of the original list is reached, the sort is finished. This first
version is simple to program, but as it proceeds, the first sublist is likely to
become much longer than the second, and the performance of the function
will degenerate toward that of insertion sort.

352 Chapter 8 • Sorting

(b) The second version ensures that the lengths of sublists being merged are
closer to being equal and, therefore, that the advantages of divide and con-
quer are fully used. This method keeps a (small) auxiliary array containing
(1) the lengths and (2) pointers to the heads of the ordered sublists that areseveral sorted lists
not yet merged. The entries in this array should be kept in order according
to the length of sublist. As each (naturally ordered) sublist is split from
the original list, it is put into the auxiliary array. If there is another list in
the array whose length is between half and twice that of the new list, then
the two are merged, and the process repeated. When the original list is ex-
hausted, any remaining sublists in the array are merged (smaller lengths
first) and the sort is finished.

There is nothing sacred about the ratio of 2 in the criterion for merging
sublists. Its choice merely ensures that the number of entries in the aux-
iliary array cannot exceed lgn (prove it!). A smaller ratio (required to be
greater than 1) will make the auxiliary table larger, and a larger ratio will
lessen the advantages of divide and conquer. Experiment with test data to
find a good ratio to use.

P4. Devise a version of mergesort for contiguous lists. The difficulty is to produce
a function to merge two sorted lists in contiguous storage. It is necessary tocontiguous mergesort
use some additional space other than that needed by the two lists. The easiest
solution is to use two arrays, each large enough to hold all the entries in the
two original lists. The two sorted sublists occupy different parts of the same
array. As they are merged, the new list is built in the second array. After the
merge is complete, the new list can, if desired, be copied back into the first
array. Otherwise, the roles of the two arrays can be reversed for the next stage.

8.8 QUICKSORT FOR CONTIGUOUS LISTS

We now turn to the method of quicksort, in which the list is first partitioned into
lower and upper sublists for which all keys are, respectively, less than some pivot
key or greater than the pivot key. Quicksort can be developed for linked lists with
little difficulty, and doing so will be pursued as a project. The most important
applications of quicksort, however, are to contiguous lists, where it can prove to
be very fast and where it has the advantage over contiguous mergesort of not
requiring a choice between using substantial extra space for an auxiliary array or
investing great programming effort in implementing a complicated and difficult
merge algorithm.

8.8.1 The Main Function
Our task in developing contiguous quicksort consists of writing an algorithm for
partitioning entries in a list by use of a pivot key, swapping the entries within the list
so that all those with keys before the pivot come first, then the entry with the pivot
key, and then the entries with larger keys. We shall let the variable pivot_position
store the position of the pivot in the partitioned list.

Section 8.8 • Quicksort for Contiguous Lists 353

Since the partitioned sublists are kept in the same array, in the proper relative
positions, the final step of combining sorted sublists is completely vacuous and
thus is omitted from the function.

To apply the sorting function recursively to sublists, the bounds low and high
of the sublists need to be parameters for the function. Our prior sorting functions,

273

however, have no parameters, so for consistency of notation we do the recursion
in a function recursive_quick_sort that is invoked by the method quick_sort, which
has no parameters.

main function
quick_sort

template <class Record>
void Sortable_list<Record> :: quick_sort()
/* Post: The entries of the Sortable_list have been rearranged so that their keys

are sorted into nondecreasing order.
Uses: The contiguous List implementation of Chapter 6, recursive_quick_sort. */

{
recursive_quick_sort(0, count − 1);

}

The actual quicksort function for contiguous lists is then

recursive function,
recursive_quick_sort

template <class Record>
void Sortable_list<Record> :: recursive_quick_sort(int low, int high)
/* Pre: low and high are valid positions in the Sortable_list.

Post: The entries of the Sortable_list have been rearranged so that their keys
are sorted into nondecreasing order.

Uses: The contiguous List implementation of Chapter 6, recursive_quick_sort,
and partition. */

{
int pivot_position;
if (low < high) { // Otherwise, no sorting is needed.

pivot_position = partition(low, high);
recursive_quick_sort(low, pivot_position − 1);
recursive_quick_sort(pivot_position + 1, high);

}
}

8.8.2 Partitioning the List
Now we must construct the function partition. There are several strategies that
we might use (one of which is suggested as an exercise), strategies that sometimes
are faster than the algorithm we develop but that are more intricate and difficult to
get correct. The algorithm we develop is much simpler and easier to understand,
and it is certainly not slow; in fact, it does the smallest possible number of key
comparisons of any partitioning algorithm.

1. Algorithm Development
Given a pivot value, we must rearrange the entries of the list and compute an index,
pivot_position, so that pivot is at pivot_position, all entries to its left have keys less

354 Chapter 8 • Sorting

than pivot, and all entries to its right have larger keys. To allow for the possibility
that more than one entry has key equal to pivot, we insist that the entries to the left
of pivot_position have keys strictly less than pivot, and the entries to its right have
keys greater than or equal to pivot, as shown in the following diagram:goal (postcondition)

low

< pivot pivot ≥ pivot

pivot_position high
274

To reorder the entries this way, we must compare each key to the pivot. We shall
use a for loop (running on a variable i) to do this. We shall use a second vari-
able last_small such that all entries at or before location last_small have keys less
than pivot. Suppose that pivot starts in the first position, and let us leave it there
temporarily. Then in the middle of the loop the list has the following property:loop invariant

low last_small i

< pivotpivot ≥ pivot ?

When the function inspects entry i, there are two cases. If the entry is greater than
or equal to pivot, then i can be increased and the list still has the required property.
If the entry is less than pivot, then we restore the property by increasing last_small
and swapping that entry (the first of those at least pivot) with entry i, as shown in
the following diagrams:restore the invariant

swap

last_small i

< pivotpivot ≥ pivot ?< pivot

last_small i

< pivotpivot ≥ pivot ?

When the loop terminates, we have the situation:

low

< pivotpivot ≥ pivot

last_small high

final position and we then need only swap the pivot from position low to position last_small to
obtain the desired final arrangement.

Section 8.8 • Quicksort for Contiguous Lists 355

2. Choice of Pivot

We are not bound to the choice of the first entry in the list as the pivot; we can
choose any entry we wish and swap it with the first entry before beginning the
loop that partitions the list. In fact, the first entry is often a poor choice for pivot,
since if the list is already sorted, then the first key will have no others less than it,
and so one of the sublists will be empty. Hence, let us instead choose a pivot near
the center of the list, in the hope that our choice will partition the keys so that aboutpivot from center
half come on each side of the pivot.

3. Coding

With these decisions, we obtain the following function, in which we use the swap
function from Section 8.3.2 (page 331). For convenience of reference we also include
the property that holds during iteration of the loop as an assertion (loop invariant)
in the function.275

template <class Record>
int Sortable_list<Record> :: partition(int low, int high)
/* Pre: low and high are valid positions of the Sortable_list, with low <= high.

Post: The center (or left center) entry in the range between indices low and
high of the Sortable_list has been chosen as a pivot. All entries of the
Sortable_list between indices low and high, inclusive, have been rear-
ranged so that those with keys less than the pivot come before the pivot
and the remaining entries come after the pivot. The final position of the
pivot is returned.

Uses: swap(int i, int j) (interchanges entries in positions i and j of a Sortable_list),
the contiguous List implementation of Chapter 6, and methods for the
class Record. */

{
Record pivot;
int i, // used to scan through the list

last_small; // position of the last key less than pivot
swap(low, (low + high)/2);
pivot = entry[low]; // First entry is now pivot.
last_small = low;
for (i = low + 1; i <= high; i++)

/*At the beginning of each iteration of this loop, we have the following conditions:
If low < j <= last_small then entry[j].key < pivot.
If last_small < j < i then entry[j].key >= pivot. */

if (entry[i] < pivot) {
last_small = last_small + 1;
swap(last_small, i); // Move large entry to right and small to left.

}
swap(low, last_small); // Put the pivot into its proper position.
return last_small;

}

356 Chapter 8 • Sorting

8.8.3 Analysis of Quicksort

It is now time to examine the quicksort algorithm carefully, to determine when it
works well, when it does not, and how much computation it performs.

1. Choice of Pivot
Our choice of a key at the center of the list to be the pivot is arbitrary. This choice

276

may succeed in dividing the list nicely in half, or we may be unlucky and find that
one sublist is much larger than the other. Some other methods for choosing the
pivot are considered in the exercises. An extreme case for our method occurs for
the following list, where every one of the pivots selected turns out to be the largest
key in its sublist:worst case

2 4 6 7 3 1 5

Check it out, using the partition function in the text. When quicksort is applied to
this list, its label will appear to be quite a misnomer, since at the first recursion the
nonempty sublist will have length 6, at the second 5, and so on.

If we were to choose the pivot as the first key or the last key in each sublist, then
the extreme case would occur when the keys are in their natural order or in their
reverse order. These orders are more likely to happen than some random order,
and therefore choosing the first or last key as pivot is likely to cause problems.

2. Count of Comparisons and Swaps
Let us determine the number of comparisons and swaps that contiguous quicksort
makes. Let C(n) be the number of comparisons of keys made by quicksort when
applied to a list of length n, and let S(n) be the number of swaps of entries. We
have C(1)= C(0)= 0. The partition function compares the pivot with every other
key in the list exactly once, and thus the function partition accounts for exactly
n− 1 key comparisons. If one of the two sublists it creates has length r , then the
other sublist will have length exactly n− r − 1. The number of comparisons done
in the two recursive calls will then be C(r) and C(n− r − 1). Thus we have

C(n)= n − 1 + C(r)+C(n − r − 1).total number of
comparisons

To solve this equation we need to know r . In fact, our notation is somewhat
deceptive, since the values of C() depend not only on the length of the list but also
on the exact ordering of the entries in it. Thus we shall obtain different answers in
different cases, depending on the ordering.

3. Comparison Count, Worst Case
First, consider the worst case for comparisons. We have already seen that this occurs
when the pivot fails to split the list at all, so that one sublist has n−1 entries and the
other is empty. In this case, since C(0)= 0, we obtain C(n)= n− 1+ C(n− 1). An
expression of this form is called a recurrence relation because it expresses its answerrecurrence relation
in terms of earlier cases of the same result. We wish to solve the recurrence, which
means to find an equation for C(n) that does not involve C () on the other side.

Section 8.8 • Quicksort for Contiguous Lists 357

Various (sometimes difficult) methods are needed to solve recurrence relations, but
in this case we can do it easily by starting at the bottom instead of the top:

C(1) = 0.
C(2) = 1 + C(1) = 1.
C(3) = 2 + C(2) = 2 + 1.
C(4) = 3 + C(3) = 3 + 2 + 1.

...
...

C(n) = n − 1 + C(n − 1) = (n − 1)+(n − 2)+· · · + 2 + 1
= 1

2(n − 1)n = 1
2n

2 − 1
2n.

In this calculation we have applied Theorem A.1 on page 647 to obtain the sum of
the integers from 1 to n− 1.

Recall that selection sort makes about 1
2n

2− 1
2n key comparisons, and makingselection sort

too many comparisons was the weak point of selection sort (as compared with
insertion sort). Hence in its worst case, quicksort is as bad as the worst case of
selection sort.

4. Swap Count, Worst Case
Next let us determine how many times quicksort will swap entries, again in its
worst case. The partition function does one swap inside its loop for each key less
than the pivot and two swaps outside its loop. In its worst case, the pivot is the
largest key in the list, so the partition function will then make n+ 1 swaps. With
S(n) the total number of swaps on a list of length n, we then have the recurrence

S(n)= n + 1 + S(n − 1)

in the worst case. The partition function is called only when n ≥ 2, and S(2)= 3
in the worst case. Hence, as in counting comparisons, we can solve the recurrence
by working downward, and we obtain

S(n)= (n + 1)+n + · · · + 3 = 1
2(n + 1)(n + 2)−3 = 0.5n2 + 1.5n − 1answer

swaps in the worst case.

5. Comparison with Insertion Sort and Selection Sort
In its worst case, contiguous insertion sort must make about twice as many com-
parisons and assignments of entries as it does in its average case, giving a total
of 0.5n2 +O(n) for each operation. Each swap in quicksort requires three assign-
ments of entries, so quicksort in its worst case does 1.5n2 +O(n) assignments, or,
for large n, about three times as many as insertion sort. But moving entries was
the weak point of insertion sort in comparison to selection sort. Hence, in its worst
case, quicksort (so-called) is worse than the poor aspect of insertion sort, and, in
regard to key comparisons, it is also as bad as the poor aspect of selection sort.poor worst-case

behavior Indeed, in the worst-case analysis, quicksort is a disaster, and its name is nothing
less than false advertising.

358 Chapter 8 • Sorting

It must be for some other reason that quicksort was not long ago consigned to
the scrap heap of programs that never worked. The reason is the average behavior
of quicksort when applied to lists in random order, which turns out to be one ofexcellent average-case

behavior the best of any sorting methods (using key comparisons and applied to contiguous
lists) yet known!

8.8.4 Average-Case Analysis of Quicksort

To do the average-case analysis, we shall assume that all possible orderings of the
list are equally likely, and for simplicity, we take the keys to be just the integers
from 1 to n.

1. Counting Swaps
When we select the pivot in the function partition, it is equally likely to be any one

277

of the keys. Denote by p whatever key is selected as pivot. Then after the partition,
key p is guaranteed to be in position p , since the keys 1, . . . , p− 1 are all to its left
and p + 1, . . . , n are to its right.

The number of swaps that will have been made in one call to partition is p+1,
consisting of one swap in the loop for each of the p − 1 keys less than p and two
swaps outside the loop. Let us denote by S(n) the average number of swaps done
by quicksort on a list of length n and by S(n,p) the average number of swaps on
a list of length n where the pivot for the first partition is p . We have now shown
that, for n ≥ 2,

S(n,p)= (p + 1)+S(p − 1)+S(n − p).
We must now take the average of these expressions, since p is random, by adding
them from p = 1 to p = n and dividing by n. The calculation uses the formula for
the sum of the integers (Theorem A.1), and the result is

S(n)= n
2
+ 3

2
+ 2
n

(
S(0)+S(1)+· · · + S(n − 1)

)
.

2. Solving the Recurrence Relation
The first step toward solving this recurrence relation is to note that, if we were
sorting a list of length n−1, we would obtain the same expression with n replaced
by n− 1, provided that n ≥ 2:

S(n − 1)= n − 1
2

+ 3
2
+ 2
n − 1

(
S(0)+S(1)+· · · + S(n − 2)

)
.

Multiplying the first expression by n, the second by n−1, and subtracting, we
obtain

nS(n)−(n − 1)S(n − 1)= n + 1 + 2S(n − 1),

or
S(n)
n + 1

= S(n − 1)
n

+ 1
n
.

Section 8.8 • Quicksort for Contiguous Lists 359

We can solve this recurrence relation as we did a previous one by starting at the
bottom. The result is

S(n)
n + 1

= S(2)
3

+ 1
3
+ · · · + 1

n
.

The sum of the reciprocals of integers is studied in Section A.2.8, where it is shown
that

1 + 1
2
+ · · · + 1

n
= lnn + O(1).

The difference between this sum and the one we want is bounded by a constant,
so we obtain

S(n)/(n + 1)= lnn + O(1),

or, finally,

S(n)= n lnn + O(n).

To compare this result with those for other sorting methods, we note that

lnn = (ln 2)(lgn)

and ln 2 ≈ 0.69, so that

S(n)≈ 0.69(n lgn)+O(n).

3. Counting Comparisons

Since a call to the partition function for a list of length n makes exactly n − 1
comparisons, the recurrence relation for the number of comparisons made in the
average case will differ from that for swaps in only one way: Instead of p+1 swaps
in the partition function, there are n − 1 comparisons. Hence the first recurrence
for the number C(n,p) of comparisons for a list of length n with pivot p is

C(n,p)= n − 1 + C(p − 1)+C(n − p).

When we average these expressions for p = 1 to p = n, we obtain

C(n)= n + 2
n

(
C(0)+C(1)+· · · + C(n − 1)

)
.

Since this recurrence for the number C(n) of key comparisons differs from that for

276

S(n) only by the factor of 1
2 in the latter, the same steps used to solve for S(n) will

yield

C(n)≈ 2n lnn + O(n)≈ 1.39n lgn + O(n).

360 Chapter 8 • Sorting

8.8.5 Comparison with Mergesort

The calculation just completed shows that, on average, quicksort does about 39
percent more comparisons of keys than required by the lower bound and, therefore,
also about 39 percent more than does mergesort. The reason, of course, is that
mergesort is carefully designed to divide the list into halves of essentially equal
size, whereas the sizes of the sublists for quicksort cannot be predicted in advance.key comparisons
Hence it is possible that quicksort’s performance can be seriously degraded, but
such an occurrence is unlikely in practice, so that averaging the times of poor
performance with those of good performance yields the result just obtained.

data movement Concerning data movement, we did not derive detailed information for merge-
sort since we were primarily interested in the linked version. If, however, we
consider the version of contiguous mergesort that builds the merged sublists in a
second array, and reverses the use of arrays at each pass, then it is clear that, at each
level of the recursion tree, all n entries will be copied from one array to the other.
The number of levels in the recursion tree is lgn, and it therefore follows that the
number of assignments of entries in contiguous mergesort is n lgn. For quicksort,
on the other hand, we obtained a count of about 0.69n lgn swaps, on average.
A good (machine-language) implementation should accomplish a swap of entries
in two assignments. Therefore, again, quicksort does about 39 percent more as-
signments of entries than does mergesort. The exercises, however, outline another
partition function that does, on average, only about one-third as many swaps asoptimization
the version we developed. With this refinement, therefore, contiguous quicksort
may perform fewer than half as many assignments of data entries as contiguous
mergesort.

Exercises 8.8 E1. How will the quicksort function (as presented in the text) function if all the
keys in the list are equal?

E2. [Due to KNUTH] Describe an algorithm that will arrange a contiguous list whose
keys are real numbers so that all the entries with negative keys will come first,
followed by those with nonnegative keys. The final list need not be completely
sorted. Make your algorithm do as few movements of entries and as few
comparisons as possible. Do not use an auxiliary array.

E3. [Due to HOARE] Suppose that, instead of sorting, we wish only to find the mth

smallest key in a given list of size n. Show how quicksort can be adapted to
this problem, doing much less work than a complete sort.

E4. Given a list of integers, develop a function, similar to the partition function,
that will rearrange the integers so that either all the integers in even-numbered
positions will be even or all the integers in odd-numbered positions will be
odd. (Your function will provide a proof that one or the other of these goals
can always be attained, although it may not be possible to establish both at
once.)

Section 8.8 • Quicksort for Contiguous Lists 361

E5. A different method for choosing the pivot in quicksort is to take the median of
the first, last, and central keys of the list. Describe the modifications needed to
the function quick_sort to implement this choice. How much extra computation
will be done? For n = 7, find an ordering of the keys

1, 2, . . . , 7

that will force the algorithm into its worst case. How much better is this worst
case than that of the original algorithm?

E6. A different approach to the selection of pivot is to take the mean (average) of
all the keys in the list as the pivot. The resulting algorithm is called meansort.meansort

(a) Write a function to implement meansort. The partition function must be
modified, since the mean of the keys is not necessarily one of the keys in
the list. On the first pass, the pivot can be chosen any way you wish. As
the keys are then partitioned, running sums and counts are kept for the
two sublists, and thereby the means (which will be the new pivots) of the
sublists can be calculated without making any extra passes through the
list.

(b) In meansort, the relative sizes of the keys determine how nearly equal
the sublists will be after partitioning; the initial order of the keys is of no
importance, except for counting the number of swaps that will take place.
How bad can the worst case for meansort be in terms of the relative sizes
of the two sublists? Find a set of n integers that will produce the worst
case for meansort.

E7. [Requires elementary probability theory] A good way to choose the pivot is to
use a random-number generator to choose the position for the next pivot at each
call to recursive_quick_sort. Using the fact that these choices are independent,
find the probability that quicksort will happen upon its worst case. (a) Do the
problem for n = 7. (b) Do the problem for general n.

E8. At the cost of a few more comparisons of keys, the partition function can beoptimize partition
rewritten so that the number of swaps is reduced by a factor of about 3, from
1
2n to 1

6n on average. The idea is to use two indices moving from the ends
of the lists toward the center and to perform a swap only when a large key is
found by the low position and a small key by the high position. This exercise
outlines the development of such a function.

(a) Establish two indices i and j, and maintain the invariant property that all
keys before position i are less than or equal to the pivot and all keys after
position j are greater than the pivot. For simplicity, swap the pivot into the
first position, and start the partition with the second element. Write a loop
that will increase the position i as long as the invariant holds and another
loop that will decrease j as long as the invariant holds. Your loops must
also ensure that the indices do not go out of range, perhaps by checking

362 Chapter 8 • Sorting

that i ≤ j. When a pair of entries, each on the wrong side, is found, then
they should be swapped and the loops repeated. What is the termination
condition of this outer loop? At the end, the pivot can be swapped into its
proper place.

(b) Using the invariant property, verify that your function works properly.
(c) Show that each swap performed within the loop puts two entries into their

final positions. From this, show that the function does at most 1
2n+O(1)

swaps in its worst case for a list of length n.
(d) If, after partitioning, the pivot belongs in position p , then the number

of swaps that the function does is approximately the number of entries
originally in one of the p positions at or before the pivot, but whose keys
are greater than or equal to the pivot. If the keys are randomly distributed,
then the probability that a particular key is greater than or equal to the
pivot is 1

n(n − p − 1). Show that the average number of such keys, and
hence the average number of swaps, is approximately p

n(n−p). By taking
the average of these numbers from p = 1 to p = n, show that the number
of swaps is approximately n

6 +O(1).
(e) The need to check to make sure that the indices i and j in the partition stay

in bounds can be eliminated by using the pivot key as a sentinel to stop
the loops. Implement this method in your function. Be sure to verify that
your function works correctly in all cases.

(f) [Due to WIRTH] Consider the following simple and “obvious” way to write
the loops using the pivot as a sentinel:

do {
do { i = i + 1; } while (entry[i] < pivot);
do { j = j − 1; } while (entry[j] > pivot);
swap(i, j);

} while (j > i);

Find a list of keys for which this version fails.
Programming
Projects 8.8

P1. Implement quicksort (for contiguous lists) on your computer, and test it with
the program from Project P1 of Section 8.2 (page 328). Compare its performance
with that of all the other sorting methods you have studied.

P2. Write a version of quicksort for linked lists, integrate it into the linked version
of the testing program from Project P1 of Section 8.2 (page 328), and compare
its performance with that of other sorting methods for linked lists.

linked quicksort Use the first entry of a sublist as the pivot for partitioning. The partition
function for linked lists is somewhat simpler than for contiguous lists, since
minimization of data movement is not a concern. To partition a sublist, you
need only traverse it, deleting each entry as you go, and then add the entry to
one of two lists depending on the size of its key relative to the pivot.

Since partition now produces two new lists, you will, however, require a
short additional function to recombine the sorted sublists into a single linked
list.

Section 8.9 • Heaps and Heapsort 363

P3. Because it may involve more overhead, quicksort may be inferior to simpler
methods for short lists. Through experiment, find a value where, on average
for lists in random order, quicksort becomes more efficient than insertion sort.
Write a hybrid sorting function that starts with quicksort and, when the sublists
are sufficiently short, switches to insertion sort. Determine if it is better to do
the switch-over within the recursive function or to terminate the recursive calls
when the sublists are sufficiently short to change methods and then at the very
end of the process run through insertion sort once on the whole list.

8.9 HEAPS AND HEAPSORT

Quicksort has the disadvantage that, even though its usual performance is excel-
lent, some kinds of input can make it misbehave badly. In this section we study an-
other sorting method that overcomes this problem. This algorithm, called heapsort,
sorts a contiguous list of length n with O(n logn) comparisons and movements
of entries, even in its worst case. Hence it achieves worst-case bounds better than
those of quicksort, and for contiguous lists it is better than mergesort, since it needs
only a small and constant amount of space apart from the list being sorted.

Heapsort is based on a tree structure that reflects the pecking order in a corpo-corporate hierarchy
rate hierarchy. Imagine the organizational structure of corporate management as a
tree, with the president at the top. When the president retires, the vice-presidents
compete for the top job; one then wins promotion and creates a vacancy. The junior
executives are thus always competing for promotion whenever a vacancy arises.
Now (quite unrealistically) imagine that the corporation always does its “down-
sizing” by pensioning off its most expensive employee, the president. Hence a
vacancy continually appears at the top, employees are competing for promotion,
and as each employee reaches the “top of the heap” that position again becomes
vacant. With this, we have the essential idea of our sorting method.

8.9.1 Two-Way Trees as Lists

Let us begin with a complete 2-tree such as the one shown in Figure 8.15, and
number the vertices, beginning with the root, labeled 0, from left to right on each
level.278

We can now put the 2-tree into a list by storing each node in the position shown
by its label. We conclude that

If the root of the tree is in position 0 of the list, then the left and right children of the
node in position k are in positions 2k+ 1 and 2k+ 2 of the list, respectively. If thesefinding the children
positions are beyond the end of the list, then these children do not exist.

With this idea, we can define what we mean by a heap.

364 Chapter 8 • Sorting

3

7 8

30292827262524232221201918171615

4

9 10

5

11 12

6

13 14

1 2

0

Figure 8.15. Complete 2-tree with 31 vertices

Definition A heap is a list in which each entry contains a key, and, for all positions k in

278

the list, the key at position k is at least as large as the keys in positions 2k and
2k+ 1, provided these positions exist in the list.

In this way, a heap is analogous to a corporate hierarchy in which each employee
(except those at the bottom of the heap) supervises two others.

In explaining the use of heaps, we shall draw trees like Figure 8.16 to show the
hierarchical relationships, but algorithms operating on heaps always treat them as
a particular kind of list.

279

r

y

p

f

y cr p d f b k a

d k b

ca

Heap

Figure 8.16. A heap as a tree and as a list

Note that a heap is definitely not an ordered list. The first entry, in fact, must
have the largest key in the heap, whereas the first key is smallest in an ordered list.
In a heap, there is no necessary ordering between the keys in locations k and k+ 1
if k > 1.

Section 8.9 • Heaps and Heapsort 365

Remark Many C++ manuals and textbooks refer to the area used for dynamic memory
as the “heap”; this use of the word heap has nothing to do with the present
definition.

8.9.2 Development of Heapsort

1. Method
Heapsort proceeds in two phases. First, we must arrange the entries in the list sotwo-phase function
that they satisfy the requirements for a heap (analogous to organizing a corporate
hierarchy). Second, we repeatedly remove the top of the heap and promote another
entry to take its place.

For this second phase, we recall that the root of the tree (which is the first entry
of the list as well as the top of the heap) has the largest key. This key belongs at
the end of the list. We therefore move the first entry to the last position, replacing
an entry current. We then decrease a counter last_unsorted that keeps track of the
size of the unsorted part of the list, thereby excluding the largest entry from further
sorting. The entry current that has been removed from the last position, however,
may not belong on the top of the heap, and therefore we must insert current into
the proper position to restore the heap property before continuing to loop in the
same way.

From this description, you can see that heapsort requires random access to all
parts of the list. We must therefore decide:

Heapsort is suitable only for contiguous lists.

2. The Main Function
Let us now crystallize heapsort by writing it in C++, using our standard conven-
tions.280

template <class Record>
void Sortable_list<Record> :: heap_sort()
/* Post: The entries of the Sortable_list have been rearranged so that their keys

are sorted into nondecreasing order.
Uses: The contiguous List implementation of Chapter 6, build_heap, and in-

sert_heap. */
{

Record current; // temporary storage for moving entries
int last_unsorted; // Entries beyond last_unsorted have been sorted.
build_heap(); // First phase: Turn the list into a heap.
for (last_unsorted = count − 1; last_unsorted > 0; last_unsorted−−) {

current = entry[last_unsorted]; // Extract the last entry from the list.
entry[last_unsorted] = entry[0]; // Move top of heap to the end
insert_heap(current, 0, last_unsorted − 1); // Restore the heap

}
}

366 Chapter 8 • Sorting

3. An Example

Before we begin work on the two functions build_heap and insert_heap, let us see
what happens in the first few stages of sorting the heap shown in Figure 8.16. These
stages are shown in Figure 8.17. In the first step, the largest key, y, is moved from
the first to the last entry of the list. The first diagram shows the resulting tree, with
y removed from further consideration, and the entry that was formerly last, c, put
aside as the temporary variable current. To find how to rearrange the heap and
insert c, we look at the two children of the root. Each of these is guaranteed to have
a larger key than any other entry in its subtree, and hence the largest of these two
entries and c belongs in the root. We therefore promote r to the top of the heap,
and repeat the process on the subtree whose root has just been removed. Hence
the larger of d and f is now inserted where r was formerly. At the next step, we
would compare current = c with the two children of f, but these do not exist, so
the promotion of entries through the tree ceases, and current = c is inserted in the
empty position formerly occupied by f.279

a

d

p

kf b

c

fr p d b k a

Promote r Promote f

Insert c

0 1 2 3 4 5 6 7 8

y

a

d

p

kf b

c

fp d b k a y

a

d

f p

kc b

cr p d b k a yr

r

rr

f

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Figure 8.17. First stage of heap_sort

At this point, we are ready to repeat the algorithm, again moving the top of the
heap to the end of the list and restoring the heap property. The sequence of actions
that occurs in the complete sort of the list is shown in Figure 8.18.

4. The Function insert_heap

It is only a short step from this example to a formal function for inserting the entry
current into the heap.281

template <class Record>
void Sortable_list<Record> :: insert_heap(const Record ¤t, int low, int high)
/* Pre: The entries of the Sortable_list between indices low + 1 and high, inclu-

sive, form a heap. The entry in position low will be discarded.
Post: The entry current has been inserted into the Sortable_list and the entries

rearranged so that the entries between indices low and high, inclusive,
form a heap.

Uses: The class Record, and the contiguous List implementation of Chapter 6. */

Section 8.9 • Heaps and Heapsort 367

0 1 2 3 4 5 6 7 8

p yf k d c b a r

d

f

p

c b a

k

Remove r,

0 1 2 3 4 5 6 7 8

k yf b d c a p r

d

f

k

c a

b

0 1 2 3 4 5 6 7 8

f yd b a c k p r

a

d

f

c

b

0 1 2 3 4 5 6 7 8

d yc b a f k p r

a

c

d

b

a

c

b

0 1 2 3 4 5 6 7 8

a yb c d f k p r

a

a

b

0 1 2 3

c a b d

0 1 2

b a c

Promote p, k,
Reinsert a:

Remove p,
Promote k, b,
Reinsert a:

Remove f,
Promote d,
Reinsert c:

Remove k,
Promote f, d,
Reinsert a:

Remove d,
Promote c,
Reinsert a:

Remove c,
Promote b,

Remove b,
Reinsert a:

Figure 8.18. Trace of heap_sort

{
int large; // position of child of entry[low] with the larger key
large = 2 * low + 1; // large is now the left child of low.
while (large <= high) {

if (large < high && entry[large] < entry[large + 1])
large++; // large is now the child of low with the largest key.

if (current >= entry[large])
break; // current belongs in position low.

else { // Promote entry[large] and move down the tree.
entry[low] = entry[large];
low = large;
large = 2 * low + 1;

}
}
entry[low] = current;

}

5. Building the Initial Heap
The remaining task that we must specify is to build the initial heap from a list ininitialization
arbitrary order. To do so, we first note that a 2-tree with only one node automatically
satisfies the properties of a heap, and therefore we need not worry about any of the
leaves of the tree; that is, about any of the entries in the second half of the list. If we

368 Chapter 8 • Sorting

begin at the midpoint of the list and work our way back toward the start, we can
use the function insert_heap to insert each entry into the partial heap consisting
of all later entries, and thereby build the complete heap. The desired function is
therefore simply:280

template <class Record>
void Sortable_list<Record> :: build_heap()
/* Post: The entries of the Sortable_list have been rearranged so that it becomes

a heap.
Uses: The contiguous List implementation of Chapter 6, and insert_heap. */

{
int low; // All entries beyond the position low form a heap.
for (low = count/2 − 1; low >= 0; low−−) {

Record current = entry[low];
insert_heap(current, low, count − 1);

}
}

8.9.3 Analysis of Heapsort

From the example we have worked out, it is not at all clear that heapsort is efficient,
and, in fact, heapsort is not a good choice for short lists. It seems quite strange
that we can sort by moving large keys slowly toward the beginning of the list
before finally putting them away at the end. When n becomes large, however,
such small quirks become unimportant, and heapsort proves its worth as one of
very few sorting algorithms for contiguous lists that is guaranteed to finish in time
O(n logn) with minimal space requirements.

worst-case insertion First, let us determine how much work insert_heap does in its worst case. At
each pass through the loop, the value of low+1 is at least doubled; hence the num-
ber of passes cannot exceed lg((high + 1)/(low + 1)); this is also the height of the
subtree rooted at entry[low]. Each pass through the loop does two comparisons
of keys (usually) and one assignment of entries. Therefore, the number of compar-
isons done in insert_heap is at most 2 lg((high + 1)/(low + 1)) and the number of
assignments lg((high + 1)/(low + 1)).

Let m =
⌊

1
2n
⌋

(that is, the greatest integer that does not exceed 1
2n). In

build_heap we make m calls to insert_heap, for values of k = low ranging from
m− 1 down to 0. Hence the total number of comparisons is aboutfirst phase

2
m∑
k=1

lg
(
n
k

)
= 2(m lgn − lgm!)≈ 5m ≈ 2.5n,

since, by Stirling’s approximation (Theorem A.5 on page 658) and lgm = lgn− 1,
we have

lgm! ≈ m lgm − 1.5m ≈ m lgn − 2.5m.

Section 8.9 • Heaps and Heapsort 369

Similarly, in the sorting and insertion phase, we have aboutsecond phase

2
n∑
k=2

lgk = 2 lgn! ≈ 2n lgn − 3n

comparisons. This term dominates that of the initial phase, and hence we conclude
that the number of comparisons is 2n lgn+O(n).total worst-case

counts One assignment of entries is done in insert_heap for each two comparisons
(approximately). Therefore the total number of assignments is n lgn+O(n).

In summary, we can state:

In its worst case for sorting a list of length n, heapsort performs 2n lgn + O(n)
282

comparisons of keys and n lgn+O(n) assignments of entries.

From Section 8.8.4 we can see that the corresponding numbers for quicksort in
the average case are 1.39n lgn+O(n) comparisons and 0.69n lgn+O(n) swaps,
which would be at least 1.39n lgn+O(n) assignments of entries. Hence the worst
case for heapsort is somewhat poorer than is the average case for quicksort in
regard to comparisons of keys, and somewhat better in regard to assignments of
entries. Quicksort’s worst case, however, is Θ(n2), which is far worse than thecomparison with

quicksort worst case of heapsort for large n. An average-case analysis of heapsort appears
to be very complicated, but empirical studies show that (as for selection sort) there
is relatively little difference between the average and worst cases, and heapsort
usually takes about twice as long as quicksort.

Heapsort, therefore, should be regarded as something of an insurance policy:
On average, heapsort costs somewhat more than quicksort, but heapsort avoids
the slight possibility of a catastrophic degradation of performance.

8.9.4 Priority Queues

To conclude this section, we briefly mention another application of heaps.

Definition A priority queue consists of entries, each of which contains a key called the
priority of the entry. A priority queue has only two operations other than the
usual creation, clearing, size, full, and empty operations:

➥ Insert an entry.

➥ Remove the entry having the largest (or smallest) key.

If entries have equal keys, then any entry with the largest key may be removed
first.

370 Chapter 8 • Sorting

applications In a time-sharing computer system, for example, a large number of tasks may be
waiting for the CPU. Some of these tasks have higher priority than others. Hence
the set of tasks waiting for the CPU forms a priority queue. Other applications
of priority queues include simulations of time-dependent events (like the airport
simulation in Section 3.5) and solution of sparse systems of linear equations by row
reduction.

implementations We could represent a priority queue as a sorted contiguous list, in which case
removal of an entry is immediate, but insertion would take time proportional to n,
the number of entries in the queue. Or we could represent it as an unsorted list, in
which case insertion is rapid but removal is slow.

Now consider the properties of a heap. The entry with largest key is on the top
and can be removed immediately. It will, however, take time O(logn) to restore
the heap property for the remaining keys. If, however, another entry is to be
inserted immediately, then some of this time may be combined with the O(logn)
time needed to insert the new entry. Thus the representation of a priority queue
as a heap proves advantageous for large n, since it is represented efficiently in
contiguous storage and is guaranteed to require only logarithmic time for both
insertions and deletions.

Exercises 8.9 E1. Show the list corresponding to each of the following trees under the represen-
tation that the children of the entry in position k are in positions 2k + 1 and
2k + 2. Which of these are heaps? For those that are not, state the position in
the list at which the heap property is violated.

n

t

w

b

d

ac

b

g

a

e

cda

c

x

b

s

rf

k

m

a

b

c

aa

b

c

x

a

b

(a) (b) (c) (d)

(e) (f) (g) (h)

E2. By hand, trace the action of heap_sort on each of the following lists. Draw the
initial tree to which the list corresponds, show how it is converted into a heap,
and show the resulting heap as each entry is removed from the top and the
new entry inserted.

Section 8.9 • Heaps and Heapsort 371

(a) The following three words to be sorted alphabetically:

triangle square pentagon

(b) The three words in part (a) to be sorted according to the number of sides
of the corresponding polygon, in increasing order

(c) The three words in part (a) to be sorted according to the number of sides
of the corresponding polygon, in decreasing order

(d) The following seven numbers to be sorted into increasing order:

26 33 35 29 19 12 22

(e) The same seven numbers in a different initial order, again to be sorted into
increasing order:

12 19 33 26 29 35 22

(f) The following list of 14 names to be sorted into alphabetical order:

Tim Dot Eva Roy Tom Kim Guy Amy Jon Ann Jim Kay Ron Jan

E3. (a) Design a function that will insert a new entry into a heap, obtaining a
new heap. (The function insert_heap in the text requires that the root be
unoccupied, whereas, for this exercise, the root will already contain the
entry with largest key, which must remain in the heap. Your function will
increase the count of entries in the list.)

(b) Analyze the time and space requirements of your function.

E4. (a) Design a function that will delete the entry with the largest key (the root)
from the top of the heap and restore the heap properties of the resulting,
smaller list.

(b) Analyze the time and space requirements of your function.

E5. (a) Design a function that will delete the entry with index i from a heap and
restore the heap properties of the resulting, smaller list.

(b) Analyze the time and space requirements of your function.

E6. Consider a heap of n keys, with xk being the key in position k (in the contigu-
ous representation) for 0 ≤ k < n. Prove that the height of the subtree rooted
at xk is the greatest integer not exceeding lg

(
n/(k + 1)

)
, for all k satisfying

0 ≤ k < n. [Hint: Use “backward” induction on k, starting with the leaves
and working back toward the root, which is x0 .]

E7. Define the notion of a ternary heap, analogous to an ordinary heap except that
each node of the tree except the leaves has three children. Devise a sorting
method based on ternary heaps, and analyze the properties of the sorting
method.

Programming
Project 8.9

P1. Implement heapsort (for contiguous lists) on your computer, integrate it into
the test program of Project P1 of Section 8.2 (page 328), and compare its per-
formance with all the previous sorting algorithms.

372 Chapter 8 • Sorting

8.10 REVIEW: COMPARISON OF METHODS

In this chapter we have studied and carefully analyzed quite a variety of sorting
methods. Perhaps the best way to summarize this work is to emphasize in turn
each of the three important efficiency criteria:

➥ Use of storage space;

➥ Use of computer time; and

➥ Programming effort.

1. Use of space

In regard to space, most of the algorithms we have discussed use little space other

283

than that occupied by the original list, which is rearranged in its original place to
be in order. The exceptions are quicksort and mergesort, where the recursion doesstack space for

recursion require a small amount of extra storage to keep track of the sublists that have not
yet been sorted. But in a well-written function, the amount of extra space used for
recursion is O(logn) and will be trivial in comparison with that needed for other
purposes.

Finally, we should recall that a major drawback of mergesort for contiguous
lists is that the straightforward version requires extra space Θ(n), in fact, space
equal to that occupied by the original list.

In many applications the list to be sorted is much too large to be kept in high-external sorting
speed memory, and when this is the case, other methods become necessary. A
frequent approach is to divide the list into sublists that can be sorted internally
within high-speed memory and then merge the sorted sublists externally. Hence
much work has been invested in developing merging algorithms, primarily when itexternal sorting

and merging is necessary to merge many sublists at once. We shall not discuss this topic further.

2. Computer Time

The second efficiency criterion is use of computer time, which we have already
carefully analyzed for each of the methods we have developed. In summary, the
simple methods insertion sort and selection sort have time that is Θ(n2) for a list
of length n. Shell sort is much faster; and the remaining methods are usually the
fastest, with time that is Θ(n logn). Quicksort, however, has a worst-case time
that is Θ(n2). Heapsort is something of an insurance policy. It usually is more
costly than quicksort, but it avoids the slight possibility of a serious degradation
in performance.

3. Programming Effort

The third efficiency criterion is often the most important of all: This criterion is the
efficient and fruitful use of the programmer’s time.

If a list is small, the sophisticated sorting techniques designed to minimize
computer time requirements are usually worse or only marginally better in achiev-

Section 8.10 • Review: Comparison of Methods 373

ing their goal than are the simpler methods. If a program is to be run only once or
twice and there is enough machine time, then it would be foolish for a programmer
to spend days or weeks investigating many sophisticated algorithms that might,
in the end, only save a few seconds of computer time.

When programming in languages like most dialects of FORTRAN, COBOL, or BASICold languages
that do not support recursion, implementation of mergesort and quicksort becomes
considerably more complicated, although it can be done by using stacks to hold
the values of variables, as we observed in Chapter 5.

Shell sort comes not far behind mergesort and quicksort in performance, does
not require recursion, and is easy to program. One should therefore never sell Shell
sort short.

The saving of programming time is an excellent reason for choosing a sim-
ple algorithm, even if it is inefficient, but two words of caution should always
be remembered. First, saving programming time is never an excuse for writing
an incorrect program, one that may usually work but can sometimes misbehave.
Murphy’s law will then inevitably come true. Second, simple programs, designed
to be run only a few times and then be discarded, often instead find their way into
applications not imagined when they were first written. Lack of care in the early
stages will then prove exceedingly costly later.

For many applications, insertion sort can prove to be the best choice. It is easy
to write and maintain, and it runs efficiently for short lists. Even for long lists, if
they are nearly in the correct order, insertion sort will be very efficient. If the list is
completely in order, then insertion sort verifies this condition as quickly as can be
done.

4. Statistical Analysis

The final choice of algorithm will depend not only on the length of list, the size
of records, and their representation in storage, but very strongly on the way in
which the records can be expected to be ordered before sorting. The analysis of
algorithms from the standpoint of probability and statistics is of great importance.
For most algorithms, we have been able to obtain results on the mean (average)
performance, but the experience of quicksort shows that the amount by which thismean
performance changes from one possible ordering to another is also an important
factor to consider.

The standard deviation is a statistical measure of this variability. Quicksortstandard deviation
has an excellent mean performance, and the standard deviation is small, which
signifies that the performance is likely to differ little from the mean. For algo-
rithms like selection sort, heapsort, and mergesort, the best-case and worst-case
performances differ little, which means that the standard deviation is quite small.
Other algorithms, like insertion sort, will have a much larger standard deviation in
their performance. The particular distribution of the orderings of the incoming lists
is therefore an important consideration in choosing a sorting method. To enable
intelligent decisions, the professional computer scientist needs to be knowledge-
able about important aspects of mathematical statistics as they apply to algorithm
analysis.

374 Chapter 8 • Sorting

5. Empirical Testing
Finally, in all these decisions, we must be careful to temper the theoretical analysis of
algorithms with empirical testing. Different computers and compilers will produce
different results. It is most instructive, therefore, to see by experiment how the
different algorithms behave in different circumstances.

Exercises
8.10

E1. Classify the sorting methods we have studied into one of the following cate-
gories: (a) The method does not require access to the entries at one end of the
list until the entries at the other end have been sorted; (b) The method does
not require access to the entries that have already been sorted; (c) The method
requires access to all entries in the list throughout the process.

E2. Some of the sorting methods we have studied are not suited for use with linked
lists. Which ones, and why not?

E3. Rank the sorting methods we have studied (both for linked and contiguous
lists) according to the amount of extra storage space that they require for indices
or pointers, for recursion, and for copies of the entries being sorted.

E4. Which of the methods we studied would be a good choice in each of the fol-
lowing applications? Why? If the representation of the list in contiguous or
linked storage makes a difference in your choice, state how.

(a) You wish to write a general-purpose sorting program that will be used by
many people in a variety of applications.

(b) You wish to sort 1000 numbers once. After you finish, you will not keep
the program.

(c) You wish to sort 50 numbers once. After you finish, you will not keep the
program.

(d) You need to sort 5 entries in the middle of a long program. Your sort will
be called hundreds of times by the long program.

(e) You have a list of 1000 keys to sort in high-speed memory, and key compar-
isons can be made quickly, but each time a key is moved, a corresponding
500 block file on disk must also be moved, and doing so is a slow process.

(f) There is a twelve foot long shelf full of computer science books all cata-
logued by number. A few of these have been put back in the wrong places
by readers, but rarely are the books more than one foot from where they
belong.

(g) You have a stack of 500 library index cards in random order to sort alpha-
betically.

(h) You are told that a list of 5000 words is already in alphabetical order, but
you wish to check it to make sure, and sort any words found out of order.

E5. Discuss the advantages and disadvantages of designing a general sorting func-
tion as a hybrid between quicksort and Shell sort. What criteria would you use
to switch from one to the other? Which would be the better choice for what
kinds of lists?

Chapter 8 • Pointers and Pitfalls 375

E6. Summarize the results of the test runs of the sorting methods of this chapter
for your computer. Also include any variations of the methods that you have
written as exercises. Make charts comparing the following:

(a) the number of key comparisons.
(b) the number of assignments of entries.
(c) the total running time.
(d) the working storage requirements of the program.
(e) the length of the program.
(f) the amount of programming time required to write and debug the program.

E7. Write a one-page guide to help a user of your computer system select one of
our sorting algorithms according to the desired application.

E8. A sorting function is called stable if, whenever two entries have equal keys,
then on completion of the sorting function, the two entries will be in the same
order in the list as before sorting. Stability is important if a list has already beenstable sorting methods
sorted by one key and is now being sorted by another key, and it is desired to
keep as much of the original ordering as the new one allows. Determine which
of the sorting methods of this chapter are stable and which are not. For those
that are not, produce a list (as short as possible) containing some entries with
equal keys whose orders are not preserved. In addition, see if you can discover
simple modifications to the algorithm that will make it stable.

POINTERS AND PITFALLS

1. Many computer systems have a general-purpose sorting utility. If you can
284 access this utility and it proves adequate for your application, then use it rather

than writing a sorting program from scratch.

2. In choosing a sorting method, take into account the ways in which the keys
will usually be arranged before sorting, the size of the application, the amount
of time available for programming, the need to save computer time and space,
the way in which the data structures are implemented, the cost of moving data,
and the cost of comparing keys.

3. Divide-and-conquer is one of the most widely applicable and most powerful
methods for designing algorithms. When faced with a programming problem,
see if its solution can be obtained by first solving the problem for two (or more)
problems of the same general form but of a smaller size. If so, you may be
able to formulate an algorithm that uses the divide-and-conquer method and
program it using recursion.

4. Mergesort, quicksort, and heapsort are powerful sorting methods, more dif-
ficult to program than the simpler methods, but much more efficient when
applied to large lists. Consider the application carefully to determine whether
the extra effort needed to implement one of these sophisticated algorithms will
be justified.

376 Chapter 8 • Sorting

5. Priority queues are important for many applications, and heaps provide an
excellent implementation of priority queues.

6. Heapsort is like an insurance policy: It is usually slower than quicksort, but it
guarantees that sorting will be completed in O(n logn) comparisons of keys,
as quicksort cannot always do.

REVIEW QUESTIONS

1. How many comparisons of keys are required to verify that a list of n entries is8.2
in order?

2. Explain in twenty words or less how insertion sort works.

3. Explain in twenty words or less how selection sort works.8.3

4. On average, about how many more comparisons does selection sort do than
insertion sort on a list of 20 entries?

5. What is the advantage of selection sort over all the other methods we studied?

6. What disadvantage of insertion sort does Shell sort overcome?8.4

7. What is the lower bound on the number of key comparisons that any sorting8.5
method must make to put n keys into order, if the method uses key compar-
isons to make its decisions? Give both the average- and worst-case bounds.

8. What is the lower bound if the requirement of using comparisons to make
decisions is dropped?

9. Define the term divide and conquer.8.6

10. Explain in twenty words or less how mergesort works.

11. Explain in twenty words or less how quicksort works.

12. Explain why mergesort is better for linked lists than for contiguous lists.8.7

13. In quicksort, why did we choose the pivot from the center of the list rather than8.8
from one of the ends?

14. On average, about how many more comparisons of keys does quicksort make
than the optimum? About how many comparisons does it make in the worst
case?

15. What is a heap?8.9

16. How does heapsort work?

17. Compare the worst-case performance of heapsort with the worst-case perfor-
mance of quicksort, and compare it also with the average-case performance of
quicksort.

18. When are simple sorting algorithms better than sophisticated ones?8.10

Chapter 8 • References for Further Study 377

REFERENCES FOR FURTHER STUDY

The primary reference for this chapter is the comprehensive series by D. E. KNUTH

(bibliographic details on page 77). Internal sorting occupies Volume 3, pp. 73–180.
KNUTH does algorithm analysis in considerably more detail than we have. He writes
all algorithms in a pseudo-assembly language and does detailed operation counts
there. He studies all the methods we have, several more, and many variations.

The original references to Shell sort and quicksort are, respectively,

D. L. SHELL, “A high-speed sorting function,” Communications of the ACM 2 (1959),
30–32.

C. A. R. HOARE, “Quicksort,” Computer Journal 5 (1962), 10–15.

The unified derivation of mergesort and quicksort, one that can also be used to
produce insertion sort and selection sort, is based on the work

JOHN DARLINGTON, “A synthesis of several sorting algorithms,” Acta Informatica 11
(1978), 1–30.

Mergesort can be refined to bring its performance very close to the optimal lower
bound. One example of such an improved algorithm, whose performance is within
6 percent of the best possible, is

R. MICHAEL TANNER, “Minimean merging and sorting: An algorithm,” SIAM J. Com-
puting 7 (1978), 18–38.

A relatively simple contiguous merge algorithm that operates in linear time with
a small, constant amount of additional space appears in

BING-CHAO HUANG and MICHAEL A. LANGSTON, “Practical in-place merging,” Com-
munications of the ACM 31 (1988), 348–352.

The algorithm for partitioning the list in quicksort was discovered by NICO LOMUTO

and was published in

JON L. BENTLEY, “Programming pearls: How to sort,” Communications of the ACM
27 (1984), 287–291.

The “Programming pearls” column contains many elegant algorithms and help-
ful suggestions for programming that have been collected into the following two
books:

JON L. BENTLEY, Programming Pearls, Addison-Wesley, Reading, Mass., 1986, 195
pages.

JON L. BENTLEY, More Programming Pearls: Confessions of a Coder, Addison-Wesley,
Reading, Mass., 1988, 224 pages.

An extensive analysis of the quicksort algorithm is given in

ROBERT SEDGEWICK, “The analysis of quicksort programs,” Acta Informatica 7 (1976–
77), 327–355.

The exercise on meansort (taking the mean of the keys as pivot) comes from

DALIA MOTZKIN, “MEANSORT,” Communications of the ACM 26 (1983), 250–251; 27
(1984), 719–722.

378 Chapter 8 • Sorting

Heapsort was discovered and so named by

J. W. J. WILLIAMS, Communications of the ACM 7 (1964), 347–348.

A simple but complete development of algorithms for heaps and priority queues
appears in

JON L. BENTLEY, “Programming pearls: Thanks, heaps,” Communications of the ACM
28 (1985), 245–250.

There is, of course, a vast literature in probability and statistics with potential appli-
cations to computers. A classic treatment of elementary probability and statistics
is

W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. 1, second
edition, Wiley–Interscience, New York, 1957.

Tables and
Information
Retrieval 9

T
HIS CHAPTER continues the study of information retrieval that was started
in Chapter 7, but now concentrating on tables instead of lists. We begin
with ordinary rectangular arrays, then we consider other kinds of arrays,
and then we generalize to the study of hash tables. One of our major

purposes in this chapter is to analyze and compare various algorithms, to see
which are preferable under different conditions. Applications in the chapter
include a sorting method based on tables and a version of the Life game using a
hash table.

9.1 Introduction: Breaking the lg n Barrier 380

9.2 Rectangular Tables 381

9.3 Tables of Various Shapes 383
9.3.1 Triangular Tables 383
9.3.2 Jagged Tables 385
9.3.3 Inverted Tables 386

9.4 Tables: A New Abstract Data Type 388

9.5 Application: Radix Sort 391
9.5.1 The Idea 392
9.5.2 Implementation 393
9.5.3 Analysis 396

9.6 Hashing 397
9.6.1 Sparse Tables 397
9.6.2 Choosing a Hash Function 399

9.6.3 Collision Resolution with Open
Addressing 401

9.6.4 Collision Resolution by Chaining 406

9.7 Analysis of Hashing 411

9.8 Conclusions: Comparison of Methods 417

9.9 Application: The Life Game Revisited 418
9.9.1 Choice of Algorithm 418
9.9.2 Specification of Data Structures 419
9.9.3 The Life Class 421
9.9.4 The Life Functions 421

Pointers and Pitfalls 426
Review Questions 427
References for Further Study 428

379

9.1 INTRODUCTION: BREAKING THE lg n BARRIER

In Chapter 7 we showed that, by use of key comparisons alone, it is impossible
286 to complete a search of n items in fewer than lgn comparisons, on average. But

this result speaks only of searching by key comparisons. If we can use some other
method, then we may be able to arrange our data so that we can locate a given item
even more quickly.

In fact, we commonly do so. If we have 500 different records, with an index
between 0 and 499 assigned to each, then we would never think of using sequential
or binary search to locate a record. We would simply store the records in an array
of size 500, and use the index n to locate the record of item n by ordinary tabletable lookup
lookup.

Both table lookup and searching share the same essential purpose, that of in-
formation retrieval. We begin with a key (which may be complicated or simply anfunctions for

information retrieval index) and wish to find the location of the entry (if any) with that key. In other
words, both table lookup and our searching algorithms provide functions from the
set of keys to locations in a list or array. The functions are in fact one-to-one from
the set of keys that actually occur to the set of locations that actually occur, since we
assume that each entry has only one key, and there is only one entry with a given
key.

In this chapter we study ways to implement and access tables in contiguous
storage, beginning with ordinary rectangular arrays and then considering tables
with restricted location of nonzero entries, such as triangular tables. We turn after-tables
ward to more general problems, with the purpose of introducing and motivating
the use first of access arrays and then hash tables for information retrieval.

We shall see that, depending on the shape of the table, several steps may be
needed to retrieve an entry, but, even so, the time required remains O(1)—that is,
it is bounded by a constant that does not depend on the size of the table—and thus
table lookup can be more efficient than any searching method.

The entries of the tables that we consider will be indexed by sequences of
integers, just as array entries are indexed by such sequences. Indeed, we shalltable indices
implement abstractly defined tables with arrays. In order to distinguish between
the abstract concept and its implementation, we introduce the following notation:

Convention

The index defining an entry of an abstractly defined table
is enclosed in parentheses,

whereas the index of an entry of an array
is enclosed in square brackets.

Thus T(1,2, 3) denotes the entry of the table T that is indexed by the sequenceexample
1,2, 3, and A[1][2][3] denotes the correspondingly indexed entry of the C++
array A.

380

Section 9.2 • Rectangular Tables 381

9.2 RECTANGULAR TABLES
Because of the importance of rectangular tables, almost all high-level languages
provide convenient and efficient 2-dimensional arrays to store and access them,
so that generally the programmer need not worry about the implementation de-
tails. Nonetheless, computer storage is fundamentally arranged in a contiguous
sequence (that is, in a straight line with each entry next to another), so for every ac-
cess to a rectangular table, the machine must do some work to convert the location
within a rectangle to a position along a line. Let us take a closer look at this process.

1. Row-Major and Column-Major Ordering
A natural way to read a rectangular table is to read the entries of the first row from
left to right, then the entries of the second row, and so on until the last row has
been read. This is also the order in which most compilers store a rectangular array,
and is called row-major ordering. Suppose, for example, that the rows of a tablerow-major ordering
are numbered from 1 to 2 and the columns are numbered from 5 to 7. (Since we are
working with general tables, there is no reason why we must be restricted by the
requirement in C and C++ that all array indexing begins at 0.) The order of indices
in the table with which the entries are stored in row-major ordering is

(1, 5) (1, 6) (1, 7) (2, 5) (2, 6) (2, 7).

This is the ordering used by C++ and most high-level languages for storing
the elements of a two dimensional array. Standard FORTRAN instead uses column-
major ordering, in which the entries of the first column come first, and so on. ThisFORTRAN:

column-major
ordering

example in column-major ordering is

(1, 5) (2, 5) (1, 6) (2, 6) (1, 7) (2, 7).

Figure 9.1 further illustrates row- and column-major orderings for a table with three
rows and four columns.287

Rectangular
table

Row-major ordering: Column-major ordering:

c

a

t

o

r

e

s

e

a

t

a

r

c

a

t

o

r

e

s

e

a

t

a

r

c

a

t

o

r

e

s

e

a

t

a

r

Figure 9.1. Sequential representation of a rectangular array

382 Chapter 9 • Tables and Information Retrieval

2. Indexing Rectangular Tables

In the general problem, the compiler must be able to start with an index (i, j)
and calculate where in a sequential array the corresponding entry of the table will
be stored. We shall derive a formula for this calculation. For simplicity we shall
use only row-major ordering and suppose that the rows are numbered from 0 to
m− 1 and the columns from 0 to n− 1. The general case is treated as an exercise.
Altogether, the table will have mn entries, as must its sequential implementation
in an array. We number the entries in the array from 0 to mn − 1. To obtain the
formula calculating the position where (i, j) goes, we first consider some special
cases. Clearly (0, 0) goes to position 0, and, in fact, the entire first row is easy: (0, j)
goes to position j . The first entry of the second row, (1, 0), comes after (0, n− 1),
and thus goes into position n. Continuing, we see that (1, j) goes to position n+j .
Entries of the next row will have two full rows (that is, 2n entries) preceding them.
Hence entry (2, j) goes to position 2n + j . In general, the entries of row i are
preceded by ni earlier entries, so the desired formula isindex function,

rectangular array

Entry (i, j) in a rectangular table goes to position ni + j in a sequential array.

A formula of this kind, which gives the sequential location of a table entry, is called
an index function.

3. Variation: An Access Array

The index function for rectangular tables is certainly not difficult to calculate, and
the compilers of most high-level languages will simply write into the machine-
language program the necessary steps for its calculation every time a reference is
made to a rectangular table. On small machines, however, multiplication can be
relatively slow, so a slightly different method can be used to eliminate the multi-
plications.

access array,
rectangular table

This method is to keep an auxiliary array, a part of the multiplication table for
n. The array will contain the values

0, n, 2n, 3n, . . . , (m − 1)n.

Note that this array is much smaller (usually) than the rectangular table, so that
it can be kept permanently in memory without losing too much space. Its entries
then need be calculated only once (and note that they can be calculated using only
addition). For all later references to the rectangular table, the compiler can find the
position for (i, j) by taking the entry in position i of the auxiliary table, adding j ,
and going to the resulting position.

This auxiliary array provides our first example of an access array (see Figure
9.2). In general, an access array is an auxiliary array used to find data stored
elsewhere. An access array is also sometimes called an access vector.

Section 9.3 • Tables of Various Shapes 383

c

a

t

o

r

e

s

e

a

t

a

r

0

4

8

is represented in
row-major order as

Access array

c o s t a r e a t e a r

Figure 9.2. Access array for a rectangular table

287

Exercises 9.2 E1. What is the index function for a two-dimensional rectangular table whose rows
are indexed from 0 to m− 1 and whose columns are indexed from 0 ot n− 1,
inclusive, under column-major ordering?

E2. Give the index function, with row-major ordering, for a two-dimensional ta-
ble with arbitrary bounds r to s , inclusive, for the row indices, and t to u,
inclusive, for the column indices.

E3. Find the index function, with the generalization of row-major ordering, for a
table with d dimensions and arbitrary bounds for each dimension.

9.3 TABLES OF VARIOUS SHAPES

Information that is usually stored in a rectangular table may not require every posi-
tion in the rectangle for its representation. If we define a matrix to be a rectangular
table of numbers, then often some of the positions within the matrix will be requiredmatrix
to be 0. Several such examples are shown in Figure 9.3. Even when the entries in
a table are not numbers, the positions actually used may not be all of those in a
rectangle, and there may be better implementations than using a rectangular array
and leaving some positions vacant. In this section, we examine ways to implement
tables of various shapes, ways that will not require setting aside unused space in a
rectangular array.

9.3.1 Triangular Tables

Let us consider the representation of a lower triangular table as shown in Figure 9.3.
Such a table can be defined formally as a table in which all indices (i, j) are required
to satisfy i ≥ j . We can implement a triangular table in a contiguous array by sliding
each row out after the one above it, as shown in Figure 9.4.

384 Chapter 9 • Tables and Information Retrieval

288

Tri-diagonal matrix Block diagonal matrix

Lower triangular matrix Strictly upper triangular matrix

xxx
xx

xxx

xx

xxx
xxx

xxx
xxx

xxx

xxx
xxx

. . .
. . .

. . .
.

.
.

x x
xx

x x
xx

x x
xx

x x
xx

x

x

x
x

.
.

.

.

x
x

xx . .

0
0 .

0
0

x . .
x

x
x

.
.

.

x

.
.

.

Figure 9.3. Matrices of various shapes
289

Lower
triangular

table

Contiguous
implementation

Ι

a

o

t

l

a

m

n

h

o

l

e

a

v

w

t

e

a

s

y s

Ι

0

1

3

6

10

15 Access table

a m o n e t h a t l o v e s a l w a y s

Ι
a m

no e

ht a

ol v

la w ya s

t

e s

Figure 9.4. Contiguous implementation of a triangular table

Section 9.3 • Tables of Various Shapes 385

To construct the index function that describes this mapping, we again make
the slight simplification of assuming that the rows and the columns are numbered
starting with 0. To find the position where (i, j) goes, we now need to find where
row i starts, and then to locate column j we need only add j to the starting point
of row i. If the entries of the contiguous array are also numbered starting with 0,
then the index of the starting point will be the same as the number of entries that
precede row i. Clearly there are 0 entries before row 0, and only the one entry
of row 0 precedes row 1. For row 2 there are 1 + 2 = 3 preceding entries, and in
general we see that preceding row i there are exactly

1 + 2 + · · · + i = 1
2 i(i + 1)

entries.1 Hence the desired function is that entry (i, j) of the triangular table cor-
responds to entryindex function,

rectangular table 1
2 i(i + 1)+j

of the contiguous array.
As we did for rectangular arrays, we can again avoid all multiplications and

divisions by setting up an access array whose entries correspond to the row indices
of the triangular table. Position i of the access array will permanently contain theaccess array,

triangular table value 1
2 i(i + 1). The access array will be calculated only once at the start of the

program, and then used repeatedly at each reference to the triangular table. Note
that even the initial calculation of this access array requires no multiplication or
division, but only addition to calculate its entries in the order

0, 1, 1 + 2, (1 + 2)+3,

9.3.2 Jagged Tables
In both of the foregoing examples we have considered a rectangular table as made
up from its rows. In ordinary rectangular arrays all the rows have the same length;
in triangular tables, the length of each row can be found from a simple formula. We
now consider the case of jagged tables such as the one in Figure 9.5, where there is
no predictable relation between the position of a row and its length.290

Access
array

Jagged array0

4

14

14

16

23

24

29

Figure 9.5. Access array for jagged table

1 See Appendix A for a proof of this equality.

386 Chapter 9 • Tables and Information Retrieval

It is clear from the diagram that, even though we are not able to give an a priori
function to map the jagged table into contiguous storage, the use of an access array
remains as easy as in the previous examples, and elements of the jagged table can
be referenced just as quickly. To set up the access array, we must construct the
jagged table in its natural order, beginning with its first row. Entry 0 of the access
array is, as before, the start of the contiguous array. After each row of the jagged
table has been constructed, the index of the first unused position of the contiguous
storage should then be entered as the next entry in the access array and used to
start constructing the next row of the jagged table.

9.3.3 Inverted Tables
Next let us consider an example illustrating multiple access arrays, by which we
can refer to a single table of records by several different keys at once.

Consider the problem faced by the telephone company in accessing the records
of its customers. To publish the telephone book, the records must be sorted alpha-
betically by the name of the subscriber, but to process long-distance charges, the
accounts must be sorted by telephone number. To do routine maintenance, the
company also needs to have its subscribers sorted by address, so that a repairman
may be able to work on several lines with one trip. Conceivably, the telephonemultiple records
company could keep three (or more) sets of its records, one sorted by name, one by
number, and one by address. This way, however, would not only be very wasteful
of storage space, but would introduce endless headaches if one set of records were
updated but another was not, and erroneous and unpredictable information might
be used.

By using access arrays we can avoid the multiple sets of records, and we can
still find the records by any of the three keys almost as quickly as if the records were
fully sorted by that key. For the names we set up one access array. The first entrymultiple access arrays
in this table is the position where the records of the subscriber whose name is first
in alphabetical order are stored, the second entry gives the location of the second
(in alphabetical order) subscriber’s records, and so on. In a second access array,
the first entry is the location of the subscriber’s records whose telephone number
happens to be smallest in numerical order. In yet a third access array the entries
give the locations of the records sorted lexicographically by address.

An example of this scheme for a small number of accounts is shown in Figure
9.6.

Notice that in this method all the members that are treated as keys are processed
in the same way. There is no particular reason why the records themselves need
to be sorted according to one key rather than another, or, in fact, why they needunordered records for

ordered access arrays to be sorted at all. The records themselves can be kept in an arbitrary order—
say, the order in which they were first entered into the system. It also makes no
difference whether the records are in an array, with entries in the access arrays
being indices of the array, or whether the records are in dynamic storage, with the
access arrays holding pointers to individual records. In any case, it is the access
arrays that are used for information retrieval, and, as ordinary contiguous arrays,
they may be used for table lookup, or binary search, or any other purpose for which
a contiguous implementation is appropriate.

Section 9.3 • Tables of Various Shapes 387

Index Name Address Phone

1 Hill, Thomas M. High Towers #317 2829478
2 Baker, John S. 17 King Street 2884285
3 Roberts, L. B. 53 Ash Street 4372296
4 King, Barbara High Towers #802 2863386
5 Hill, Thomas M. 39 King Street 2495723
6 Byers, Carolyn 118 Maple Street 4394231
7 Moody, C. L. High Towers #210 2822214

Access Arrays

Name Address Phone
2 3 5
6 7 7
1 1 1
5 4 4
4 2 2
7 5 3
3 6 6

Figure 9.6. Multikey access arrays: an inverted table

291

Exercises 9.3 E1. The main diagonal of a square matrix consists of the entries for which the
row and column indices are equal. A diagonal matrix is a square matrix in
which all entries not on the main diagonal are 0. Describe a way to store a
diagonal matrix without using space for entries that are necessarily 0, and give
the corresponding index function.

E2. A tri-diagonal matrix is a square matrix in which all entries are 0 except pos-
sibly those on the main diagonal and on the diagonals immediately above
and below it. That is, T is a tri-diagonal matrix means that T(i, j)= 0 unless
|i− j| ≤ 1.
(a) Devise a space-efficient storage scheme for tri-diagonal matrices, and give

the corresponding index function.
(b) The transpose of a matrix is the matrix obtained by interchanging its rows

with the corresponding columns. That is, matrix B is the transpose of
matrixAmeans that B(j, i)= A(i, j) for all indices i and j corresponding to
positions in the matrix. Design an algorithm that transposes a tri-diagonal
matrix using the storage scheme devised in the previous part of the exercise.

E3. An upper triangular matrix is a square matrix in which all entries below the
main diagonal are 0. Describe the modifications necessary to use the access
array method to store an upper triangular matrix.

388 Chapter 9 • Tables and Information Retrieval

E4. Consider a table of the triangular shape shown in Figure 9.7, where the columns
are indexed from −n to n and the rows from 0 to n.290

0

1

2

3

4

5

Example for
n = 5

–5 –4 –3 –2 –1 0 1 2 3 4 5

Figure 9.7. A table symmetrically triangular around 0

(a) Devise an index function that maps a table of this shape into a sequential
array.

(b) Write a function that will generate an access array for finding the first entry
of each row of a table of this shape within the contiguous array.

(c) Write a function that will reflect the table from left to right. The entries
in column 0 (the central column) remain unchanged, those in columns −1
and 1 are swapped, and so on.

Programming
Projects 9.3

Implement the method described in the text that uses an access array to store
a lower triangular table, as applied in the following projects.

P1. Write a function that will read the entries of a lower triangular table from the
terminal. The entries should be of type double.

P2. Write a function that will print a lower triangular table at the terminal.

P3. Suppose that a lower triangular table is a table of distances between cities, as
often appears on a road map. Write a function that will check the triangle rule:
The distance from city A to city C is never more than the distance from A to
city B , plus the distance from B to C .

P4. Embed the functions of the previous projects into a complete program for
demonstrating lower triangular tables.

9.4 TABLES: A NEW ABSTRACT DATA TYPE

At the beginning of this chapter we studied several index functions used to locate
entries in tables, and then we turned to access arrays, which were arrays used
for the same purpose as index functions. The analogy between functions and
table lookup is indeed very close: With a function, we start with an argument and
calculate a corresponding value; with a table, we start with an index and look up a
corresponding value. Let us now use this analogy to produce a formal definition
of the term table, a definition that will, in turn, motivate new ideas that come to
fruition in the following section.

Section 9.4 • Tables: A New Abstract Data Type 389

1. Functions
In mathematics a function is defined in terms of two sets and a correspondence
from elements of the first set to elements of the second. If f is a function from a set
A to a set B , then f assigns to each element of A a unique element of B . The set Adomain, codomain,

and range is called the domain of f , and the set B is called the codomain of f . The subset of
B containing just those elements that occur as values of f is called the range of f .
This definition is illustrated in Figure 9.8.292

Domain
(Index set) Codomain

(Base type)

Range

A f B X

X
X

X

X

X X

XX

X X
X

X

X

Figure 9.8. The domain, codomain, and range of a function

Table access begins with an index and uses the table to look up a corresponding
value. Hence for a table we call the domain the index set, and we call the codomainindex set, value type
the base type or value type. (Recall that in Section 4.6 a type was defined as a set
of values.) If, for example, we have the array declaration

double array[n];

then the index set is the set of integers between 0 and n − 1, and the base type is
the set of all real numbers. As a second example, consider a triangular table with
m rows whose entries have type Item. The base type is then simply type Item and
the index type is the set of ordered pairs of integers

{(i, j) | 0 ≤ j ≤ i < m}.
2. An Abstract Data Type
We are now well on the way toward defining table as a new abstract data type,
but recall from Section 4.6 that to complete the definition, we must also specify

293

the operations that can be performed. Before doing so, let us summarize what we
know.

Definition A table with index set I and base type T is a function from I into T together
with the following operations.

1. Table access: Evaluate the function at any index in I .the ADT table

2. Table assignment: Modify the function by changing its value at a specified
index in I to the new value specified in the assignment.

390 Chapter 9 • Tables and Information Retrieval

These two operations are all that are provided for arrays in C++ and some other
languages, but that is no reason why we cannot allow the possibility of further
operations for our abstract tables. If we compare the definition of a list, we find
that we allowed insertion and deletion as well as access and assignment. We can
do the same with tables.

293

3. Creation: Set up a new function from I to T .

4. Clearing: Remove all elements from the index set I , so the remaining do-
main is empty.

5. Insertion: Adjoin a new element x to the index set I and define a corre-
sponding value of the function at x .

6. Deletion: Delete an element x from the index set I and restrict the function
to the resulting smaller domain.

Even though these last operations are not available directly for arrays in C++, they
remain very useful for many applications, and we shall study them further in the
next section. In some other languages, such as APL and SNOBOL, tables that change
size while the program is running are an important feature. In any case, we should
always be careful to program into a language and never allow our thinking to be
limited by the restrictions of a particular language.

3. Implementation

The definition just given is that of an abstract data type and in itself says nothing
about implementation, nor does it speak of the index functions or access arrays
studied earlier. Index functions and access arrays are, in fact, implementationindex functions and

access arrays methods for more general tables. An index function or access array starts with a
general index set of some specified form and produces as its result an index in some
subscript range, such as a subrange of the integers. This range can then be used
directly as subscripts for arrays provided by the programming language. In this
way, the implementation of a table is divided into two smaller problems: finding
an access array or index function and programming an array. You should note that
both of these are special cases of tables, and hence we have an example of solving a
problem by dividing it into two smaller problems of the same nature. This processdivide and conquer
is illustrated in Figure 9.9.

4. Comparisons

Let us compare the abstract data types list and table. The underlying mathematical
construction for a list is the sequence, and for a table, it is the set and the function.
Sequences have an implicit order; a first element, a second, and so on, but setslists and tables
and functions have no such order. (If the index set has some natural order, then
sometimes this order is reflected in the table, but this is not a necessary aspect of
using tables.) Hence information retrieval from a list naturally involves a search

Section 9.5 • Application: Radix Sort 391

Array
accessIndex

function
or

Access
array

Subscript
range

Implementation

Abstract
data type

Table
(function)

Base
type

Index
set

Figure 9.9. Implementation of a table

like the ones studied in the previous chapter, but information retrieval from a table

293

requires different methods, access methods that go directly to the desired entry. Theretrieval
time required for searching a list generally depends on the number n of entries in
the list and is at least lgn (see Theorem 7.6), but the time for accessing a table does
not usually depend on the number of entries in the table; that is, it is usually O(1).
For this reason, in many applications, table access is significantly faster than list
searching.

On the other hand, traversal is a natural operation for a list but not for a table.traversal
It is generally easy to move through a list performing some operation with every
entry in the list. In general, it may not be nearly so easy to perform an operation on
every entry in a table, particularly if some special order for the entries is specified
in advance.

tables and arrays Finally, we should clarify the distinction between the terms table and array.
In general, we shall use table as we have defined it in this section and restrict the
term array to mean the programming feature available in C++ and most high-level
languages and used for implementing both tables and contiguous lists.

9.5 APPLICATION: RADIX SORT

A formal sorting algorithm predating computers was first devised for use with
punched cards but can be developed into a very efficient sorting method for linked
lists that uses a table and queues. The algorithm is applied to records that use
character string objects as keys.

392 Chapter 9 • Tables and Information Retrieval

9.5.1 The Idea

The idea is to consider the key one character at a time and to divide the entries, not
into two sublists, but into as many sublists as there are possibilities for the given
character from the key. If our keys, for example, are words or other alphabetic
strings, then we divide the list into 26 sublists at each stage. That is, we set up
a table of 26 lists and distribute the entries into the lists according to one of the
characters in the key.

Old fashioned punched cards have 12 rows; hence mechanical card sorters
were designed to work on only one column at a time and divide the cards into 12
piles.

A person sorting words by this method might first distribute the words into 26
lists according to the initial letter (or distribute punched cards into 12 piles), then
divide each of these sublists into further sublists according to the second letter,
and so on. The following idea eliminates this multiplicity of sublists: Partition
the items into the table of sublists first by the least significant position, not the
most significant. After this first partition, the sublists from the table are put back
together as a single list, in the order given by the character in the least significant
position. The list is then partitioned into the table according to the second least
significant position and recombined as one list. When, after repetition of these
steps, the list has been partitioned by the most significant place and recombined,
it will be completely sorted.

This process is illustrated by sorting the list of nine three-letter words in Figure
9.10. The words are in the initial order shown in the left column. They are firstexample
divided into three lists according to their third letter, as shown in the second column,
where the colored boxes indicate the resulting sublists. The order of the words in
each sublist remains the same as it was before the partition. Next, the sublists are
put back together as shown in the second column of the diagram, and they are now
distributed into two sublists according to the second letter. The result is shown in
the colored boxes of the third column. Finally, these sublists are recombined and
distributed into four sublists according to the first letter. When these sublists are
recombined, the whole list is sorted.294

rat
mop
cat
map
car
top
cot
tar
rap

mop
map
top
rap
car
tar
rat
cat
cot

map
rap
car
tar
rat
cat
mop
top
cot

car
cat
cot
map
mop
rap
rat
tar
top

Initial
order

Sorted by
letter 3

Sorted by
letter 2

Sorted by
letter 1

Figure 9.10. Trace of a radix sort

Section 9.5 • Application: Radix Sort 393

9.5.2 Implementation

We shall implement this method in C++ for lists of records whose keys are alphanu-
meric strings. After each time the items have been partitioned into sublists in a
table, the sublists must be recombined into a single list so that the items can be
redistributed according to the next most significant position in the key. We shall
treat the sublists as queues, since entries are always inserted at the end of a sublist
and, when recombining the sublists, removed from the beginning.

For clarity of presentation, we use our general list and queue packages for this
processing. Doing so, however, entails some unnecessary data movement. For
example, if we worked with suitably implemented linked lists and queues, we
could recombine the linked queues into one list, by merely connecting the rear of

294

each queue to the front of the next queue. This process is illustrated in Figure 9.11

mop map top rap

car tar

rat cat cot

mop

map

top

rap

car

tar

rat

cat cot

car tar rat cat

cot

Sort by
letter 3:

Sort by
letter 2:

Sort by
letter 1:

p:

r:

t:

a:

o:

c:

m:

r:

t:

map mop

rap

top

front rear

Figure 9.11. Linked radix sort

394 Chapter 9 • Tables and Information Retrieval

for the same list of nine words used previously. At each stage, the links shown in
black are those within one of the queues, and the links shown in color are those
added to recombine the queues into a single list. Programming this optimization
of radix sort requires the implementation of a derived linked list class that allows
concatenation, and it is left as a project.

In order to allow for missing or nonalphabetic characters, we shall set up an
array of max_chars = 28 queues. Position 0 corresponds to a blank character, posi-
tions 1 through 26 correspond to the letters (with upper- and lowercase regarded
as the same), and position 27 corresponds to any other character that appears in the
key. Within a loop running from the least to most significant positions of the key,
we shall traverse the linked list and add each item to the end of the appropriate
queue. After the list has been thus partitioned, we recombine the queues into one
list. At the end of the major loop on positions in the key, the list will be completely
sorted.

Finally, with regard to declarations and notation, let us implement radix_sort
as a new method for a Sortable_list (see Chapter 8). Thus the list definition now
takes the form:295

template <class Record>
class Sortable_list: public List<Record> {
public: // sorting methods

void radix_sort();
// Specify any other sorting methods here.

private: // auxiliary functions
void rethread(Queue queues[]);

};

Here, the base class List can be any one of the implementations studied in Chapter 6.
The auxiliary function rethread will be used to recombine the queues.

The requirements for the class Record are similar to those used in Chapter 8:
Here, however, every Record uses an alphanumeric string as its Key. We shall
use a Record method, char key_letter(int position), that returns the character in a
particular position of the key (or returns a blank, if the key has length less than
position). Thus the definition of a Record is based on the following skeleton:

class Record {
public:

char key_letter(int position) const;
Record(); // default constructor
operator Key() const; // cast to Key

// Add other methods and data members for the class.
};

1. The Sorting Method

The sorting method takes the following form:

Section 9.5 • Application: Radix Sort 395

296 const int max_chars = 28;
template <class Record>
void Sortable_list<Record> :: radix_sort()
/* Post: The entries of the Sortable_list have been sorted so all their keys are in

alphabetical order.
Uses: Methods from classes List, Queue, and Record;

functions position and rethread. */
{

Record data;
Queue queues[max_chars];
for (int position = key_size − 1; position >= 0; position−−) {

// Loop from the least to the most significant position.
while (remove(0, data) == success) {

int queue_number = alphabetic_order(data.key_letter(position));
queues[queue_number].append(data); // Queue operation.

}
rethread(queues); // Reassemble the list.

}
}

This function uses two subsidiary subprograms: alphabetic_order to determine
which Queue corresponds to a particular character, and Sortable_list :: rethread()
to recombine the queues as the reordered Sortable_list. We can make use of the
Queue operations from any of our implementations of the Queue ADT in Chapter
3 and Chapter 4.

2. Selecting a Queue
The function alphabetic_order checks whether a particular character is in the alpha-
bet and assigns it to the appropriate position, where all nonalphabetical characters
other than blanks go to position 27. Blanks are assigned to position 0. The function
is also adjusted to make no distinction between upper- and lowercase.297

int alphabetic_order(char c)
/* Post: The function returns the alphabetic position of character c, or it returns 0

if the character is blank. */
{

if (c == ′ ′) return 0;
if (′a′ <= c && c <= ′z′) return c − ′a′ + 1;
if (′A′ <= c && c <= ′Z′) return c − ′A′ + 1;
return 27;

}

3. Connecting the Queues
The function rethread connects the 28 queues back together into one updated
Sortable_list. The function also empties out all of these queues so they will be
ready for reuse in the next iteration of our sorting procedure. One of the projects

396 Chapter 9 • Tables and Information Retrieval

at the end of the section requests rewriting this function in an implementation-
dependent way that will operate much more quickly than the current version.

template <class Record>
void Sortable_list<Record> :: rethread(Queue queues[])
/* Post: All the queues are combined back to the Sortable_list, leaving all the

queues empty.
Uses: Methods of classes List and Queue. */

{
Record data;
for (int i = 0; i < max_chars; i++)

while (!queues[i].empty()) {
queues[i].retrieve(data);
insert(size(), data);
queues[i].serve();

}
}

9.5.3 Analysis
Note that the time used by radix sort is Θ(nk), where n is the number of items

298 being sorted and k is the number of characters in a key. The time for all our other
sorting methods depends on n but not directly on the length of a key. The best
time was that of mergesort, which was n lgn+O(n).

The relative performance of the methods will therefore relate in some ways to
the relative sizes of nk and n lgn; that is, of k and lgn. If the keys are long but
there are relatively few of them, then k is large and lgn relatively small, and other
methods (such as mergesort) will outperform radix sort; but if k is small (the keys
are short) and there are a large number of keys, then radix sort will be faster than
any other method we have studied.

Exercises 9.5 E1. Trace the action of radix sort on the list of 14 names used to trace other sorting
methods:

Tim Dot Eva Roy Tom Kim Guy Amy Jon Ann Jim Kay Ron Jan

E2. Trace the action of radix sort on the following list of seven numbers considered
as two-digit integers:

26 33 35 29 19 12 22

E3. Trace the action of radix sort on the preceding list of seven numbers considered
as six-digit binary integers.

Section 9.6 • Hashing 397

Programming
Projects 9.5

P1. Design, program, and test a version of radix sort that is implementation inde-
pendent, with alphabetic keys.

P2. The radix-sort program presented in the book is very inefficient, since its
implementation-independent features force a large amount of data movement.
Design a project that is implementation dependent and saves all the data move-
ment. In rethread you need only link the rear of one queue to the front of the
next. This linking requires access to protected Queue data members; in other
words we need a modified Queue class. A simple way to achieve this is to add
a method

Sortable_list :: concatenate(const Sortable_list &add_on);

to our derived linked list implementation and use lists instead of queues in the
code for radix sort. Compare the performance of this version with that of other
sorting methods for linked lists.

9.6 HASHING

9.6.1 Sparse Tables

1. Index Functions
We can continue to exploit table lookup even in situations where the key is no
longer an index that can be used directly as in array indexing. What we can do is to
set up a one-to-one correspondence between the keys by which we wish to retrieve
information and indices that we can use to access an array. The index function that
we produce will be somewhat more complicated than those of previous sections,
since it may need to convert the key from, say, alphabetic information to an integer,
but in principle it can still be done.

The only difficulty arises when the number of possible keys exceeds the amount
of space available for our table. If, for example, our keys are alphabetical words of
eight letters, then there are 268 ≈ 2×1011 possible keys, a number likely greater than
the number of positions that will be available in high-speed memory. In practice,
however, only a small fraction of these keys will actually occur. That is, the table
is sparse. Conceptually, we can regard it as indexed by a very large set, but with
relatively few positions actually occupied. Abstractly, we might think in terms of
conceptual declarations such as

class . . . { private: sparse table(Key) of Record; };

Even though it may not be possible to implement a specification such as this directly,
it is often helpful in problem solving to begin with such a picture, and only slowly
tie down the details of how it is put into practice.

398 Chapter 9 • Tables and Information Retrieval

2. Hash Tables
The idea of a hash table (such as the one shown in Figure 9.12) is to allow many
of the different possible keys that might occur to be mapped to the same location
in an array under the action of the index function. Then there will be a possibilityindex function

not one to one that two records will want to be in the same place, but if the number of records
that actually occur is small relative to the size of the array, then this possibility will
cause little loss of time. Even when most entries in the array are occupied, hash299

methods can be an effective means of information retrieval.

continued
below

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

c
l
a
s
s

p
u
b
l
i
c

p
r
i
v
a
t
e

d
o

o
p
e
r
a
t
o
r

e
x
p
l
i
c
i
t

r
e
t
u
r
n

u
n
s
i
g
n
e
d

n
e
w

p
r
o
t
e
c
t
e
d

e
n
u
m

r
e
g
i
s
t
e
r

f
l
o
a
t

c
o
n
t
i
n
u
e

t
y
p
e
d
e
f

s
t
a
t
i
c

s
h
o
r
t

s
t
r
u
c
t

f
o
r

a
u
t
o

t
h
i
s

e
x
t
e
r
n

s
i
z
e
o
f

t
h
r
o
w

24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

s
w
i
t
c
h

e
l
s
e

t
e
m
p
l
a
t
e

i
n
t

s
i
g
n
e
d

Figure 9.12. A hash table

We begin with a hash function that takes a key and maps it to some indexhash function
in the array. This function will generally map several different keys to the same
index. If the desired record is in the location given by the index, then our problem
is solved; otherwise we must use some method to resolve the collision that maycollision
have occurred between two records wanting to go to the same location. There are
thus two questions we must answer to use hashing:

➥ First, we must find good hash functions.

➥ Second, we must determine how to resolve collisions.

Before approaching these questions, let us pause to outline informally the steps
needed to implement hashing.

3. Algorithm Outlines
First, an array must be declared that will hold the hash table. Next, all locations in
the array must be initialized to show that they are empty. How this is done dependsinitialization
on the application; often it is accomplished by setting the Record members to have

Section 9.6 • Hashing 399

a key that is guaranteed never to occur as an actual key. With alphanumeric keys,
for example, a key consisting of all blanks might represent an empty position.

To insert a record into the hash table, the hash function of its key is first calcu-insertion
lated. If the corresponding location is empty, then the record can be inserted, else
if the keys are equal, then insertion of the new record would not be allowed, and
in the remaining case (a record with a different key is in the location), it becomes
necessary to resolve the collision.

To retrieve the record with a given key is entirely similar. First, the hash func-retrieval
tion for the key is computed. If the desired record is in the corresponding location,
then the retrieval has succeeded; otherwise, while the location is nonempty and
not all locations have been examined, follow the same steps used for collision res-
olution. If an empty position is found, or all locations have been considered, then
no record with the given key is in the table, and the search is unsuccessful.

9.6.2 Choosing a Hash Function
The two principal criteria in selecting a hash function are as follows:

➥ It should be easy and quick to compute.

➥ It should achieve an even distribution of the keys that actually occur across the
range of indices.

300

If we know in advance exactly what keys will occur, then it is possible to construct
hash functions that will be very efficient, but generally we do not know in advance
what keys will occur. Therefore, the usual way is for the hash function to take
the key, chop it up, mix the pieces together in various ways, and thereby obtainmethod
an index that (like the pseudorandom numbers generated by computer) will be
uniformly distributed over the range of indices.

Note, however, that there is nothing random about a hash function. If the
function is evaluated more than once on the same key, then it must give the same
result every time, so the key can be retrieved without fail.

It is from this process that the word hash comes, since the process produces a
result with little resemblance to the original key. At the same time, it is hoped that
any patterns or regularities that may occur in the keys will be destroyed, so that the
results will be uniformly distributed. Even though the term hash is very descriptive,
in some books the more technical terms scatter-storage or key-transformation are
used in its place.

We shall consider three methods that can be put together in various ways to
build a hash function.

1. Truncation
Ignore part of the key, and use the remaining part directly as the index (considering
non-numeric members as their numerical codes). If the keys, for example, are eight-
digit integers and the hash table has 1000 locations, then the first, second, and fifth
digits from the right might make the hash function, so that 21296876 maps to 976.
Truncation is a very fast method, but it often fails to distribute the keys evenly
through the table.

400 Chapter 9 • Tables and Information Retrieval

2. Folding
Partition the key into several parts and combine the parts in a convenient way

300

(often using addition or multiplication) to obtain the index. For example, an eight-
digit integer can be divided into groups of three, three, and two digits, the groups
added together, and truncated if necessary to be in the proper range of indices.
Hence 21296876 maps to 212+968+76 = 1256, which is truncated to 256. Since all
information in the key can affect the value of the function, folding often achieves a
better spread of indices than does truncation by itself.

3. Modular Arithmetic
Convert the key to an integer (using the aforementioned devices as desired), divide
by the size of the index range, and take the remainder as the result. This amounts
to using the C++ operator % . The spread achieved by taking a remainder depends
very much on the modulus (in this case, the size of the hash array). If the modulus
is a power of a small integer like 2 or 10, then many keys tend to map to the same
index, while other indices remain unused. The best choice for modulus is often,
but not always, a prime number, which usually has the effect of spreading theprime modulus
keys quite uniformly. (We shall see later that a prime modulus also improves an
important method for collision resolution.) Hence, rather than choosing a hash
table size of 1000, it is often better to choose either 997 or 1009; 210 = 1024 would
usually be a poor choice. Taking the remainder is usually the best way to conclude
calculating the hash function, since it can achieve a good spread and at the same
time it ensures that the result is in the proper range.

4. C++ Example
As a simple example, let us write a hash function in C++ for transforming a keyalphanumeric strings
consisting of eight alphanumeric characters into an integer in the range

0 . . hash_size−1.

Therefore, we shall assume that we have a class Key with the methods and functions

301

of the following definition:

class Key: public String{
public:

char key_letter(int position) const;
void make_blank();
// Add constructors and other methods.

};

In order to save some programming effort in implementing the class, we have
chosen to inherit the methods of our class String from Chapter 6. In particular, this
saves us from programming the comparison operators. The method key_letter(int
position) must return the character in a particular position of the Key, or return a
blank if the Key has length less than n. The final method make_blank sets up an
empty Key.

Section 9.6 • Hashing 401

We can now write a simple hash function as follows:

int hash(const Key &target)
sample hash function /* Post: target has been hashed, returning a value between 0 and hash_size −1.

Uses: Methods for the class Key. */
{

int value = 0;
for (int position = 0; position < 8; position++)

value = 4 * value + target.key_letter(position);
return value % hash_size;

}

We have simply added the integer codes corresponding to each of the eight char-
acters, multiplying by 4 each time. There is no reason to believe that this method
will be better (or worse), however, than any number of others. We could, for ex-
ample, subtract some of the codes, multiply them in pairs, or ignore every other
character. Sometimes an application will suggest that one hash function is better
than another; sometimes it requires experimentation to settle on a good one.

9.6.3 Collision Resolution with Open Addressing

1. Linear Probing
The simplest method to resolve a collision is to start with the hash address (the

302

location where the collision occurred) and do a sequential search through the table
for the desired key or an empty location. Hence this method searches in a straight
line, and it is therefore called linear probing. The table should be considered circu-
lar, so that when the last location is reached, the search proceeds to the first location
of the table.

2. Clustering
The major drawback of linear probing is that, as the table becomes about half full,
there is a tendency toward clustering; that is, records start to appear in long strings
of adjacent positions with gaps between the strings. Thus the sequential searches
needed to find an empty position become longer and longer. Consider the example
in Figure 9.13, where the occupied positions are shown in color. Suppose that thereexample of clustering
are n locations in the array and that the hash function chooses any of them with
equal probability 1/n. Begin with a fairly uniform spread, as shown in the top
diagram. If a new insertion hashes to location b, then it will go there, but if it
hashes to location a (which is full), then it will also go into b. Thus the probability
that b will be filled has doubled to 2/n. At the next stage, an attempted insertion
into any of locations a, b, c, or d will end up in d, so the probability of filling d is
4/n. After this, e has probability 5/n of being filled, and so, as additional insertions
are made, the most likely effect is to make the string of full positions beginning at
location a longer and longer. Hence the performance of the hash table starts to
degenerate toward that of sequential search.

402 Chapter 9 • Tables and Information Retrieval

302

a b c d e f

a b c d e f

a b c d e f

Figure 9.13. Clustering in a hash table

The problem of clustering is essentially one of instability; if a few keys hap-instability
pen randomly to be near each other, then it becomes more and more likely that
other keys will join them, and the distribution will become progressively more
unbalanced.

3. Increment Functions
If we are to avoid the problem of clustering, then we must use some more sophis-
ticated way to select the sequence of locations to check when a collision occurs.
There are many ways to do so. One, called rehashing, uses a second hash function
to obtain the second position to consider. If this position is filled, then some otherrehashing
method is needed to get the third position, and so on. But if we have a fairly good
spread from the first hash function, then little is to be gained by an independent
second hash function. We will do just as well to find a more sophisticated way
of determining the distance to move from the first hash position and apply this
method, whatever the first hash location is. Hence we wish to design an increment
function that can depend on the key or on the number of probes already made and
that will avoid clustering.

4. Quadratic Probing
If there is a collision at hash address h, quadratic probing probes the table at
locations h + 1, h + 4, h + 9, . . . ; that is, at locations h + i2 . (In other words, the
increment function is i2 .)

Quadratic probing substantially reduces clustering, but it is not obvious that
it will probe all locations in the table, and in fact it does not. For some values of
hash_size the function will probe relatively few positions in the array. For example,
when hash_size is a large power of 2, approximately one sixth of the positions are
probed. When hash_size is a prime number, however, quadratic probing reaches
half the locations in the array.

proof To prove this observation, suppose that hash_size is a prime number. Also
suppose that we reach the same location at probe i and at some later probe that we
can take as i+j for some integer j > 0. Suppose that j is the smallest such integer.
Then the values calculated by the function at i and at i+ j differ by a multiple of
hash_size. In other words,

h + i2 ≡ h + (i + j)2 (mod hash_size).

Section 9.6 • Hashing 403

When this expression is simplified, we obtain

j2 + 2ij = j(j + 2i)≡ 0 (mod hash_size).

This last expression means that hash_size divides (with no remainder) the product
j(j + 2i). The only way that a prime number can divide a product is to divide one
of its factors. Hence hash_size either divides j or it divides j + 2i. If the first case
occurred, then we would have made hash_size probes before duplicating probe i.
(Recall that j is the smallest positive integer such that probe i+ j duplicates probe
i.) The second case, however, will occur sooner, when j = hash_size−2i, or, if this
expression is negative, at this expression increased by hash_size. Hence the total
number of distinct positions that will be probed is exactly

(hash_size + 1)/2.

It is customary to regard the table as full when this number of positions has
been probed, and the results are quite satisfactory.

Note that quadratic probing can be accomplished without doing multiplica-
tions: After the first probe at position h, the increment is set to 1. At each successivecalculation
probe, the increment is increased by 2 after it has been added to the previous loca-
tion. Since

1 + 3 + 5 + · · · + (2i − 1)= i2

for all i ≥ 1 (you can prove this fact by mathematical induction), probe i will look
in position h+ 1+ 3+ · · · + (2i− 1)= h+ i2, as desired.

5. Key-Dependent Increments
Rather than having the increment depend on the number of probes already made,
we can let it be some simple function of the key itself. For example, we could
truncate the key to a single character and use its code as the increment. In C++, we
might write

increment = (int) the_data.key_letter(0);

A good approach, when the remainder after division is taken as the hash func-
tion, is to let the increment depend on the quotient of the same division. An
optimizing compiler should specify the division only once, so the calculation will
be fast. In this method, the increment, once determined, remains constant. If
hash_size is a prime, it follows that the probes will step through all the entries of
the array before any repetitions. Hence overflow will not be indicated until the
array is completely full.

6. Random Probing
A final method is to use a pseudorandom number generator to obtain the incre-
ment. The generator used should be one that always generates the same sequence
provided it starts with the same seed.2 The seed, then, can be specified as some
function of the key. This method is excellent in avoiding clustering, but is likely to
be slower than the others.

2 See Appendix B for a discussion of pseudo-random number generators.

404 Chapter 9 • Tables and Information Retrieval

7. C++ Algorithms

To conclude the discussion of open addressing, we continue to study the C++ ex-
ample already introduced (page 401), which uses alphanumeric keys. We suppose
that the classes Key and Record have the properties that we have used in the last
two sections. In particular, we assume these classes have methods key_letter(int
position), that extract the character in a particular position of a key, and that there
is a conversion operator that provides the Key of a Record.

We set up the hash table with the declarations

303

const int hash_size = 997; // a prime number of appropriate size
class Hash_table {
public:

Hash_table();
void clear();
Error_code insert(const Record &new_entry);
Error_code retrieve(const Key &target, Record &found) const;

private:
Record table[hash_size];

};

The hash table must be created by initializing each entry in the array table to containinitialization
the special key that consists of eight blanks. This is the task of the constructor, whose
specifications are:

Hash_table :: Hash_table();
postcondition: The hash table has been created and initialized to be empty.

There should also be a method clear that removes all entries from a table that
already exists.

void Hash_table :: clear();
postcondition: The hash table has been cleared and is empty.

Although we have started to specify hash-table operations, we shall not continue to
develop a complete and general package. Since the choice of a good hash function
depends strongly on the kind of keys used, hash-table operations are usually too
dependent on the particular application to be assembled into a general package.

To show how the code for further functions might be written, we shall continue
to follow the example of the hash function already written in Section 9.6.2, page 401,
and we shall use quadratic probing for collision resolution. We have shown that
the maximum number of probes that can be made this way is (hash_size + 1)/2,
and accordingly we keep a counter probe_count to check this upper bound.

Section 9.6 • Hashing 405

With these conventions, let us write a method to insert a Record new_entry
304 into the hash table.

insertion Error_code Hash_table :: insert(const Record &new_entry)
/* Post: If the Hash_table is full, a code of overflow is returned. If the table already

contains an item with the key of new_entry a code of duplicate_error is re-
turned. Otherwise: The Record new_entry is inserted into the Hash_table
and success is returned.

Uses: Methods for classes Key, and Record. The function hash. */
{

Error_code result = success;
int probe_count, // Counter to be sure that table is not full.

increment, // Increment used for quadratic probing.
probe; // Position currently probed in the hash table.

Key null; // Null key for comparison purposes.
null.make_blank();
probe = hash(new_entry);
probe_count = 0;
increment = 1;
while (table[probe] != null // Is the location empty?

&& table[probe] != new_entry // Duplicate key?
&& probe_count < (hash_size + 1)/2) { // Has overflow occurred?

probe_count++;
probe = (probe + increment) % hash_size;
increment += 2; // Prepare increment for next iteration.

}
if (table[probe] == null) table[probe] = new_entry; // Insert new entry.
else if (table[probe] == new_entry) result = duplicate_error;
else result = overflow; // The table is full.
return result;

}

A method to retrieve the record (if any) with a given key will have a similar form and
is left as an exercise. The retrieval method should return the full Record associated
with a Key target. Its specifications are as follows:

Error_code Hash_table :: retrieve(const Key &target, Record &found) const;

postcondition: If an entry in the hash table has key equal to target, then found
takes on the value of such an entry, and success is returned.
Otherwise, not_present is returned.

8. Deletions
Up to now, we have said nothing about deleting entries from a hash table. At
first glance, it may appear to be an easy task, requiring only marking the deleted
location with the special key indicating that it is empty. This method will not work.

406 Chapter 9 • Tables and Information Retrieval

The reason is that an empty location is used as the signal to stop the search for a
target key. Suppose that, before the deletion, there had been a collision or two and
that some entry whose hash address is the now-deleted position is actually stored
elsewhere in the table. If we now try to retrieve that entry, then the now-empty
position will stop the search, and it is impossible to find the entry, even though it
is still in the table.

special key One method to remedy this difficulty is to invent another special key, to be
placed in any deleted position. This special key would indicate that this position is
free to receive an insertion when desired but that it should not be used to terminate
the search for some other entry in the table. Using this second special key will,
however, make the algorithms somewhat more complicated and a bit slower. With
the methods we have so far studied for hash tables, deletions are indeed awkward
and should be avoided as much as possible.

9.6.4 Collision Resolution by Chaining

Up to now we have implicitly assumed that we are using only contiguous storage
while working with hash tables. Contiguous storage for the hash table itself is, in
fact, the natural choice, since we wish to be able to refer quickly to random positions
in the table, and linked storage is not suited to random access. There is, however,linked storage
no reason why linked storage should not be used for the records themselves. We
can take the hash table itself as an array of linked lists. An example appears in
Figure 9.14.305

Figure 9.14. A chained hash table

Section 9.6 • Hashing 407

It is traditional to refer to the linked lists from the hash table as chains and callchaining

this method collision resolution by chaining.

1. Advantages of Chaining
There are several advantages to this point of view. The first, and the most important
when the records themselves are quite large, is that considerable space may be
saved. Since the hash table is a contiguous array, enough space must be set aside at
compilation time to avoid overflow. If the records themselves are in the hash table,space saving
then if there are many empty positions (as is desirable to help avoid the cost of
collisions), these will consume considerable space that might be needed elsewhere.
If, on the other hand, the hash table contains only pointers to the records, pointers

305

that require only one word each, then the size of the hash table may be reduced
by a large factor (essentially by a factor equal to the size of the records), and will
become small relative to the space available for the records, or for other uses.

The second major advantage of keeping only linked lists in the hash table is
that it allows simple and efficient collision handling. With a good hash function,collision resolution
few keys will give the same hash address, so the linked lists will be short and can
be searched quickly. Clustering is no problem at all, because keys with distinct
hash addresses always go to distinct lists.

overflow A third advantage is that it is no longer necessary that the size of the hash table
exceed the number of records. If there are more records than entries in the table,
it means only that some of the linked lists are now sure to contain more than one
record. Even if there are several times more records than the size of the table, the
average length of the linked lists will remain small and sequential search on the
appropriate list will remain efficient.

deletion Finally, deletion becomes a quick and easy task in a chained hash table. Deletion
proceeds in exactly the same way as deletion from a simple linked list.

2. Disadvantage of Chaining
These advantages of chained hash tables are indeed powerful. Lest you believe
that chaining is always superior to open addressing, however, let us point out one
important disadvantage: All the links require space. If the records are large, thenuse of space
this space is negligible in comparison with that needed for the records themselves;
but if the records are small, then it is not.

Suppose, for example, that the links take one word each and that the entries
themselves take only one word (which is the key alone). Such applications aresmall records
quite common, where we use the hash table only to answer some yes-no question
about the key. Suppose that we use chaining and make the hash table itself quite
small, with the same number n of entries as the number of entries. Then we shall
use 3n words of storage altogether: n for the hash table, n for the keys, and n for
the links to find the next node (if any) on each chain. Since the hash table will be
nearly full, there will be many collisions, and some of the chains will have several
entries. Hence searching will be a bit slow. Suppose, on the other hand, that we use
open addressing. The same 3n words of storage put entirely into the hash table
will mean that it will be only one-third full, and therefore there will be relatively
few collisions and the search for any given entry will be faster.

408 Chapter 9 • Tables and Information Retrieval

3. C++ Algorithms

A chained hash table in C++ has the simple definition:

306

class Hash_table {
public:

// Specify methods here.
private:

List<Record> table[hash_size];
};

Here the class List can be any one of the generic linked implementations of a list
studied in Chapter 6. For consistency, the methods for a chained hash table include
all methods of our earlier hash table implementation. The implementation of the
constructor simply calls the constructor for each list in the array. To clear a chained
hash table is a very different task. To clear the table, we must clear the linked list in
each of the table positions. This task can be done by using the List method clear().

We can even use methods from the list package to access the hash table. The
hash function itself is no different from that used with open addressing; for data
retrieval, we can simply use a linked version of function sequential_search of
Section 7.2. The essence of the method Hash_table :: retrieve is

sequential_search(table[hash(target)], target, position);

The details of converting this into a full function are left as an exercise.
Similarly, the essence of insertion is the one line

table[hash(new_entry)].insert(0, new_entry);

Here we have chosen to insert the new entry as the first node of its list, since that
is the easiest. As you can see, both insertion and retrieval are simpler than the
versions for open addressing, since collision resolution is not a problem and we
can make use of the previous work done for lists.

deletion Deletion from a chained hash table is also much simpler than it is from a table
with open addressing. To delete the entry with a given key, we need only use
sequential search to find the entry where it is located within its chain in the hash
table, and then we delete this entry from its linked list. The specifications for this
method are as follows:

Error_code Hash_table :: remove(const Key &target, Record &x);

postcondition: If the table has an entry with key equal to target, a code of success
is returned, the entry is deleted from the hash table and recorded
in x. Otherwise a code of not_present is returned.

Writing the corresponding function is left as an exercise.

Section 9.6 • Hashing 409

Exercises 9.6 E1. Prove by mathematical induction that 1+3+5+· · ·+(2i−1)= i2 for all integers
i > 0.

E2. Write a C++ function to insert an entry into a hash table with open addressing
using linear probing.

E3. Write a C++ function to retrieve an entry from a hash table with open addressing
using (a) linear probing; (b) quadratic probing.

E4. In a student project for which the keys were integers, one student thought that
he could mix the keys well by using a trigonometric function, which had to be
converted to an integer index, so he defined his hash function as

(int) sin(n).

What was wrong with this choice? He then decided to replace the function
sin(n) by exp(n). Criticize this choice.

E5. Devise a simple, easy to calculate hash function for mapping three-letter words
to integers between 0 and n−1, inclusive. Find the values of your function on
the words

PAL LAP PAM MAP PAT PET SET SAT TAT BAT

for n = 11, 13, 17, 19. Try for as few collisions as possible.

E6. Suppose that a hash table contains hash_size = 13 entries indexed from 0
through 12 and that the following keys are to be mapped into the table:

10 100 32 45 58 126 3 29 200 400 0

(a) Determine the hash addresses and find how many collisions occur when
these keys are reduced by applying the operation % hash_size.

(b) Determine the hash addresses and find how many collisions occur when
these keys are first folded by adding their digits together (in ordinary dec-
imal representation) and then applying % hash_size.

(c) Find a hash function that will produce no collisions for these keys. (A hash
function that has no collisions for a fixed set of keys is called perfect.)perfect hash functions

(d) Repeat the previous parts of this exercise for hash_size = 11. (A hash func-
tion that produces no collision for a fixed set of keys that completely fill
the hash table is called minimal perfect.)

E7. Another method for resolving collisions with open addressing is to keep a
separate array called the overflow table, into which are put all entries that
collide with an occupied location. They can either be inserted with another hash
function or simply inserted in order, with sequential search used for retrieval.
Discuss the advantages and disadvantages of this method.

E8. Write the following functions for processing a chained hash table, using the
function sequential_search() of Section 7.2 and the list-processing operations
of Section 6.1 to implement the operations.

410 Chapter 9 • Tables and Information Retrieval

(a) Hash_table :: Hash_table()
(b) Hash_table :: clear()
(c) Hash_table :: insert(const Record &new_entry)
(d) Hash_table :: retrieve(const Key &target, Record &found) const;

(e) Hash_table :: remove(const Key &target, Record &x)

E9. Write a deletion algorithm for a hash table with open addressing using linear
probing, using a second special key to indicate a deleted entry (see Part 8
of Section 9.6.3 on page 405). Change the retrieval and insertion algorithms
accordingly.

E10. With linear probing, it is possible to delete an entry without using a second
special key, as follows. Mark the deleted entry empty. Search until another
empty position is found. If the search finds a key whose hash address is at or
before the just-emptied position, then move it back there, make its previous
position empty, and continue from the new empty position. Write an algorithm
to implement this method. Do the retrieval and insertion algorithms need
modification?

Programming
Projects 9.6

P1. Consider the set of all C++ reserved words.3 Consider these words as strings
of 16 characters, where words less than 16 characters long are filled with blanks
on the right.

(a) Devise an integer-valued function that will produce different values when
applied to all the reserved words. [You may find it helpful to write a short
program that reads the words from a file, applies the function you devise,
and determines what collisions occur.]

(b) Find the smallest integer hash_size such that, when the values of your func-
tion are reduced by applying % hash_size, all the values remain distinct.

(c) [Challenging] Modify your function as necessary until you can achieve
hash_size in the preceding part to be the same as the number of reserved
words. (You will then have discovered a minimal perfect hash function for
the C++ reserved words, mapping these words onto a table with no empty
positions.)

P2. Write a program that will read a molecular formula such as H2SO4 and will
write out the molecular weight of the compound that it represents. Your pro-
gram should be able to handle bracketed radicals such as in Al2(SO4)3. [Hint:molecular weight
Use recursion to find the molecular weight of a bracketed radical. Simplifica-
tions: You may find it helpful to enclose the whole formula in parentheses (. . .).
You will need to set up a hash table of atomic weights of elements, indexed
by their abbreviations. For simplicity, the table may be restricted to the more
common elements. Some elements have one-letter abbreviations, and some
two. For uniformity you may add blanks to the one-letter abbreviations.]

3 Any textbook on C++ will contain a list of the reserved words. Different versions of C++, however,
support different sets of reserved words.

Section 9.7 • Analysis of Hashing 411

9.7 ANALYSIS OF HASHING

1. The Birthday Surprise
The likelihood of collisions in hashing relates to the well-known mathematical

307

diversion: How many randomly chosen people need to be in a room before it
becomes likely that two people will have the same birthday (month and day)?
Since (apart from leap years) there are 365 possible birthdays, most people guess
that the answer will be in the hundreds, but in fact, the answer is only 23 people.

We can determine the probabilities for this question by answering its opposite:
With m randomly chosen people in a room, what is the probability that no two
have the same birthday? Start with any person, and check that person’s birthday
off on a calendar. The probability that a second person has a different birthday is
364/365. Check it off. The probability that a third person has a different birthday
is now 363/365. Continuing this way, we see that if the first m − 1 people have
different birthdays, then the probability that person m has a different birthday is
(365 −m + 1)/365. Since the birthdays of different people are independent, the
probabilities multiply, and we obtain that the probability that m people all have
different birthdays is

364
365

× 363
365

× 362
365

× · · · × 365 − m + 1
365

.probability

This expression becomes less than 0.5 whenever m ≥ 23.
In regard to hashing, the birthday surprise tells us that with any problem of

reasonable size, we are almost certain to have some collisions. Our approach,collisions likely
therefore, should not be only to try to minimize the number of collisions, but also
to handle those that occur as expeditiously as possible.

2. Counting Probes
As with other methods of information retrieval, we would like to know how many

308

comparisons of keys occur on average during both successful and unsuccessful
attempts to locate a given target key. We shall use the word probe for looking at
one entry and comparing its key with the target.

The number of probes we need clearly depends on how full the table is. There-
fore (as for searching methods), we let n be the number of entries in the table, and
we let t (which is the same as hash_size) be the number of positions in the array
holding the hash table. The load factor of the table is λ = n/t . Thus λ = 0 signifiesload factor
an empty table; λ = 0.5 a table that is half full. For open addressing, λ can never
exceed 1, but for chaining there is no limit on the size of λ. We consider chaining
and open addressing separately.

3. Analysis of Chaining
With a chained hash table we go directly to one of the linked lists before doing any
probes. Suppose that the chain that will contain the target (if it is present) has k
entries. Note that k might be 0.

412 Chapter 9 • Tables and Information Retrieval

unsuccessful retrieval If the search is unsuccessful, then the target will be compared with all k of
the corresponding keys. Since the entries are distributed uniformly over all t lists
(equal probability of appearing on any list), the expected number of entries on
the one being searched is λ = n/t . Hence the average number of probes for an
unsuccessful search is λ.

successful retrieval Now suppose that the search is successful. From the analysis of sequential
search, we know that the average number of comparisons is 1

2(k + 1), where k is
the length of the chain containing the target. But the expected length of this chain
is no longer λ, since we know in advance that it must contain at least one node (the
target). The n− 1 nodes other than the target are distributed uniformly over all t
chains; hence the expected number on the chain with the target is 1 + (n − 1)/t .
Except for tables of trivially small size, we may approximate (n−1)/t by n/t = λ.
Hence the average number of probes for a successful search is very nearly

1
2(k + 1)≈ 1

2(1 + λ + 1)= 1 + 1
2λ.

In summary:

Retrieval from a chained hash table with load factor λ requires, on average, approxi-

308

mately 1+ 1
2λ probes in the successful case and λ probes in the unsuccessful case.

4. Analysis of Open Addressing
For our analysis of the number of probes done in open addressing, let us first ignore
the problem of clustering by assuming that not only are the first probes random,
but after a collision, the next probe will be random over all remaining positions of
the table. In fact, let us assume that the table is so large that all the probes can berandom probes
regarded as independent events.

Let us first study an unsuccessful search. The probability that the first probe
hits an occupied cell is λ, the load factor. The probability that a probe hits an empty
cell is 1−λ. The probability that the unsuccessful search terminates in exactly two
probes is therefore λ(1 − λ), and, similarly, the probability that exactly k probes
are made in an unsuccessful search is λk−1(1− λ). The expected number U(λ) of
probes in an unsuccessful search is therefore

U(λ)=
∞∑
k=1

kλk−1(1 − λ).

This sum is evaluated in Section A.1; we obtain therebyunsuccessful retrieval

U(λ)= 1
(1 − λ)2 (1 − λ)=

1
1 − λ.

To count the probes needed for a successful search, we note that the number
needed will be exactly one more than the number of probes in the unsuccessful

Section 9.7 • Analysis of Hashing 413

search made before inserting the entry. Now let us consider the table as beginning
empty, with each entry inserted one at a time. As these entries are inserted, the
load factor grows slowly from 0 to its final value, λ. It is reasonable for us to
approximate this step-by-step growth by continuous growth and replace a sum
with an integral. We conclude that the average number of probes in a successful
search is approximately

S(λ)= 1
λ

∫ λ
0
U(µ)dµ = 1

λ
ln

1
1 − λ.successful retrieval

In summary:

Retrieval from a hash table with open addressing, random probing, and load factor λ

308

requires, on average, approximately

1
λ

ln
1

1 − λ
probes in the successful case and 1/(1− λ) probes in the unsuccessful case.

Similar calculations may be done for open addressing with linear probing, where
it is no longer reasonable to assume that successive probes are independent. Thelinear probing
details, however, are rather more complicated, so we present only the results. For
the complete derivation, consult the references at the end of the chapter.

Retrieval from a hash table with open addressing, linear probing, and load factor λ
requires, on average, approximately

1
2

(
1 + 1

1 − λ
)

probes in the successful case and

1
2

(
1 + 1

(1 − λ)2

)

probes in the unsuccessful case.

5. Theoretical Comparisons
Figure 9.15 gives the values of the preceding expressions for different values of the
load factor.

We can draw several conclusions from this table. First, it is clear that chaining
consistently requires fewer probes than does open addressing. On the other hand,
traversal of the linked lists is usually slower than array access, which can reduce
the advantage, especially if key comparisons can be done quickly. Chaining comes

414 Chapter 9 • Tables and Information Retrieval

Load factor 0.10 0.50 0.80 0.90 0.99 2.00

Successful search, expected number of probes:
Chaining 1.05 1.25 1.40 1.45 1.50 2.00
Open, random probes 1.05 1.4 2.0 2.6 4.6 —
Open, linear probes 1.06 1.5 3.0 5.5 50.5 —

Unsuccessful search, expected number of probes:
Chaining 0.10 0.50 0.80 0.90 0.99 2.00
Open, random probes 1.1 2.0 5.0 10.0 100. —
Open, linear probes 1.12 2.5 13. 50. 5000. —

Figure 9.15. Theoretical comparison of hashing methods

into its own when the records are large, and comparison of keys takes significant

309

time. Chaining is also especially advantageous when unsuccessful searches are
common, since with chaining, an empty list or very short list may be found, so that
often no key comparisons at all need be done to show that a search is unsuccessful.

For successful searches in a table with open addressing, the simpler method
of linear probing is not significantly slower than more sophisticated methods of
collision resolution, at least until the table is almost completely full. For unsuc-
cessful searches, however, clustering quickly causes linear probing to degenerate
into a long sequential search. We might conclude, therefore, that if searches are
quite likely to be successful, and the load factor is moderate, then linear probing
is quite satisfactory, but in other circumstances another method (such as quadratic
probing) should be used.

6. Empirical Comparisons
It is important to remember that the computations giving Figure 9.15 are only ap-
proximate, and also that in practice nothing is completely random, so that we can
always expect some differences between the theoretical results and actual com-
putations. For sake of comparison, therefore, Figure 9.16 gives the results of one
empirical study, using 900 keys that are pseudorandom numbers between 0 and 1.

If you compare the numbers in Figure 9.15 and Figure 9.16, you will find thatcomparisons
the empirical results for chaining are essentially identical to the theoretical results.
Those for quadratic probing are quite close to the theoretical results for random
probing; the differences can easily be explained by the fact that quadratic probing
is not really random. For linear probing, the results are similar when the table is
relatively empty, but for nearly full tables the approximations made in the theo-
retical calculations produce results quite different from those of experiments. This
shows the effects of making simplifying assumptions in the mathematics.

Section 9.7 • Analysis of Hashing 415

Load factor 0.1 0.5 0.8 0.9 0.99 2.0

Successful search, average number of probes:
Chaining 1.04 1.2 1.4 1.4 1.5 2.0
Open, quadratic probes 1.04 1.5 2.1 2.7 5.2 —
Open, linear probes 1.05 1.6 3.4 6.2 21.3 —

Unsuccessful search, average number of probes:
Chaining 0.10 0.50 0.80 0.90 0.99 2.00
Open, quadratic probes 1.13 2.2 5.2 11.9 126. —
Open, linear probes 1.13 2.7 15.4 59.8 430. —

Figure 9.16. Empirical comparison of hashing methods

conclusions In comparison with other methods of information retrieval, the important thing

309

to note about all these numbers is that they depend only on the load factor, not on
the absolute number of entries in the table. Retrieval from a hash table with 20,000
entries in 40,000 possible positions is no slower, on average, than is retrieval from
a table with 20 entries in 40 possible positions. With sequential search, a list 1000
times the size will take 1000 times as long to search. With binary search, this ratio
is reduced to 10 (more precisely, to lg 1000), but still the time needed increases with
the size, which it does not with hashing.

We can summarize these observations for retrieval from n entries as follows:

➥ Sequential search is Θ(n).
➥ Binary search is Θ(logn).

➥ Hash-table retrieval is Θ(1).
Finally, we should emphasize the importance of devising a good hash function,
one that executes quickly and maximizes the spread of keys. If the hash function
is poor, the performance of hashing can degenerate to that of sequential search.

Exercises 9.7 E1. Suppose that each entry in a hash table occupies s words of storage (exclusive
of the pointer member needed if chaining is used), where we take one word
as the amount of space needed for a pointer. Also suppose that there are n
occupied entries in the hash table, and the hash table has a total of t possible
positions (t is the same as hash_size), including occupied and empty positions.

416 Chapter 9 • Tables and Information Retrieval

(a) If open addressing is used, determine how many words of storage will be
required for the hash table.

(b) If chaining is used, then each node will require s + 1 words, including
the pointer member. How many words will be used altogether for the n
nodes?

(c) If chaining is used, how many words will be used for the hash table it-
self? (Recall that with chaining the hash table itself contains only pointers
requiring one word each.)

(d) Add your answers to the two previous parts to find the total storage re-
quirement for chaining.

(e) If s is small (that is, the entries have a small size), then open addressing
requires less total memory for a given load factor λ = n/t , but for large s
(large entries), chaining requires less space altogether. Find the break-even
value for s , at which both methods use the same total storage. Your answer
will be a formula for s that depends on the load factor λ, but it should not
involve the numbers t or n directly.

(f) Evaluate and graph the results of your formula for values of λ ranging
from 0.05 to 0.95.

E2. One reason why the answer to the birthday problem is surprising is that it
differs from the answers to apparently related questions. For the following,
suppose that there are n people in the room, and disregard leap years.

(a) What is the probability that someone in the room will have a birthday on
a random date drawn from a hat?

(b) What is the probability that at least two people in the room will have that
same random birthday?

(c) If we choose one person and find that person’s birthday, what is the prob-
ability that someone else in the room will share the birthday?

E3. In a chained hash table, suppose that it makes sense to speak of an order for
the keys, and suppose that the nodes in each chain are kept in order by key.
Then a search can be terminated as soon as it passes the place where the keyordered hash table
should be, if present. How many fewer probes will be done, on average, in an
unsuccessful search? In a successful search? How many probes are needed,
on average, to insert a new node in the right place? Compare your answers
with the corresponding numbers derived in the text for the case of unordered
chains.

E4. In our discussion of chaining, the hash table itself contained only lists, one for
each of the chains. One variant method is to place the first actual entry of each
chain in the hash table itself. (An empty position is indicated by an impossible
key, as with open addressing.) With a given load factor, calculate the effect on
space of this method, as a function of the number of words (except links) in
each entry. (A link takes one word.)

Section 9.8 • Conclusions: Comparison of Methods 417

Programming
Project 9.7

P1. Produce a table like Figure 9.16 for your computer, by writing and running test
programs to implement the various kinds of hash tables and load factors.

9.8 CONCLUSIONS: COMPARISON OF METHODS

In this chapter and Chapter 7, we have explored four quite different methods of
310 information retrieval:

➥ Sequential search,

➥ Binary search,

➥ Table lookup, and

➥ Hashing.

If we are to ask which of these is best, we must first select the criteria by which
to answer, and these criteria will include both the requirements imposed by the
application and other considerations that affect our choice of data structures, since
the first two methods are applicable only to lists and the second two to tables. In
many applications, however, we are free to choose either lists or tables for our datachoice of data

structures structures.
In regard both to speed and convenience, ordinary lookup in contiguous tables

is certainly superior, but there are many applications to which it is inapplicable,table lookup
such as when a list is preferred or the set of keys is sparse. It is also inappropriate
whenever insertions or deletions are frequent, since such actions in contiguous
storage may require moving large amounts of information.

Which of the other three methods is best depends on other criteria, such as the
form of the data.

other methods Sequential search is certainly the most flexible of our methods. The data may
be stored in any order, with either contiguous or linked representation. Binary
search is much more demanding. The keys must be in order, and the data must
be in random-access representation (contiguous storage). Hashing requires even
more, a peculiar ordering of the keys well suited to retrieval from the hash table, but
generally useless for any other purpose. If the data are to be available immediately
for human inspection, then some kind of order is essential, and a hash table is
inappropriate.

Finally, there is the question of the unsuccessful search. Sequential search
and hashing, by themselves, say nothing except that the search was unsuccessful.near miss
Binary search can determine which data have keys closest to the target, and perhaps
thereby can provide useful information. In Chapter 10 we shall study tree-based
methods for storing data that combine the efficiency of binary search with the
flexibility of linked structures.

418 Chapter 9 • Tables and Information Retrieval

9.9 APPLICATION: THE LIFE GAME REVISITED

At the end of Chapter 1 we noted that the bounds we used for the arrays in CONWAY’s
game of Life were highly restrictive and artificial. The Life cells are supposed to

311

be on an unbounded grid. In other words, we would really like to have the C++
declaration

class Life {
public:

// methods
private:

bool map[int][int];
// other data and auxiliary functions

};

which is, of course, illegal. Since only a limited number of the cells in an unboundedunbounded array
grid would actually be occupied at any one time, we should really regard the gridsparse table
for the Life game as a sparse table, and therefore a hash table proves an attractive
way to represent the grid.

9.9.1 Choice of Algorithm

Before we specify our data structures more precisely, let us consider the basic algo-
rithm that we might use. In our original implementation, the main function makes
no reference to the way that a Life configuration is stored in the computer, and
therefore we need not change this function at all:

int main() // Program to play Conway’s game of Life.
/* Pre: The user supplies an initial configuration of living cells.

Post: The program prints a sequence of pictures showing the changes in the
configuration of living cells according to the rules for the game of Life.

Uses: The class Life and its methods initialize(), print() and update().
The functions instructions(), user_says_yes(). */

{
Life configuration;
instructions();
configuration.initialize();
configuration.print();
cout << "Continue viewing new generations? " << endl;
while (user_says_yes()) {

configuration.update();
configuration.print();
cout << "Continue viewing new generations? " << endl;

}
}

Section 9.9 • Application: The Life Game Revisited 419

We shall need to rewrite the Life method update so that it uses a table to look
up the status of cells. For any given cell in a configuration, we can determine the
number of living neighbors by looking up the status of each neighboring cell. Thus,
if we settle on a small set of candidates that might live in the coming generation,
the method update can use the table to determine exactly which of them should
become alive. In any update, we must examine the cells that are already alive and
also their neighbors. Therefore, in our implementation of update we traverse these

311

cells, determine their neighbor counts by using the table, and select those cells that
will live in the next generation.

9.9.2 Specification of Data Structures

We have already decided that a Life configuration will include a hash table to
look up the status of cells. However, we will need to traverse the living cells in
a configuration. As we have seen, it is usually inefficient to traverse the entries
of a hash table. Let us therefore incorporate a List of living cells as a second data
member of a Life configuration. The objects stored in the list and table of a Life
configuration carry information about individual cells. We shall represent these
cells as instances of a structure called Cell: Each Cell must contain a pair of grid
coordinates. Thus we arrive at the following definition:312

struct Cell {
Cell() { row = col = 0; } // constructors
Cell(int x, int y) { row = x; col = y; }
int row, col; // grid coordinates

};

In this structure definition we have supplied inline implementations of the con-
structors and therefore no corresponding code file is needed. In C++, we can place
inline method implementations into a header file without jeopardizing separate
compilation of our program.

As a Life configuration expands, cells on its fringes will be encountered for
the first time. Whenever a new Cell is needed, it must be created dynamically.creation of a Cell
Therefore, because Cell objects are created dynamically, they can only be accessed
through pointers.

Moreover, to be able to dispose of a Cell object, at the end of its lifetime, we must
retain a record of the corresponding pointer. Therefore, we shall implement the listindirect linked list
member of a Life configuration to store pointers to cells. The result is illustrated in
Figure 9.17.

Each node of the list thus contains two pointers: one to a cell and one to the
next node of the list.

Notice that, given a pointer to a cell, we can determine the corresponding cellfinding Cell
coordinates coordinates: We simply follow the pointer to the Cell object and its row and col

data members. Thus, we can conveniently store pointers to cells as the records in
a hash table; the coordinates of the cells, which are determined by the pointers, are
the corresponding keys.

420 Chapter 9 • Tables and Information Retrieval

313 Header

Nodes

Cells

Figure 9.17. An indirect linked list

Now that we have an idea of how a hash table will be used in our new Life
program, we can make an informed choice about its implementation. We must
decide between open addressing and chaining. The entries to be stored in the
table need little space: Each entry need only store a pointer to a Cell. Since theuse of space
table entries are small, there are few space considerations to advise our decision.
With chaining, the size of each record will increase 100 percent to accommodate

314

the necessary pointer, but the hash table itself will be smaller and can take a higher
load factor than with open addressing. With open addressing, the records will be
smaller, but more room must be left vacant in the hash table to avoid long searches
and possible overflow.

specification For flexibility, therefore, let us decide to use a chained hash table with the
following class definition:

class Hash_table {
public:

Error_code insert(Cell *new_entry);
bool retrieve(int row, int col) const;

private:
List<Cell *> table[hash_size];

};

Section 9.9 • Application: The Life Game Revisited 421

Here, we have specified just two methods: insert and retrieve. The only use that
we shall make of retrieval is to enquire whether the hash table contains a pointer
to a Cell with particular coordinates. Accordingly, the method retrieve uses a pair
of coordinates as its parameters and returns a bool result to indicate whether such
a Cell is represented in the table. We leave the implementation of the methods
for this hash table as a project, since they are very similar to those discussed in
Section 9.6.

We remark that a Hash_table does come with default constructor and destructor
methods. For example, the destructor, which we shall rely on, applies the List
destructor to each element of the array table.

9.9.3 The Life Class

With these decisions made, we can now tie down the representation and notation for
the class Life. In order to facilitate the replacement of a configuration by an updated
version, we shall store the data members indirectly, as pointers. Therefore, the classpointer manipulations
Life needs a constructor and a destructor to allocate and dispose of dynamic storage
for these structures. The other Life methods—initialize, print, and update—are all
explicitly used by the main function.315

class Life {
public:

Life();
void initialize();
void print();
void update();
∼Life();

private:
List<Cell *> *living;
Hash_table *is_living;
bool retrieve(int row, int col) const;
Error_code insert(int row, int col);
int neighbor_count(int row, int col) const;

};

The auxiliary member functions retrieve and neighbor_count determine the status
of a cell by applying hash-table retrieval. The other auxiliary function, insert,
creates a dynamic Cell object and inserts it into both the hash table and the list of
cells of a Life object.

9.9.4 The Life Functions

Let us now write several of the Life methods and functions, to show how processing
of the cells, lists, and tables transpires. The remaining functions will be left as
exercises.

422 Chapter 9 • Tables and Information Retrieval

1. Updating the Configuration

The crucial Life method is update, whose task is to start with one Life configu-
ration and determine what the configuration will become at the next generation.review of first Life

program In Section 1.4.4, we did this by examining every possible cell in the grid configu-
ration, calculating its neighbor count to determine whether or not it should live in
the coming generation. This information was stored in a local variable new_grid
that was eventually copied to grid.

Let us to continue to follow this outline, except that, with an unbounded grid,
we must not try to examine every possible cell in the configuration. Instead, we
must limit our attention to the cells that may possibly be alive in the coming gen-
eration. Which cells are these? Certainly, we should examine all the living cells to

316

determine which of them remain alive. We must also examine some of the dead
cells. For a dead cell to become alive, it must have exactly three living neighbors
(according to the rules in Section 1.2.1). Therefore, we will include all these cells
(and likely others besides) if we examine all the cells that are neighbors of living
cells. All such neighbors are shown as the shaded fringe in the configuration of
Figure 9.18.

Figure 9.18. A Life configuration with fringe of dead cells

In the method update, a local variable Life new_configuration is thereby gradu-
ally built up to represent the upcoming configuration: We loop over all the (living)
cells from the current configuration, and we also loop over all the (dead) cells
that are neighbors of these (living) cells. For each cell, we must first determine
whether it has already been added to new_configuration, since we must be care-
ful not to add duplicate copies of any cell. If the cell does not already belong
to new_configuration, we use the function neighbor_count to decide whether it
should be added, and if appropriate we insert it into new_configuration.

At the end of the method, we must swap the List and Hash_table members
between the current configuration and new_configuration. This exchange ensures
that the Life object now represents an updated configuration. Moreover, it en-
sures that the destructor that will automatically be applied to the local variable
Life new_configuration will dispose of the cells, the List, and the Hash_table that
represent the former configuration.

Section 9.9 • Application: The Life Game Revisited 423

We thus obtain the following implementation:317

void Life :: update()
/* Post: The Life object contains the next generation of configuration.

Uses: The class Hash_table and the class Life and its auxiliary functions. */

{
Life new_configuration;
Cell *old_cell;
for (int i = 0; i < living->size(); i++) {

living->retrieve(i, old_cell); // Obtain a living cell.
for (int row_add = −1; row_add < 2; row_add ++)

for (int col_add = −1; col_add < 2; col_add++) {
int new_row = old_cell->row + row_add,

new_col = old_cell->col + col_add;
// new_row, new_col is now a living cell or a neighbor of a living cell,

if (!new_configuration.retrieve(new_row, new_col))
switch (neighbor_count(new_row, new_col)) {
case 3: // With neighbor count 3, the cell becomes alive.

new_configuration.insert(new_row, new_col);
break;

case 2: // With count 2, cell keeps the same status.
if (retrieve(new_row, new_col))

new_configuration.insert(new_row, new_col);
break;

default: // Otherwise, the cell is dead.
break;

}
}

}

// Exchange data of current configuration with data of new_configuration.
List<Cell *> *temp_list = living;
living = new_configuration.living;
new_configuration.living = temp_list;
Hash_table *temp_hash = is_living;
is_living = new_configuration.is_living;
new_configuration.is_living = temp_hash;

}

2. Printing

We recognize that it is impossible to display more than a small piece of the nowprinting window
unbounded Life configuration on a user’s screen. Therefore, we shall merely print
a rectangular window, showing the status of a 20 × 80 central portion of a Life
configuration. For each cell in the window, we retrieve its status from the hash
table and print either a blank or non-blank character accordingly.

424 Chapter 9 • Tables and Information Retrieval

318
void Life :: print()
/* Post: A central window onto the Life object is displayed.

Uses: The auxiliary function Life :: retrieve. */

{
int row, col;
cout << endl << "The current Life configuration is:" << endl;
for (row = 0; row < 20; row++) {

for (col = 0; col < 80; col++)
if (retrieve(row, col)) cout << ′*′;
else cout << ′ ′;

cout << endl;
}
cout << endl;

}

3. Creation and Insertion of new Cells

We now turn to the function insert that creates a Cell object and explicitly refer-
ences the hash table. The task of the function is to create a new cell, with the
given coordinates and put it in both the hash table and the List living. This outlinetask
translates into the following C++ function.

Error_code Life :: insert(int row, int col)
/* Pre: The cell with coordinates row and col does not belong to the Life config-

uration.
Post: The cell has been added to the configuration. If insertion into either the

List or the Hash_table fails, an error code is returned.
Uses: The class List, the class Hash_table, and the struct Cell */

{
Error_code outcome;
Cell *new_cell = new Cell(row, col);
int index = living->size();
outcome = living->insert(index, new_cell);
if (outcome == success)

outcome = is_living->insert(new_cell);
if (outcome != success)

cout << " Warning: new Cell insertion failed" << endl;
return outcome;

}

4. Construction and Destruction of Life Objects

We must provide a constructor and destructor for our class Life to allocate and
dispose of its dynamically allocated members. The constructor need only apply
the new operator.

Section 9.9 • Application: The Life Game Revisited 425

319
Life :: Life()
/* Post: The members of a Life object are dynamically allocated and initialized.

Uses: The class Hash_table and the class List. */
{

living = new List<Cell *>;
is_living = new Hash_table;

}

The destructor must dispose of any object that might ever be dynamically defined
by a method of the class Life. In addition to the List *living and the Hash_table
*is_living that are dynamically created by the constructor, the Cell objects that they
reference are dynamically created by the method insert. The following implemen-
tation begins by disposing of these Cell objects:

Life :: ∼Life()
/* Post: The dynamically allocated members of a Life object and all Cell objects

that they reference are deleted.
Uses: The class Hash_table and the class List. */

{
Cell *old_cell;
for (int i = 0; i < living->size(); i++) {

living->retrieve(i, old_cell);
delete old_cell;

}
delete is_living; // Calls the Hash_table destructor
delete living; // Calls the List destructor

}

5. The Hash Function

Our hash function will differ slightly from those earlier in this chapter, in that
its argument already comes in two parts (row and column), so that some kind of
folding can be done easily. Before deciding how, let us for a moment consider the
special case of a small array, where the function is one-to-one and is exactly the
index function. When there are exactly maxrow entries in each row, the index i, j
maps toindex function

i + maxrow * j

to place the rectangular array into contiguous, linear storage, one row after the
next.

It should prove effective to use a similar mapping for our hash function, where
we replace maxrow by some convenient number (like a prime) that will maximize
the spread and reduce collisions. Hence we obtain

426 Chapter 9 • Tables and Information Retrieval

const int factor = 101;

int hash(int row, int col)
/* Post: The function returns the hashed valued between 0 and hash_size − 1 that

corresponds to the given Cell parameter. */
{

int value;
value = row + factor * col;
value %= hash_size;
if (value < 0) return value + hash_size;
else return value;

}

6. Other Subprograms
The remaining Life member functions initialize, retrieve, and neighbor_count all
bear considerable resemblance either to one of the preceding functions or to the
corresponding function in our earlier Life program. These functions can therefore
safely be left as projects.

Programming
Projects 9.9

P1. Write the Life methods (a) neighbor_count, (b) retrieve, and (c) initialize.
P2. Write the Hash_table methods (a) insert and (b) retrieve for the chained imple-

mentation that stores pointers to cells of a Life configuration.

P3. Modify update so that it uses a second local Life object to store cells that have
been considered for insertion, but rejected. Use this object to make sure that
no cell is considered twice.

POINTERS AND PITFALLS

1. Use top-down design for your data structures, just as you do for your algo-
rithms. First determine the logical structure of the data, then slowly specify320

more detail, and delay implementation decisions as long as possible.

2. Before considering detailed structures, decide what operations on the data
will be required, and use this information to decide whether the data belong
in a list or a table. Traversal of the data structure or access to all the data in
a prespecified order generally implies choosing a list. Access to any entry in
time O(1) generally implies choosing a table.

3. For the design and programming of lists, see Chapter 6.

4. Use the logical structure of the data to decide what kind of table to use: an
ordinary array, a table of some special shape, a system of inverted tables, or a
hash table. Choose the simplest structure that allows the required operations
and that meets the space requirements of the problem. Don’t write complicated
functions to save space that will then remain unused.

Chapter 9 • Review Questions 427

5. Let the structure of the data help you decide whether an index function or an
access array is better for accessing a table of data. Use the features built into
your programming language whenever possible.

6. In using a hash table, let the nature of the data and the required operations
help you decide between chaining and open addressing. Chaining is generally
preferable if deletions are required, if the records are relatively large, or if
overflow might be a problem. Open addressing is usually preferable when the
individual records are small and there is no danger of overflowing the hash
table.

7. Hash functions usually need to be custom designed for the kind of keys used for
accessing the hash table. In designing a hash function, keep the computations
as simple and as few as possible while maintaining a relatively even spread of
the keys over the hash table. There is no obligation to use every part of the
key in the calculation. For important applications, experiment by computer
with several variations of your hash function, and look for rapid calculation
and even distribution of the keys.

8. Recall from the analysis of hashing that some collisions will almost inevitably
occur, so don’t worry about the existence of collisions if the keys are spread
nearly uniformly through the table.

9. For open addressing, clustering is unlikely to be a problem until the hash table is
more than half full. If the table can be made several times larger than the space
required for the records, then linear probing should be adequate; otherwise
more sophisticated collision resolution may be required. On the other hand, if
the table is many times larger than needed, then initialization of all the unused
space may require excessive time.

REVIEW QUESTIONS

1. In terms of the Θ and Ω notations, compare the difference in time required for9.1
table lookup and for list searching.

2. What are row-major and column-major ordering?9.2

3. Why do jagged tables require access arrays instead of index functions?9.3

4. For what purpose are inverted tables used?

5. What is the difference in purpose, if any, between an index function and an access
array?

6. What operations are available for an abstract table?9.4

7. What operations are usually easier for a list than for a table?

8. In 20 words or less, describe how radix sort works.9.5

9. In radix sort, why are the keys usually partitioned first by the least significant
position, not the most significant?

428 Chapter 9 • Tables and Information Retrieval

10. What is the difference in purpose, if any, between an index function and a hash9.6
function?

11. What objectives should be sought in the design of a hash function?

12. Name three techniques often built into hash functions.

13. What is clustering in a hash table?

14. Describe two methods for minimizing clustering.

15. Name four advantages of a chained hash table over open addressing.

16. Name one advantage of open addressing over chaining.

17. If a hash function assigns 30 keys to random positions in a hash table of size9.7
300, about how likely is it that there will be no collisions?

REFERENCES FOR FURTHER STUDY

The primary reference for this chapter is KNUTH, Volume 3. (See page 77 for bibli-
ographic details.) Hashing is the subject of Volume 3, pp. 506–549. KNUTH studies
every method we have touched, and many others besides. He does algorithm
analysis in considerably more detail than we have, writing his algorithms in a
pseudo-assembly language, and counting operations in detail there.

The following book (pp. 156–185) considers arrays of various kinds, index
functions, and access arrays in considerable detail:

C. C. GOTLIEB and L. R. GOTLIEB, Data Types and Structures, Prentice Hall, Englewood
Cliffs, N.J., 1978.

An interesting study of hash functions and the choice of constants used is:

B. J. MCKENZIE, R. HARRIES, and T. C. BELL, “Selecting a hashing algorithm,” Software
Practice and Experience 20 (1990), 209–224.

Extensions of the birthday surprise are considered in

M. S. KLAMKIN and D. J. NEWMAN, Journal of Combinatorial Theory 3 (1967), 279–282.

A thorough and informative analysis of hashing appears in Chapter 8 of

ROBERT SEDGEWICK and PHILIPPE FLAJOLET, An Introduction to the Analysis of Algorithms,
Addison-Wesley, Reading, Mass., 1996.

Binary Trees 10

L
INKED LISTS have great advantages of flexibility over the contiguous rep-
resentation of data structures, but they have one weak feature: They are
sequential lists; that is, they are arranged so that it is necessary to move
through them only one position at a time. In this chapter we overcome

these disadvantages by studying trees as data structures, using the methods of
pointers and linked lists for their implementation. Data structures organized as
trees will prove valuable for a range of applications, especially for problems of
information retrieval.

10.1 Binary Trees 430
10.1.1 Definitions 430
10.1.2 Traversal of Binary Trees 432
10.1.3 Linked Implementation of Binary

Trees 437

10.2 Binary Search Trees 444
10.2.1 Ordered Lists and

Implementations 446
10.2.2 Tree Search 447
10.2.3 Insertion into a Binary Search

Tree 451
10.2.4 Treesort 453
10.2.5 Removal from a Binary Search

Tree 455

10.3 Building a Binary Search Tree 463
10.3.1 Getting Started 464
10.3.2 Declarations and the Main

Function 465
10.3.3 Inserting a Node 466
10.3.4 Finishing the Task 467

10.3.5 Evaluation 469
10.3.6 Random Search Trees and

Optimality 470

10.4 Height Balance: AVL Trees 473
10.4.1 Definition 473
10.4.2 Insertion of a Node 477
10.4.3 Removal of a Node 484
10.4.4 The Height of an AVL Tree 485

10.5 Splay Trees: A Self-Adjusting Data
Structure 490
10.5.1 Introduction 490
10.5.2 Splaying Steps 491
10.5.3 Algorithm Development 495
10.5.4 Amortized Algorithm Analysis:

Introduction 505
10.5.5 Amortized Analysis of Splaying 509

Pointers and Pitfalls 515
Review Questions 516
References for Further Study 518

429

10.1 BINARY TREES

For some time, we have been drawing trees to illustrate the behavior of algorithms.
We have drawn comparison trees showing the comparisons of keys in searching
and sorting algorithms; we have drawn trees of subprogram calls; and we have
drawn recursion trees. If, for example, we consider applying binary search to the
following list of names, then the order in which comparisons will be made is shown
in the comparison tree of Figure 10.1.

Amy Ann Dot Eva Guy Jan Jim Jon Kay Kim Ron Roy Tim Tom
326

Jim

Dot Ron

Amy Guy Kay Tim

Ann Eva Jan Jon Kim Roy Tom

Figure 10.1. Comparison tree for binary search

10.1.1 Definitions
In binary search, when we make a comparison with a key, we then move either left
or right depending on the outcome of the comparison. It is thus important to keep
the relation of left and right in the structure we build. It is also possible that the

322

part of the tree on one side or both below a given node is empty. In the example
of Figure 10.1, the name Amy has an empty left subtree. For all the leaves, both
subtrees are empty.

We can now give the formal definition of a new data structure.

Definition A binary tree is either empty, or it consists of a node called the root together
with two binary trees called the left subtree and the right subtree of the root.

Note that this definition is that of a mathematical structure. To specify binary trees
as an abstract data type, we must state what operations can be performed on binaryADT
trees. Rather than doing so at once, we shall develop the operations as the chapter
progresses.

Note also that this definition makes no reference to the way in which binary
trees will be implemented in memory. As we shall presently see, a linked represen-
tation is natural and easy to use, but other implementations are possible as well.
Note, finally, that this definition makes no reference to keys or the way in which

430

Section 10.1 • Binary Trees 431

they are ordered. Binary trees are used for many purposes other than searching;
hence we have kept the definition general.

Before we consider general properties of binary trees further, let us return to the
general definition and see how its recursive nature works out in the construction
of small binary trees.

The first case, the base case that involves no recursion, is that of an empty binary
tree. For other kinds of trees, we might never think of allowing an empty one, butsmall binary trees
for binary trees it is convenient, not only in the definition, but in algorithms, to
allow for an empty tree. The empty tree will usually be the base case for recursive
algorithms and will determine when the algorithm stops.

The only way to construct a binary tree with one node is to make that node into
the root and to make both the left and right subtrees empty. Thus a single node
with no branches is the one and only binary tree with one node.

With two nodes in the tree, one of them will be the root and the other will be
in a subtree. Thus either the left or right subtree must be empty, and the other
will contain exactly one node. Hence there are two different binary trees with two
nodes.

At this point, you should note that the concept of a binary tree differs from
some of the examples of trees that we have previously seen, in that left and right
are important for binary trees. The two binary trees with two nodes can be drawnleft and right
as

and

which are different from each other. We shall never draw any part of a binary tree
to look like

since there is no way to tell if the lower node is the left or the right child of its
parent.

We should, furthermore, note that binary trees are not the same class as the
2-trees we studied in the analysis of algorithms in Chapter 7 and Chapter 8. Eachcomparison trees
node in a 2-tree has either 0 or 2 children, never 1, as can happen with a binary
tree. Left and right are not fundamentally important for studying the properties of
comparison trees, but they are crucial in working with binary trees.1

1 In Section 10.3.6 we shall, however, see that binary trees can be converted into 2-trees and vice
versa.

432 Chapter 10 • Binary Trees

For the case of a binary tree with three nodes, one of these will be the root, andbinary trees with three
nodes the others will be partitioned between the left and right subtrees in one of the ways

2 + 0 1 + 1 0 + 2.

Since there are two binary trees with two nodes and only one empty tree, the
first case gives two binary trees. The third case, similarly, gives two more binary
trees. In the second case the left and right subtrees both have one node, and there
is only one binary tree with one node, so there is one binary tree in the second case.
Altogether, then, there are five binary trees with three nodes.322

Figure 10.2. The binary trees with three nodes

The binary trees with three nodes are all shown in Figure 10.2. The steps that
we went through to construct these binary trees are typical of those needed for
larger cases. We begin at the root and think of the remaining nodes as partitioned
between the left and right subtrees. The left and right subtrees are then smaller
cases for which we know the results from earlier work.

Before proceeding, you should pause to construct all fourteen binary trees
with four nodes. This exercise will further help you establish the ideas behind the
definition of binary trees.

10.1.2 Traversal of Binary Trees

One of the most important operations on a binary tree is traversal, moving through
all the nodes of the binary tree, visiting each one in turn. As for traversal of other
data structures, the action we shall take when we visit each node will depend on
the application.

For lists, the nodes came in a natural order from first to last, and traversal
followed the same order. For trees, however, there are many different orders in
which we could traverse all the nodes. When we write an algorithm to traverse
a binary tree, we shall almost always wish to proceed so that the same rules are
applied at each node, and we thereby adhere to a general pattern.

Section 10.1 • Binary Trees 433

At a given node, then, there are three tasks we shall wish to do in some order:

323

We shall visit the node itself; we shall traverse its left subtree; and we shall traverse
its right subtree. The key distinction in traversal orders is to decide if we are to
visit the node itself before traversing either subtree, between the subtrees, or after
traversing both subtrees.

If we name the tasks of visiting a node V, traversing the left subtree L, and
traversing the right subtree R, then there are six ways to arrange them:

V L R L V R L R V V R L R V L R L V.

1. Standard Traversal Orders

By standard convention, these six are reduced to three by considering only the ways
in which the left subtree is traversed before the right. The three mirror images are
clearly similar. The three ways with left before right are given special names that
we shall use from now on:

V L R L V R L R V
preorder inorder postorder

These three names are chosen according to the step at which the given node ispreorder, inorder, and
postorder visited. With preorder traversal, the node is visited before the subtrees; with in-

order traversal, it is visited between them; and with postorder traversal, the root
is visited after both of the subtrees.

Inorder traversal is also sometimes called symmetric order, and postorder
traversal was once called endorder. We shall not use these terms.

2. Simple Examples

As a first example, consider the following binary tree:

1

2 3

Under preorder traversal, the root, labeled 1, is visited first. Then the traversalpreorder
moves to the left subtree. The left subtree contains only the node labeled 2, and it
is visited second. Then preorder traversal moves to the right subtree of the root,
finally visiting the node labeled 3. Thus preorder traversal visits the nodes in the
order 1, 2, 3.

434 Chapter 10 • Binary Trees

Before the root is visited under inorder traversal, we must traverse its left
subtree. Hence the node labeled 2 is visited first. This is the only node in the leftinorder
subtree of the root, so the traversal moves to the root, labeled 1, next, and finally to
the right subtree. Thus inorder traversal visits the nodes in the order 2, 1, 3.

With postorder traversal, we must traverse both the left and right subtrees
before visiting the root. We first go to the left subtree, which contains only thepostorder
node labeled 2, and it is visited first. Next, we traverse the right subtree, visiting
the node 3, and, finally, we visit the root, labeled 1. Thus postorder traversal visits
the nodes in the order 2, 3, 1.

As a second, slightly more complicated example, let us consider the following
binary tree:

3

4 5

2

1

First, let us determine the preorder traversal. The root, labeled 1, is visited first.preorder
Next, we traverse the left subtree. But this subtree is empty, so its traversal does
nothing. Finally, we must traverse the right subtree of the root. This subtree
contains the vertices labeled 2, 3, 4, and 5. We must therefore traverse this subtree,
again using the preorder method. Hence we next visit the root of this subtree,
labeled 2, and then traverse the left subtree of 2. At a later step, we shall traverse
the right subtree of 2, which is empty, so nothing will be done. But first we traverse
the left subtree, which has root 3. Preorder traversal of the subtree with root 3 visits
the nodes in the order 3, 4, 5. Finally, we do the empty right subtree of 2. Thus the
complete preorder traversal of the tree visits the nodes in the order 1, 2, 3, 4, 5.

For inorder traversal, we must begin with the left subtree of the root, which isinorder
empty. Hence the root, labeled 1, is the first node visited, and then we traverse its
right subtree, which is rooted at node 2. Before we visit node 2, we must traverse
its left subtree, which has root 3. The inorder traversal of this subtree visits the
nodes in the order 4, 3, 5. Finally, we visit node 2 and traverse its right subtree,
which does nothing since it is empty. Thus the complete inorder traversal of the
tree visits the nodes in the order 1, 4, 3, 5, 2.

For postorder traversal, we must traverse both the left and right subtrees of
each node before visiting the node itself. Hence we first would traverse the emptypostorder
left subtree of the root 1, then the right subtree. The root of a binary tree is always
the last node visited by a postorder traversal. Before visiting the node 2, we traverse
its left and right (empty) subtrees. The postorder traversal of the subtree rooted at
3 gives the order 4, 5, 3. Thus the complete postorder traversal of the tree visits the
nodes in the order 4, 5, 3, 2, 1.

Section 10.1 • Binary Trees 435

3. Expression Trees

The choice of the names preorder, inorder, and postorder for the three most important
traversal methods is not accidental, but relates closely to a motivating example of
considerable interest, that of expression trees.

expression tree An expression tree is built up from the simple operands and operators of an
(arithmetical or logical) expression by placing the simple operands as the leaves of
a binary tree and the operators as the interior nodes. For each binary operator, the
left subtree contains all the simple operands and operators in the left operand of
the given operator, and the right subtree contains everything in the right operand.

For a unary operator, one of the two subtrees will be empty. We traditionallyoperators
write some unary operators to the left of their operands, such as ‘−’ (unary nega-
tion) or the standard functions like log() and cos(). Other unary operators are
written on the right, such as the factorial function ()! or the function that takes the
square of a number, ()2 . Sometimes either side is permissible, such as the deriva-
tive operator, which can be written as d/dx on the left, or as ()′ on the right, or the
incrementing operator ++ (where the actions on the left and right are different). If
the operator is written on the left, then in the expression tree we take its left subtree
as empty, so that the operands appear on the right side of the operator in the tree,
just as they do in the expression. If the operator appears on the right, then its right
subtree will be empty, and the operands will be in the left subtree of the operator.324

+

a

b

a + b

n

a bc

a

c d

or

× < <

n!

!

(a < b) or (c < d)a – (b × c)

log x

–

b

log

x

Figure 10.3. Expression trees

The expression trees of a few simple expressions are shown in Figure 10.3,
together with the slightly more complicated example of the quadratic formula in
Figure 10.4, where we denote exponentiation by ↑.

436 Chapter 10 • Binary Trees

325

x

:=

/

2

+

–

×

×

a

b

cb

4

0.5–

2 ×

a

x := (−b + (b 2 − 4 × a × c) 0.5)/(2 × a)

Figure 10.4. Expression tree of the quadratic formula

You should take a few moments to traverse each of these expression trees in
preorder, inorder, and postorder. To help you check your work, the results of such
traversals are shown in Figure 10.5.324

Expression: a+ b logx n! a− (b × c) (a < b) or (c < d)

preorder : + a b log x ! n − a × b c or < a b < c d
inorder : a + b log x n ! a − b × c a < b or c < d
postorder : a b + x log n ! a b c × − a b < c d < or

Figure 10.5. Traversal orders for expression trees

The names of the traversal methods are related to the Polish forms of thePolish form
expressions: Traversal of an expression tree in preorder yields the prefix form, in
which every operator is written before its operand(s); inorder traversal gives the
infix form (the customary way to write the expression); and postorder traversal
gives the postfix form, in which all operators appear after their operand(s). A
moment’s consideration will convince you of the reason: The left and right subtrees
of each node are its operands, and the relative position of an operator to its operands

Section 10.1 • Binary Trees 437

in the three Polish forms is the same as the relative order of visiting the components
in each of the three traversal methods. The Polish notation is the major topic of
Chapter 13.

4. Comparison Trees
As a further example, let us take the binary tree of 14 names from Figure 10.1
(the comparison tree for binary search) and write them in the order given by each
traversal method:

preorder:
Jim Dot Amy Ann Guy Eva Jan Ron Kay Jon Kim Tim Roy Tom

inorder:
Amy Ann Dot Eva Guy Jan Jim Jon Kay Kim Ron Roy Tim Tom

postorder:
Ann Amy Eva Jan Guy Dot Jon Kim Kay Roy Tom Tim Ron Jim

It is no accident that inorder traversal produces the names in alphabetical order.
The way that we constructed the comparison tree in Figure 10.1 was to move to
the left whenever the target key preceded the key in the node under consideration,
and to the right otherwise. Hence the binary tree is set up so that all the nodes in
the left subtree of a given node come before it in the ordering, and all the nodes
in its right subtree come after it. Hence inorder traversal produces all the nodes
before a given one first, then the given one, and then all the later nodes.

In the next section, we shall study binary trees with this property. They are
called binary search trees, since they are very useful and efficient for problems re-
quiring searching.

10.1.3 Linked Implementation of Binary Trees

A binary tree has a natural implementation in linked storage. As usual for linked
structures, we shall link together nodes, created in dynamic storage, so we shall
need a separate pointer variable to enable us to find the tree. Our name for this
pointer variable will be root, since it will point to the root of the tree. Hence, theroot
specification for a generic template for the binary-tree class takes the form:

327

template <class Entry>
class Binary_tree {
public:
// Add methods here.
protected:

// Add auxiliary function prototypes here.
Binary_node<Entry> *root;

};

As usual, the template parameter, class Entry, is specified as an actual type by client
code.

We now consider the representation of the nodes that make up a tree.

438 Chapter 10 • Binary Trees

1. Definitions
Each node of a binary tree (as the root of some subtree) has both a left and a right
subtree. These subtrees can be located by pointers to their root nodes. Hence we
arrive at the following specification:

327

template <class Entry>
struct Binary_node {
// data members:

Entry data;
Binary_node<Entry> *left;
Binary_node<Entry> *right;

// constructors:
Binary_node();
Binary_node(const Entry &x);

};

The Binary_node class includes two constructors that set the pointer members left
and right to NULL in any newly constructed node.

Our specifications for nodes and trees turn the comparison tree for the 14 names
from the first tree diagram of this section, Figure 10.1, into the linked binary tree
of Figure 10.6. As you can see, the only difference between the comparison tree
and the linked binary tree is that we have explicitly shown the NULL links in the
latter, whereas it is customary in drawing trees to omit all empty subtrees and the
branches going to them.

2. Basic Methods for a Binary Tree
With the root pointer, it is easy to recognize an empty binary tree with the expression

root == NULL;

and to create a new, empty binary tree we need only assign root to NULL. The
Binary_tree constructor should simply make this assignment.328

template <class Entry>
Binary_tree<Entry> :: Binary_tree()
/* Post: An empty binary tree has been created. */
{

root = NULL;
}

The method empty tests whether root is NULL to determine whether a Binary_tree
is empty.

template <class Entry>
bool Binary_tree<Entry> :: empty() const
/* Post: A result of true is returned if the binary tree is empty. Otherwise, false is

returned. */
{

return root == NULL;
}

Section 10.1 • Binary Trees 439

Jim

Dot Ron

Amy Guy Kay Tim

Ann Eva Jan Jon Kim Roy Tom

Figure 10.6. A linked binary tree

3. Traversal

We now develop methods that traverse a linked binary tree in each of the three ways

326

we have studied. As usual, we shall assume the existence of another function *visit
that does the desired task for each node. As with traversal functions defined forvisit a node

other data structures, we shall make the function pointer visit a formal parameter
for the traversal functions.

In our traversal functions, we need to visit the root node and traverse its sub-
trees. Recursion will make it especially easy for us to traverse the subtrees. Therecursive traversal
subtrees are located by following pointers from the root, and therefore these point-
ers must be passed to the recursive traversal calls. It follows that each traversal
method should call a recursive function that carries an extra pointer parameter.
For example, inorder traversal is written as follows:329

template <class Entry>
void Binary_tree<Entry> :: inorder(void (*visit)(Entry &))
/* Post: The tree has been been traversed in infix order sequence.

Uses: The function recursive_inorder */
{

recursive_inorder(root, visit);
}

We shall generally find that any method of a Binary_tree that is naturally described
by a recursive process can be conveniently implemented by calling an auxiliary

440 Chapter 10 • Binary Trees

recursive function that applies to subtrees. The auxiliary inorder traversal function
is implemented with the following simple recursion:329

template <class Entry>
void Binary_tree<Entry> :: recursive_inorder(Binary_node<Entry> *sub_root,

void (*visit)(Entry &))
/* Pre: sub_root is either NULL or points to a subtree of the Binary_tree.

Post: The subtree has been been traversed in inorder sequence.
Uses: The function recursive_inorder recursively */

{
if (sub_root != NULL) {

recursive_inorder(sub_root->left, visit);
(*visit)(sub_root->data);
recursive_inorder(sub_root->right, visit);

}
}

The other traversal methods are similarly constructed as calls to auxiliary recursive
functions. The auxiliary functions have the following implementations:

template <class Entry>
void Binary_tree<Entry> :: recursive_preorder(Binary_node<Entry> *sub_root,

void (*visit)(Entry &))
/* Pre: sub_root is either NULL or points to a subtree of the Binary_tree.

Post: The subtree has been been traversed in preorder sequence.
Uses: The function recursive_preorder recursively */

{
if (sub_root != NULL) {

(*visit)(sub_root->data);
recursive_preorder(sub_root->left, visit);
recursive_preorder(sub_root->right, visit);

}
}

template <class Entry>
void Binary_tree<Entry> :: recursive_postorder(Binary_node<Entry> *sub_root,

void (*visit)(Entry &))
/* Pre: sub_root is either NULL or points to a subtree of the Binary_tree.

Post: The subtree has been been traversed in postorder sequence.
Uses: The function recursive_postorder recursively */

{
if (sub_root != NULL) {

recursive_postorder(sub_root->left, visit);
recursive_postorder(sub_root->right, visit);
(*visit)(sub_root->data);

}
}

Section 10.1 • Binary Trees 441

We leave the coding of standard Binary_tree methods such as height, size, and clear
as exercises. These other methods are also most easily implemented by calling
recursive auxiliary functions. In the exercises, we shall develop a method to insert
entries into a Binary_tree. This insertion method is useful for testing our basic
Binary_tree class.

Later in this chapter, we shall create several more specialized, and more useful
derived tree classes: these derived classes will have efficient overridden insertion
methods. The derived classes will also possess efficient methods for removing
entries, but for the moment we will not add such a method to our basic binary tree
class. These decisions lead to a Binary_tree class with the following specification:330

template <class Entry>
class Binary_tree {
public:

Binary_tree();
bool empty() const;
void preorder(void (*visit)(Entry &));
void inorder(void (*visit)(Entry &));
void postorder(void (*visit)(Entry &));

int size() const;
void clear();
int height() const;
void insert(const Entry &);

Binary_tree (const Binary_tree<Entry> &original);
Binary_tree & operator = (const Binary_tree<Entry> &original);
∼Binary_tree();

protected:
// Add auxiliary function prototypes here.
Binary_node<Entry> *root;

};

Although our Binary_tree class appears to be a mere shell whose methods simply
pass out their work to auxiliary functions, it serves an important purpose. The
class collects together the various tree functions and provides a very convenient
client interface that is analogous to our other ADTs. Moreover, the class provides
encapsulation: without it, tree data would not be protected and could easily be
corrupted. Finally, we shall see that the class serves as the base for other, more
useful, derived binary tree classes.

Exercises
10.1

E1. Construct the 14 binary trees with four nodes.

E2. Determine the order in which the vertices of the following binary trees will be
visited under (1) preorder, (2) inorder, and (3) postorder traversal.

442 Chapter 10 • Binary Trees

4 4 5

7

6

8 9

5

4

3

1

2

5

4

3

1

2

5 6

3

1

2

7 8

2 3

1

(a) (b) (c) (d)

E3. Draw expression trees for each of the following expressions, and show the
order of visiting the vertices in (1) preorder, (2) inorder, and (3) postorder:

(a) logn!
(b) (a− b)−c

(c) a− (b − c)
(d) (a < b) and (b < c) and (c < d)

E4. Write a method and the corresponding recursive function to count all the nodes
of a linked binary tree.Binary_tree size

E5. Write a method and the corresponding recursive function to count the leaves
(i.e., the nodes with both subtrees empty) of a linked binary tree.

E6. Write a method and the corresponding recursive function to find the height of
a linked binary tree, where an empty tree is considered to have height 0 and a
tree with only one node has height 1.

E7. Write a method and the corresponding recursive function to insert an Entry,
passed as a parameter, into a linked binary tree. If the root is empty, the newBinary_tree insert
entry should be inserted into the root, otherwise it should be inserted into the
shorter of the two subtrees of the root (or into the left subtree if both subtrees
have the same height).

E8. Write a method and the corresponding recursive function to traverse a binaryBinary_tree clear
tree (in whatever order you find convenient) and dispose of all its nodes. UseBinary_tree

destructor this method to implement a Binary_tree destructor.

E9. Write a copy constructor

Binary_tree<Entry> :: Binary_tree(const Binary_tree<Entry> &original)

that will make a copy of a linked binary tree. The constructor should obtainBinary_tree copy
constructor the necessary new nodes from the system and copy the data from the nodes of

the old tree to the new one.

Section 10.1 • Binary Trees 443

E10. Write an overloaded binary tree assignment operatorBinary_tree
assignment operator

Binary_tree<Entry> & Binary_tree<Entry> :: operator =
(const Binary_tree<Entry> &original)}.

E11. Write a function to perform a double-order traversal of a binary tree, meaning
that at each node of the tree, the function first visits the node, then traverses
its left subtree (in double order), then visits the node again, then traverses itsdouble-order traversal
right subtree (in double order).

E12. For each of the binary trees in Exercise E2, determine the order in which the
nodes will be visited in the mixed order given by invoking method A:
void Binary_tree<Entry> ::

A(void (*visit)(Entry &))
{

if (root != NULL) {
(*visit)(root->data);
root->left.B(visit);
root->right.B(visit);

}
}

void Binary_tree<Entry> ::
B(void (*visit)(Entry &))

{
if (root != NULL) {

root->left.A(visit);
(*visit)(root->data);
root->right.A(visit);

}
}

E13. (a) Suppose that Entry is the type char. Write a function that will print all the
entries from a binary tree in the bracketed form (data: LT, RT) where dataprinting a binary tree
is the Entry in the root, LT denotes the left subtree of the root printed in
bracketed form, and RT denotes the right subtree in bracketed form. For
example, the first tree in Figure 10.3 will be printed as

(+ : (a: (: ,), (: ,)), (b: (: ,), (: ,)))

(b) Modify the function so that it prints nothing instead of (: ,) for an empty
subtree, and x instead of (x: ,) for a subtree consisting of only one node
with the Entry x. Hence the preceding tree will now print as (+ : a, b).

E14. Write a function that will interchange all left and right subtrees in a linked
binary tree. See the example in Figure 10.7.

becomes

1

2 3

4 5 6

7 8

1

3 2

6 5 4

8 7

Figure 10.7. Reversal of a binary tree

444 Chapter 10 • Binary Trees

E15. Write a function that will traverse a binary tree level by level. That is, the root
is visited first, then the immediate children of the root, then the grandchildrenlevel-by-level traversal
of the root, and so on. [Hint: Use a queue to keep track of the children of a
node until it is time to visit them. The nodes in the first tree of Figure 10.7 are
numbered in level-by-level ordering.]

E16. Write a function that will return the width of a linked binary tree, that is, thewidth
maximum number of nodes on the same level.
For the following exercises, it is assumed that the data stored in the nodes oftraversal sequences
the binary trees are all distinct, but it is not assumed that the trees are binary
search trees. That is, there is no necessary connection between any ordering
of the data and their location in the trees. If a tree is traversed in a particular
order, and each key is printed when its node is visited, the resulting sequence
is called the sequence corresponding to that traversal.

E17. Suppose that you are given two sequences that supposedly correspond to the
preorder and inorder traversals of a binary tree. Prove that it is possible to
reconstruct the binary tree uniquely.

E18. Either prove or disprove (by finding a counterexample) the analogous result
for inorder and postorder traversal.

E19. Either prove or disprove the analogous result for preorder and postorder traver-
sal.

E20. Find a pair of sequences of the same data that could not possibly correspond
to the preorder and inorder traversals of the same binary tree. [Hint: Keep
your sequences short; it is possible to solve this exercise with only three items
of data in each sequence.]

10.2 BINARY SEARCH TREES

Consider the problem of searching a linked list for some target key. There is no
way to move through the list other than one node at a time, and hence searching
through the list must always reduce to a sequential search. As you know, sequential
search is usually very slow in comparison with binary search. Hence, assuming we
can keep the keys in order, searching becomes much faster if we use a contiguous
list and binary search. Suppose we also frequently need to make changes in thethe dilemma
list, inserting new entries or deleting old entries. Then it is much slower to use a
contiguous list than a linked list, because insertion or removal in a contiguous list
requires moving many of the entries every time, whereas a linked list requires only
adjusting a few pointers.

The pivotal problem for this section is:

331

Can we find an implementation for ordered lists in which we can search quickly (as
with binary search on a contiguous list) and in which we can make insertions and
removals quickly (as with a linked list)?

Section 10.2 • Binary Search Trees 445

Binary trees provide an excellent solution to this problem. By making the entries
of an ordered list into the nodes of a binary tree, we shall find that we can search
for a target key in O(logn) steps, just as with binary search, and we shall obtain
algorithms for inserting and deleting entries also in time O(logn).

When we studied binary search, we drew comparison trees showing the prog-
ress of binary search by moving either left (if the target key is smaller than the onecomparison trees
in the current node of the tree) or right (if the target key is larger). An example
of such a comparison tree appears in Figure 10.1 and again in Figure 10.6, where
it is shown as a linked binary tree. From these diagrams, it may already be clear
that the way in which we can keep the advantages of linked storage and obtain the
speed of binary search is to store the nodes as a binary tree with the structure of
the comparison tree itself, with links used to describe the relations of the tree.

The essential feature of the comparison tree is that, when we move to the left
subtree, we move to smaller keys, and, when we move to the right subtree, we
move to larger keys. This special condition on keys of the nodes of a binary tree is
the essential part of the following important definition:

Definition A binary search tree is a binary tree that is either empty or in which every node
has a key (within its data entry) and satisfies the following conditions:

1. The key of the root (if it exists) is greater than the key in any node in the
left subtree of the root.

2. The key of the root (if it exists) is less than the key in any node in the right
subtree of the root.

3. The left and right subtrees of the root are again binary search trees.

The first two properties describe the ordering relative to the key of the root node,
and the third property extends them to all nodes of the tree; hence we can continue
to use the recursive structure of the binary tree. After we examine the root of
the tree, we shall move to either its left or right subtree, and this subtree is again
a binary search tree. Thus we can use the same method again on this smaller
tree.

We have written this definition in a way that ensures that no two entries inno equal keys
a binary search tree can have equal keys, since the keys of the left subtree are
strictly smaller than the key of the root, and those of the right subtree are strictly
greater. It is possible to change the definition to allow entries with equal keys, but
doing so makes the algorithms somewhat more complicated. Therefore, we always
assume:

No two entries in a binary search tree may have equal keys.

The tree shown in Figure 10.1 and Figure 10.6 is automatically a binary search
tree, since the decision to move left or right at each node is based on the same
comparisons of keys used in the definition of a search tree.

446 Chapter 10 • Binary Trees

10.2.1 Ordered Lists and Implementations
When the time comes to start formulating C++ methods to manipulate binary
search trees, there are at least three different points of view that we might take:

➥ We can regard binary search trees as a new abstract data type with its ownthree views
definition and its own methods;

➥ Since binary search trees are special kinds of binary trees, we may consider
their methods as special kinds of binary tree methods;

➥ Since the entries in binary search trees contain keys, and since they are applied
for information retrieval in the same way as ordered lists, we may study binary
search trees as a new implementation of the abstract data type ordered list.

331

In practice, programmers sometimes take each of these points of view, and so shall
we. We shall specify our binary search tree class as derived from our binary tree
class. Thus, our binary tree class does represent a distinct ADT. However, the new
class inherits the methods of the former binary tree class. In this way, the use of a
derived class emphasizes the first two points of view. The third point of view often
shows up in applications of binary search trees. Client code can use our class to
solve the same searching and sorting problems that are otherwise tackled with an
ordered list.

1. Declarations
We have already introduced C++ declarations that allow us to manipulate binary
trees. We use this implementation of binary trees as the base for our binary search
tree class template.332

template <class Record>
class Search_tree: public Binary_tree<Record> {
public:

Error_code insert(const Record &new_data);
Error_code remove(const Record &old_data);
Error_code tree_search(Record &target) const;

private: // Add auxiliary function prototypes here.
};

Since binary search trees are derived from the binary tree class, we can apply the
methods already defined for general binary trees to binary search trees. These
methods include the constructors, the destructor, clear, empty, size, height, and
the traversals preorder, inorder, and postorder. In addition to the methods of an
ordinary binary tree, a binary search tree also admits specialized methods called
insert, remove, and tree_search.

We have used the term Record for the template parameter of a Search_tree toRecord
emphasize that the entries in a binary search tree must have keys that can be com-
pared. Thus the class Record has the behavior outlined in Chapter 7: Each Record
is associated with a Key. The keys can be compared with the usual comparisonKey
operators, moreover, because we suppose that records can be cast to their corre-
sponding keys, the comparison operators apply to records as well as to keys. For

Section 10.2 • Binary Search Trees 447

example, all of the Record and Key classes that we have used since Chapter 7 have
these properties. Hence, the entries in our binary search tree become compatible
with those in an ordered list.

As we have previously observed, for testing purposes it is often convenient to
use the type int for both the class Record and the class Key. In this way, our testing
programs can make a declaration:

Binary_tree<int> test_tree;

and apply Binary_tree methods without any further worry about records and keys.

10.2.2 Tree Search
The first important new method for binary search trees is the one from which their

333 name comes: a function to search through a linked binary search tree for an entry
with a particular target key. The method must meet the following specifications:

Error_code Search_tree<Record> :: tree_search(Record &target) const;specifications

postcondition: If there is an entry in the tree whose key matches that in target,
the parameter target is replaced by the corresponding record
from the tree and a code of success is returned. Otherwise a
code of not_present is returned.

In applications, this method will often be called with a parameter target that con-
tains only a key value. The method will add the complete data belonging to any
corresponding Record into target.

1. Strategy
To search for the target, we first compare it with the entry at the root of the tree.
If their keys match, then we are finished. Otherwise, we go to the left subtree or
right subtree as appropriate and repeat the search in that subtree.

Let us, for example, search for the name Kim in the binary search tree of
Figure 10.1 and Figure 10.6. We first compare Kim with the entry in the root, Jim.
Since Kim comes after Jim in alphabetical order, we move to the right and next com-
pare Kim with Ron. Since Kim comes before Ron, we move left and compare Kim
with Kay. Now Kim comes later, so we move to the right and find the desired target.

This is clearly a recursive process, and therefore we shall implement it by calling
an auxiliary recursive function. What event will be the termination condition for
the recursive search? Clearly, if we find the target, the function finishes successfully.
If not, then we continue searching until we hit an empty subtree, in which case the
search fails.

From the auxiliary search function, we shall return a pointer to the node that
contains the target back to the calling program. Although the returned pointer
can be used to gain access to the data stored in a tree object, the only functions
that can call the auxiliary search must be tree methods, since only the methods
are able to pass the root as a parameter. Thus, returning a node pointer from
the auxiliary function will not compromise tree encapsulation. We arrive at the
following specification for the auxiliary search function:

448 Chapter 10 • Binary Trees

Binary_node<Record> *Search_tree<Record> :: search_for_node(
Binary_node<Record>* sub_root, const Record &target) const;specifications

precondition: sub_root is either NULL or points to a subtree of a Search_tree

postcondition: If the key of target is not in the subtree, a result of NULL is re-
turned. Otherwise, a pointer to the subtree node containing the
target is returned.

333

2. Recursive Version

The simplest way to write the function for searching is to use recursion:

334

template <class Record>
Binary_node<Record> *Search_tree<Record> :: search_for_node(

Binary_node<Record>* sub_root, const Record &target) const
{

if (sub_root == NULL || sub_root->data == target) return sub_root;
else if (sub_root->data < target)

return search_for_node(sub_root->right, target);
else return search_for_node(sub_root->left, target);

}

3. Recursion Removal

Recursion occurs in this function only as tail recursion, that is, as the last statement
executed in the function. By using a loop, it is always possible to change tailtail recursion
recursion into iteration. In this case, we need to write a loop in place of the first if
statement, and we modify the parameter root to move through the tree.

template <class Record>
Binary_node<Record> *Search_tree<Record> :: search_for_node(

Binary_node<Record> *sub_root, const Record &target) const
nonrecursive tree

search
{

while (sub_root != NULL && sub_root->data != target)
if (sub_root->data < target) sub_root = sub_root->right;
else sub_root = sub_root->left;

return sub_root;
}

4. The Method tree_search

The method tree_search simply calls the auxiliary function search_for_node to
locate the node of a binary search tree that contains a record matching a particular
key. It then extracts a copy of the record from the tree and returns an appropriate
Error_code to the user.

Section 10.2 • Binary Search Trees 449

335
template <class Record>
Error_code Search_tree<Record> :: tree_search(Record &target) const

/* Post: If there is an entry in the tree whose key matches that in target, the
parameter target is replaced by the corresponding record from the tree
and a code of success is returned. Otherwise a code of not_present is
returned.

Uses: function search_for_node */
{

Error_code result = success;
Binary_node<Record> *found = search_for_node(root, target);
if (found == NULL)

result = not_present;
else

target = found->data;
return result;

}

5. Behavior of the Algorithm

Recall that tree_search is based closely on binary search. If we apply binary search
to an ordered list and draw its comparison tree, then we see that binary search

337

does exactly the same comparisons as tree_search will do if it is applied to this
same tree. We already know from Section 7.4 that binary search performs O(logn)
comparisons for a list of length n. This performance is excellent in comparison to
other methods, since logn grows very slowly as n increases.

Suppose, as an example, that we apply binary search to the list of seven lettersexample
a, b, c, d, e, f, and g. The resulting tree is shown in part (a) of Figure 10.8. If
tree_search is applied to this tree, it will do the same number of comparisons as
binary search.

It is quite possible, however, that the same letters may be built into a binary
search tree of a quite different shape, such as any of those shown in the remaining
parts of Figure 10.8.

The tree shown as part (a) of Figure 10.8 is the best possible for searching. Itoptimal tree
is as “bushy” as possible: It has the smallest possible height for a given number
of vertices. The number of vertices between the root and the target, inclusive, is
the number of comparisons that must be done to find the target. The bushier the
tree, therefore, the smaller the number of comparisons that will usually need to be
done.

It is not always possible to predict (in advance of building it) what shape of
binary search tree we will have, and the tree shown in part (b) of Figure 10.8 istypical tree
more typical of what happens than is the tree in part (a). In the tree of part (b), a
search for the target c requires four comparisons, but only three in that of part (a).
The tree in part (b), however, remains fairly bushy and its performance is only a
little poorer than that of the optimal tree of part (a).

In part (c) of Figure 10.8, however, the tree has degenerated quite badly, so thatpoor tree
a search for target c requires six comparisons. In parts (d) and (e), the tree reduces

450 Chapter 10 • Binary Trees

(a)

(b)

(c)

(d)

(e)

a

b

c

d

e

f

g

a

b

c

d

e

f

g

b

d

g

a

b

d

e

f

g

c

aa

e

g

f fb

c e

c

d

Figure 10.8. Several binary search trees with the same keys

to a single chain. When applied to chains like these, tree_search can do nothing

336

except go through the list entry by entry. In other words, tree_search, when appliedchain:
sequential search to such a chain, degenerates to sequential search. In its worst case on a tree with

n nodes, therefore, tree_search may require as many as n comparisons to find its
target.

In practice, if the keys are built into a binary search tree in random order, then
it is extremely unlikely that a binary search tree degenerates as badly as the trees
shown in parts (d) and (e) of Figure 10.8. Instead, trees like those of parts (a) and (b)
are much more likely. Hence tree_search almost always performs nearly as well
as binary search. In Section 10.2.4, in fact, we shall see that, for random binary
search trees, the performance of tree_search is only about 39 percent slower than
the optimum of lgn comparisons of keys, and it is therefore far superior to the n
comparisons of keys needed by sequential search.

Section 10.2 • Binary Search Trees 451

10.2.3 Insertion into a Binary Search Tree

1. The Problem
The next important operation for us to consider is the insertion of a new node into

338 a binary search tree in such a way that the keys remain properly ordered; that is,
so that the resulting tree satisfies the definition of a binary search tree. The formal
specifications for this operation are:

Error_code Search_tree<Record> :: insert(const Record &new_data);specifications

postcondition: If a Record with a key matching that of new_data already be-
longs to the Search_tree a code of duplicate_error is returned.
Otherwise, the Record new_data is inserted into the tree in such
a way that the properties of a binary search tree are preserved,
and a code of success is returned.

2. Examples
Before we turn to writing this function, let us study some simple examples. Figure
10.9 shows what happens when we insert the keys e, b, d, f, a, g, c into an initially
empty tree in the order given.

(a) Insert e

(e) Insert a

(b) Insert b

(f) Insert g

(c) Insert d

(g) Insert c

(d) Insert f

a

b

e

f

e

e

b

d

e

d

b

e

b f

da g

e

b f

d

e

b f

a d g

c

Figure 10.9. Insertions into a binary search tree

452 Chapter 10 • Binary Trees

When the first entry, e, is inserted, it becomes the root, as shown in part (a).
Since b comes before e, its insertion goes into the left subtree of e, as shown in part
(b). Next we insert d, first comparing it to e and going left, then comparing it to
b and going right. The next insertion, f, goes to the right of the root, as shown
in part (d) of Figure 10.9. Since a is the earliest key inserted so far, it moves left
from e and then from b. The key g, similarly, comes last in alphabetical order, so
its insertion moves as far right as possible, as shown in part (f). The insertion of c,
finally, compares first with e, goes left, then right from b and left from d. Hence
we obtain the binary search tree shown in the last part of Figure 10.9.

It is quite possible that a different order of insertion can produce the same
binary search tree. The final tree in Figure 10.9, for example, can be obtained by
inserting the keys in either of the ordersdifferent orders,

same tree
e, f, g, b, a, d, c or e, b, d, c, a, f, g,

as well as several other orders.
One case is of special importance. Suppose that the keys are inserted into an

initially empty tree in their natural order a, b, . . . , g. Then a will go into the root,natural order
b will become its right child, c will move to the right of a and b, and so on. The
insertions will produce a chain for the binary search tree, as shown in the final
part of Figure 10.8. Such a chain, as we have already seen, is very inefficient for
searching. Hence we conclude:

If the keys to be inserted into an empty binary search tree are in their natural order,
then the method insert will produce a tree that degenerates into an inefficient chain.
The method insert should never be used with keys that are already sorted into order.

The same conclusion holds if the keys are in reverse order or if they are nearly but
not quite sorted into order.

3. Method
It is only a small step from the example we have worked to the general method for
inserting a new node into a binary search tree.

The first case, inserting a node into an empty tree, is easy. We need only make
root point to the new node. If the tree is not empty, then we must compare the
key with the one in the root. If it is less, then the new node must be inserted into
the left subtree; if it is more, then it must be inserted into the right subtree. It is an
error for the keys to be equal.

Note that we have described insertion by using recursion. After we compare
the new key with the one in the root, we use exactly the same insertion method
either on the left or right subtree that we previously used at the root.

4. Recursive Function
From this outline, we can now write our function, using the declarations from the
beginning of this section. As usual, the tree method calls an auxiliary recursive
function.

Section 10.2 • Binary Search Trees 453

339
template <class Record>
Error_code Search_tree<Record> :: insert(const Record &new_data)
{

return search_and_insert(root, new_data);
}

Note that the auxiliary function might need to make a permanent change to the
root of a Search_tree, for example, if the tree is initially empty. Therefore, the
implementation of the auxiliary function must use a reference parameter.recursive insertion

template <class Record>
Error_code Search_tree<Record> :: search_and_insert(

Binary_node<Record> * &sub_root, const Record &new_data)
{

if (sub_root == NULL) {
sub_root = new Binary_node<Record>(new_data);
return success;

}
else if (new_data < sub_root->data)

return search_and_insert(sub_root->left, new_data);
else if (new_data > sub_root->data)

return search_and_insert(sub_root->right, new_data);
else return duplicate_error;

}

We recall that one of our first requirements on binary search trees was that no
two entries should share a key. Accordingly, the function search_and_insert rejects
entries with duplicate keys.

The use of recursion in the function insert is not essential, since it is tail recur-
sion. We leave translation of insert into nonrecursive form as an exercise.

In regard to performance, insert makes the same comparisons of keys that
tree_search would make in looking for the key being inserted. The method insert
also changes a single pointer, but does not move entries or do any other operations
that take a large amount of space or time. Therefore, the performance of insert will
be very much the same as that of tree_search:

The method insert can usually insert a new node into a random binary search tree
with n nodes in O(logn) steps. It is possible, but extremely unlikely, that a random
tree may degenerate so that insertions require as many as n steps. If the keys are
inserted in sorted order into an empty tree, however, this degenerate case will occur.

10.2.4 Treesort
Recall from our discussion of traversing binary trees that, when we traverse a
binary search tree in inorder, the keys will come out in sorted order. The reason is
that all the keys to the left of a given key precede it, and all those that come to its
right follow it. By recursion, the same facts are applied again and again until the
subtrees have only one key. Hence inorder traversal always gives the sorted order
for the keys.

454 Chapter 10 • Binary Trees

1. The Procedure

This observation is the basis for an interesting sorting procedure, called treesort.treesort
We simply take the entries to be sorted, use the method insert to build them into a
binary search tree, and use inorder traversal to put them out in order.

2. Comparison with Quicksort

Let us briefly study what comparisons of keys are done by treesort. The first node

340

goes into the root of the binary search tree, with no key comparisons. As each
succeeding node comes in, its key is first compared to the key in the root and then
it goes either into the left subtree or the right subtree. Notice the similarity with
quicksort, where at the first stage every key is compared with the first pivot key,
and then put into the left or the right sublist. In treesort, however, as each node
comes in it goes into its final position in the linked structure. The second node
becomes the root of either the left or right subtree (depending on the comparison
of its key with the root key). From then on, all keys going into the same subtree
are compared to this second one. Similarly, in quicksort all keys in one sublist are
compared to the second pivot, the one for that sublist. Continuing in this way, we
can make the following observation:

Theorem 10.1 Treesort makes exactly the same comparisons of keys as does quicksort when the pivot
for each sublist is chosen to be the first key in the sublist.

As we know, quicksort is usually an excellent method. On average, among the
methods we studied, only mergesort makes fewer key comparisons. Hence, on
average, we can expect treesort also to be an excellent sorting method in terms ofadvantages
key comparisons. In fact, from Section 8.8.4 we can conclude:

Corollary 10.2 In the average case, on a randomly ordered list of length n, treesort performs

2n lnn + O(n)≈ 1.39n lgn + O(n)

comparisons of keys.

Treesort has one advantage over quicksort. Quicksort needs to have access to all
the items to be sorted throughout the sorting process. With treesort, the nodes
need not all be available at the start of the process, but are built into the tree one by
one as they become available. Hence treesort is preferable for applications where
the nodes are received one at a time. The major advantage of treesort is that its
search tree remains available for later insertions and removals, and that the tree

Section 10.2 • Binary Search Trees 455

can subsequently be searched in logarithmic time, whereas all our previous sorting
methods either required contiguous lists, for which insertions and removals are
difficult, or produced linked lists for which only sequential search is available.

drawbacks The major drawback of treesort is already implicit in Theorem 10.1. Quicksort
has a very poor performance in its worst case, and, although a careful choice of
pivots makes this case extremely unlikely, the choice of pivot to be the first key in
each sublist makes the worst case appear whenever the keys are already sorted.
If the keys are presented to treesort already sorted, then treesort too will be a
disaster—the search tree it builds will reduce to a chain. Treesort should never be
used if the keys are already sorted, or are nearly so.

There are few other reservations about treesort that are not equally applicable
to all linked structures. For small problems with small items, contiguous storage is
usually the better choice, but for large problems and bulky records, linked storage
comes into its own.

10.2.5 Removal from a Binary Search Tree

In the discussion of treesort, we mentioned the ability to make changes in the binary
search tree as an advantage. We have already obtained an algorithm that inserts
a new node into the binary search tree, and it can be used to update the tree as
easily as to build it from scratch. But we have not yet considered how to remove
an entry and the node that contains it from the tree. If the node to be removed is a
leaf, then the process is easy: We need only replace the link to the removed node
by NULL. The process remains easy if the removed node has only one nonempty
subtree: We adjust the link from the parent of the removed node to point to the
root of its nonempty subtree.

When the node to be removed has both left and right subtrees nonempty, how-
ever, the problem is more complicated. To which of the subtrees should the parent
of the removed node now point? What is to be done with the other subtree? This
problem is illustrated in Figure 10.10, together with the solution we shall imple-
ment. First, we find the immediate predecessor of the node under inorder traversal
by moving to its left child and then as far right as possible. (The immediate succes-removal
sor would work just as well.) The immediate predecessor has no right child (since
we went as far right as possible), so it can be removed from its current position
without difficulty. It can then be placed into the tree in the position formerly occu-
pied by the node that was supposed to be removed, and the properties of a binary
search tree will still be satisfied, since there were no keys in the original tree whose
ordering comes between the removed key and its immediate predecessor.

We can now implement this plan. We begin with an auxiliary function that
removes a particular node from a binary tree. As a calling parameter this function
uses a pointer to the node to be removed. Moreover, this parameter is passed by
reference so that any changes to it are reflected in the calling environment. Sincerequirements
the purpose is to update a binary search tree, we must assume that in the calling
program, the actual parameter is one of the links of the tree, and not just a copy, or

456 Chapter 10 • Binary Trees

Delete x

w

x

Delete
original w

w

x

Case: deletion of a leaf

Delete x

Case: one subtree empty

Replace x by w

Case: neither subtree empty

w is predecessor
of x

w w

x

Figure 10.10. Deletion of a node from a binary search tree

else the tree structure itself will not be changed as it should. In other words, if the

341

node at the left of x is to be removed, the call should be

remove_root(x->left),

and, if the root is to be removed, the call should be

remove_root(root).

Section 10.2 • Binary Search Trees 457

On the other hand, the following call will not work properly, since, although the
pointer y would be adjusted, the pointer x->left would be left unchanged:

y = x->left; remove_root(y);

The auxiliary function remove_root is implemented as follows:342

template <class Record>
Error_code Search_tree<Record> :: remove_root(Binary_node<Record>

* &sub_root)
/* Pre: sub_root is either NULL or points to a subtree of the Search_tree.

Post: If sub_root is NULL, a code of not_present is returned. Otherwise, the root
of the subtree is removed in such a way that the properties of a binary
search tree are preserved. The parameter sub_root is reset as the root of
the modified subtree, and success is returned. */

removal {
if (sub_root == NULL) return not_present;
Binary_node<Record> *to_delete = sub_root;

// Remember node to delete at end.
if (sub_root->right == NULL) sub_root = sub_root->left;
else if (sub_root->left == NULL) sub_root = sub_root->right;
else { // Neither subtree is empty.

to_delete = sub_root->left; // Move left to find predecessor.
Binary_node<Record> *parent = sub_root; // parent of to_delete
while (to_delete->right != NULL) { // to_delete is not the predecessor.

parent = to_delete;
to_delete = to_delete->right;

}
sub_root->data = to_delete->data; // Move from to_delete to root.
if (parent == sub_root) sub_root->left = to_delete->left;
else parent->right = to_delete->left;

}
delete to_delete; // Remove to_delete from tree.
return success;

}

You should trace through this function to check that all pointers are updated prop-
erly, especially in the cases when neither subtree is empty. We must carefully
distinguish between the case where the left child of the root is its predecessor and
the case where it is necessary to move right to find the predecessor. Note the steps
needed in this final case to make the loop stop at a node with an empty right subtree,
but not to end at the empty subtree itself.

In calling the remove method of a Search_tree, a client passes the entry to be
removed, rather than a pointer to the node that needs to be removed. To accomplish
such a removal from the tree, we combine a recursive search through the tree with
the preceding removal function. The resulting Search_tree method follows.

458 Chapter 10 • Binary Trees

343
template <class Record>
Error_code Search_tree<Record> :: remove(const Record &target)
/* Post: If a Record with a key matching that of target belongs to the Search_tree

a code of success is returned and the corresponding node is removed from
the tree. Otherwise, a code of not_present is returned.

Uses: Function search_and_destroy */
{

return search_and_destroy(root, target);
}

As usual, this method uses an auxiliary recursive function that refers to the actual
nodes in the tree.

template <class Record>
Error_code Search_tree<Record> :: search_and_destroy(

Binary_node<Record>* &sub_root, const Record &target)
/* Pre: sub_root is either NULL or points to a subtree of the Search_tree.

Post: If the key of target is not in the subtree, a code of not_present is returned.
Otherwise, a code of success is returned and the subtree node containing
target has been removed in such a way that the properties of a binary
search tree have been preserved.

Uses: Functions search_and_destroy recursively and remove_root */
{

if (sub_root == NULL || sub_root->data == target)
return remove_root(sub_root);

else if (target < sub_root->data)
return search_and_destroy(sub_root->left, target);

else
return search_and_destroy(sub_root->right, target);

}

Exercises
10.2

The first several exercises are based on the following binary search tree. Answer
each part of each exercise independently, using the original tree as the basis for
each part.

sea

c n

k

hd p

Section 10.2 • Binary Search Trees 459

E1. Show the keys with which each of the following targets will be compared in a
search of the preceding binary search tree.

(a) c
(b) s
(c) k

(d) a
(e) d
(f) m

(g) f
(h) b
(i) t

E2. Insert each of the following keys into the preceding binary search tree. Show
the comparisons of keys that will be made in each case. Do each part indepen-
dently, inserting the key into the original tree.

(a) m
(b) f

(c) b
(d) t

(e) c
(f) s

E3. Delete each of the following keys from the preceding binary search tree, using
the algorithm developed in this section. Do each part independently, deleting
the key from the original tree.

(a) a
(b) p

(c) n
(d) s

(e) e
(f) k

E4. Draw the binary search trees that function insert will construct for the list of 14
names presented in each of the following orders and inserted into a previously
empty binary search tree.

(a) Jan Guy Jon Ann Jim Eva Amy Tim Ron Kim Tom Roy Kay Dot

(b) Amy Tom Tim Ann Roy Dot Eva Ron Kim Kay Guy Jon Jan Jim

(c) Jan Jon Tim Ron Guy Ann Jim Tom Amy Eva Roy Kim Dot Kay

(d) Jon Roy Tom Eva Tim Kim Ann Ron Jan Amy Dot Guy Jim Kay

E5. Consider building two binary search trees containing the integer keys 1 to 63,
inclusive, received in the orders

(a) all the odd integers in order (1, 3, 5, . . . , 63), then 32, 16, 48, then the
remaining even integers in order (2, 4, 6, . . .).

(b) 32, 16, 48, then all the odd integers in order (1, 3, 5, . . . , 63), then the
remaining even integers in order (2, 4, 6, . . .).

Which of these trees will be quicker to build? Explain why. [Try to answer this
question without actually drawing the trees.]

E6. All parts of this exercise refer to the binary search trees shown in Figure 10.8
and concern the different orders in which the keys a, b, . . . , g can be inserted
into an initially empty binary search tree.

460 Chapter 10 • Binary Trees

(a) Give four different orders for inserting the keys, each of which will yield
the binary search tree shown in part (a).

(b) Give four different orders for inserting the keys, each of which will yield
the binary search tree shown in part (b).

(c) Give four different orders for inserting the keys, each of which will yield
the binary search tree shown in part (c).

(d) Explain why there is only one order for inserting the keys that will produce
a binary search tree that reduces to a given chain, such as the one shown
in part (d) or in part (e).

E7. The use of recursion in function insert is not essential, since it is tail recursion.
Rewrite function insert in nonrecursive form. [You will need a local pointer
variable to move through the tree.]

Programming
Projects 10.2

P1. Prepare a package containing the declarations for a binary search tree and
the functions developed in this section. The package should be suitable for
inclusion in any application program.

P2. Produce a menu-driven demonstration program to illustrate the use of binary
search trees. The entries may consist of keys alone, and the keys should be
single characters. The minimum capabilities that the user should be able todemonstration

program demonstrate include constructing the tree, inserting and removing an entry
with a given key, searching for a target key, and traversing the tree in the three
standard orders. The project may be enhanced by the inclusion of additional
capabilities written as exercises in this and the previous section. These include
determining the size of the tree, printing out all entries arranged to show the
shape of the tree, and traversing the tree in various ways. Keep the functions in
your project as modular as possible, so that you can later replace the package
of operations for a binary search tree by a functionally equivalent package for
another kind of tree.

P3. Write a function for treesort that can be added to Project P1 of Section 8.2
(page 328). Determine whether it is necessary for the list structure to be con-
tiguous or linked. Compare the results with those for the other sorting methodstreesort
in Chapter 8.

P4. Write a function for searching, using a binary search tree with sentinel as fol-
lows: Introduce a new sentinel node, and keep a pointer called sentinel to it.sentinel search
See Figure 10.11. Replace all the NULL links within the binary search tree with
sentinel links (links to the sentinel). Then, for each search, store the target key
into the sentinel node before starting the search. Delete the test for an unsuc-
cessful search from tree_search, since it cannot now occur. Instead, a search
that now finds the sentinel is actually an unsuccessful search. Run this function
on the test data of the preceding project to compare the performance of this
version with the original function tree_search.

Section 10.2 • Binary Search Trees 461

344

sentinel

Figure 10.11. Binary search tree with sentinel

P5. Different authors tend to use different vocabularies and to use common words
with differing frequencies. Given an essay or other text, it is interesting to findinformation retrieval

program what distinct words are used and how many times each is used. The purpose of
this project is to compare several different kinds of binary search trees useful
for this information retrieval problem. The current, first part of the project
is to produce a driver program and the information-retrieval package using
ordinary binary search trees. Here is an outline of the main driver program:

1. Create the data structure (binary search tree).
2. Ask the user for the name of a text file and open it to read.
3. Read the file, split it apart into individual words, and insert the words into

the data structure. With each word will be kept a frequency count (how
many times the word appears in the input), and when duplicate words are

345

encountered, the frequency count will be increased. The same word will
not be inserted twice in the tree.

4. Print the number of comparisons done and the CPU time used in part 3.
5. If the user wishes, print out all the words in the data structure, in alphabetical

order, with their frequency counts.
6. Put everything in parts 2–5 into a do . . . while loop that will run as many

times as the user wishes. Thus the user can build the data structure with
more than one file if desired. By reading the same file twice, the user can
compare time for retrieval with the time for the original insertion.

462 Chapter 10 • Binary Trees

Here are further specifications for the driver program:
346

➥ The input to the driver will be a file. The program will be executed with
several different files; the name of the file to be used should be requested
from the user while the program is running.

➥ A word is defined as a sequence of letters, together with apostrophes (’) and
hyphens (-), provided that the apostrophe or hyphen is both immediately
preceded and followed by a letter. Uppercase and lowercase letters should
be regarded as the same (by translating all letters into either uppercase or
lowercase, as you prefer). A word is to be truncated to its first 20 characters
(that is, only 20 characters are to be stored in the data structure) but words
longer than 20 characters may appear in the text. Nonalphabetic characters
(such as digits, blanks, punctuation marks, control characters) may appear
in the text file. The appearance of any of these terminates a word, and the
next word begins only when a letter appears.

➥ Be sure to write your driver so that it will not be changed at all when you
change implementation of data structures later.

Here are specifications for the functions to be implemented first with binary
search trees.

347

void update(const String &word,
Search_tree<Record> &structure, int &num_comps);

postcondition: If word was not already present in structure, then word has been
inserted into structure and its frequency count is 1. If word was
already present in structure, then its frequency count has been
increased by 1. The variable parameter num_comps is set to the
number of comparisons of words done.

void print(const Search_tree<Record> &structure);

postcondition: All words in structure are printed at the terminal in alphabetical
order together with their frequency counts.

void write_method();

postcondition: The function has written a short string identifying the abstract
data type used for structure.

Section 10.3 • Building a Binary Search Tree 463

10.3 BUILDING A BINARY SEARCH TREE

Suppose that we have a list of data that is already sorted into order, or perhaps a
file of records, with keys already sorted alphabetically. If we wish to use this data
to look up information, add additional information, or make other changes, then
we would like to take the list or file and make it into a binary search tree.

We could, of course, start out with an empty binary tree and simply use the tree
insertion algorithm to insert each entry into it. But the entries are given already
sorted into order, so the resulting search tree will become one long chain, and using
it will be too slow—with the speed of sequential search rather than binary search.
We wish instead, therefore, to take the entries and build them into a tree that willgoal
be as bushy as possible, so as to reduce both the time to build the tree and all
subsequent search time. When the number of entries, n, is 31, for example, we
wish to build the tree of Figure 10.12.348

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 10.12. Complete binary tree with 31 nodes

In Figure 10.12 the entries are numbered in their natural order, that is, in inorder
sequence, which is the order in which they will be received and built into the tree,
since they are received in sorted order. We will also use this numbering to label the
nodes of the tree.

If you examine the diagram for a moment, you may notice an important prop-
erty of the labels. The labels of the leaves are all odd numbers; that is, they are not
divisible by 2. The labels of the nodes one level above the leaves are 2, 6, 10, 14, 18,
22, 26, and 30. These numbers are all double an odd number; that is, they are all
even, but are not divisible by 4. On the next level up, the labels are 4, 12, 20, and
28, numbers that are divisible by 4, but not by 8. Finally, the nodes just below the
root are labeled 8 and 24, and the root itself is 16. The crucial observation is:

349

If the nodes of a complete binary tree are labeled in inorder sequence, starting with
1, then each node is exactly as many levels above the leaves as the highest power of 2crucial property
that divides its label.

464 Chapter 10 • Binary Trees

Let us now put one more constraint on our problem: Let us suppose that we do
not know in advance how many entries will be built into the tree. If the entries are
coming from a file or a linked list, then this assumption is quite reasonable, since
we may not have any convenient way to count the entries before receiving them.

This assumption also has the advantage that it will stop us from worrying about
the fact that, when the number of entries is not exactly one less than a power of 2, the
resulting tree will not be complete and cannot be as symmetrical as the one in Figure
10.12. Instead, we shall design our algorithm as though it were completely sym-
metrical, and after receiving all entries we shall determine how to tidy up the tree.

10.3.1 Getting Started

There is no doubt what to do with entry number 1 when it arrives. It will be placed
in a leaf node whose left and right pointers should both be set to NULL. Node num-
ber 2 goes above node 1, as shown in Figure 10.13. Since node 2 links to node 1, we
obviously must keep some way to remember where node 1 is until entry 2 arrives.
Node 3 is again a leaf, but it is in the right subtree of node 2, so we must remember
a pointer to node 2.349

n = 1 n = 2 n = 3 n = 4 n = 5

1

2

1

2

3

4

5

n = 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Nodes that must be
remembered as the

tree grows

1 31

2

31

2

4

Figure 10.13. Building the first nodes into a binary search tree

Section 10.3 • Building a Binary Search Tree 465

Does this mean that we must keep a list of pointers to all nodes previously
processed, to determine how to link in the next one? The answer is no, since

350

when node 2 is added, all connections for node 1 are complete. Node 2 must be
remembered until node 4 is added, to establish the left link from node 4, but then a
pointer to node 2 is no longer needed. Similarly, node 4 must be remembered until
node 8 has been processed. In Figure 10.13, colored arrows point to each node that
must be remembered as the tree grows.

It should now be clear that to establish future links, we need only remember
pointers to one node on each level, the last node processed on that level. We keep
these pointers in a List called last_node that will be quite small. For example, a tree
with 20 levels (hence 20 entries in last_node) can accommodate 220− 1 > 1,000,000
nodes.

As each new node is added, it is clearly the last one received in the order, so we
can set its right pointer to NULL (at least temporarily). The left pointer of the new
node is NULL if it is a leaf. Otherwise it is the entry in last_node one level lower than
the new node. So that we can treat the leaves in the same way as other nodes, we
consider the leaves to be on level 1, and we set up the initial element of last_node, in
position 0, to have the pointer value NULL permanently. This convention means that
we shall always count levels above the leaves inclusively, so the leaves themselves
are on level 1, and so on.

10.3.2 Declarations and the Main Function

We can now write down declarations of the variables needed for our task. We
first note that, while we build up a tree, we need access to the internal structure of
the tree in order to create appropriate links. Therefore, the new function will be
implemented as a class method. Moreover, it is to be applied to Search_tree objects,
and thus it will be a method for a class of search trees. We will therefore create
a new class called a Buildable_tree that is derived from the class Search_tree and
possesses a new method, the function build_tree. The specification for a buildable
tree is thus:

template <class Record>
class Buildable_tree: public Search_tree<Record> {
public:

Error_code build_tree(const List<Record> &supply);
private: // Add auxiliary function prototypes here.
};

The first step of build_tree will be to receive the entries. For simplicity, we shall
assume that these entries are found in a List of Record data called supply. However,
it is an easy matter to rewrite the function to receive its data from a Queue or a file
or even from another Search_tree that we wish to rebalance.

466 Chapter 10 • Binary Trees

As we receive new entries to insert into the tree, we update a variable count
to keep track of how many entries we have already added. The value of count is
clearly needed to extract data from the List supply. More importantly, the value
of count determines the level in the tree that will accommodate a new entry, and
therefore it must be passed to any function that needs to calculate this level.

After all the entries from the List supply have been inserted into the new binary
search tree, we must find the root of the tree and then connect any right subtrees
that may be dangling (see Figure 10.13 in the case of 5 or 21 nodes).

The function thus becomes

351

template <class Record>
Error_code Buildable_tree<Record> :: build_tree(const List<Record> &supply)
/* Post: If the entries of supply are in increasing order, a code of success is returned

and the Search_tree is built out of these entries as a balanced tree. Oth-
erwise, a code of fail is returned and a balanced tree is constructed from
the longest increasing sequence of entries at the start of supply.

Uses: The methods of class List and the functions build_insert, connect_subtrees,
and find_root */

{
Error_code ordered_data = success; // Set this to fail if keys do not increase.
int count = 0; // number of entries inserted so far
Record x, last_x;
List < Binary_node<Record> * > last_node;

// pointers to last nodes on each level
Binary_node<Record> *none = NULL;
last_node.insert(0, none); // permanently NULL (for children of leaves)
while (supply.retrieve(count, x) == success) {

if (count > 0 && x <= last_x) {
ordered_data = fail;
break;

}
build_insert(++count, x, last_node);
last_x = x;

}
root = find_root(last_node);
connect_trees(last_node);
return ordered_data; // Report any data-ordering problems back to client.

}

10.3.3 Inserting a Node

The discussion in the previous section shows how to set up the left links of each
node correctly, but, at the conclusion of the process developed so far, some of the

Section 10.3 • Building a Binary Search Tree 467

nodes will still have NULL right links that must be changed. When a new node
arrives, it cannot yet have a nonempty right subtree, since it is the latest node
(under the ordering) so far received. The node, however, may be the right child of
some previous node. On the other hand, it may instead turn out to be the left child
of some node with a larger key, in which case its parent node has not yet arrived.
We can tell which case occurs by looking in the list last_node. If level denotes the
level above the leaves, inclusive, of the new node, then its parent is at level + 1.
We look at the entry of last_node in position level + 1. If its right link is still NULL,
then its right child must be the new node; if not, then its right child has already
arrived, and the new node must be the left child of some future node.

We can now write a function to insert a new node into the tree.352

template <class Record>
void Buildable_tree<Record> :: build_insert(int count,

const Record &new_data,
List < Binary_node<Record>* > &last_node)

/* Post: A new node, containing the Record new_data, has been inserted as the
rightmost node of a partially completed binary search tree. The level
of this new node is one more than the highest power of 2 that divides
count.

Uses: Methods of class List */
{

int level; // level of new node above the leaves, counting inclusively
for (level = 1; count % 2 == 0; level++)

count /= 2; // Use count to calculate level of next_node.
Binary_node<Record> *next_node = new Binary_node<Record>(new_data),

*parent; // one level higher in last_node
last_node.retrieve(level − 1, next_node->left);
if (last_node.size() <= level)

last_node.insert(level, next_node);
else

last_node.replace(level, next_node);
if (last_node.retrieve(level + 1, parent) == success && parent->right == NULL)

parent->right = next_node;
}

10.3.4 Finishing the Task

Finding the root of the tree is easy: The root is the highest node in the tree; hence
its pointer is the last entry the List last_node. The partial tree for n = 21 shown in
Figure 10.13, for example, has its highest node, 16, on level 5, and this will be the
root of the finished tree. The pointers to the last node encountered on each level
are stored in the list last_node as shown in Figure 10.14.

We thereby obtain the function:

468 Chapter 10 • Binary Trees

353

n = 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

last_node

5

4

3

2

1

0

5

4

3

2

1

Figure 10.14. Finishing the binary search tree

finding the root template <class Record>
Binary_node<Record> *Buildable_tree<Record> :: find_root(

List < Binary_node<Record>* > &last_node)
/* Pre: The list last_node contains pointers to the last node on each occupied level

of the binary search tree.
Post: A pointer to the root of the newly created binary search tree is returned.
Uses: Methods of class List */

{
Binary_node<Record> *high_node;
last_node.retrieve(last_node.size() − 1, high_node);

// Find root in the highest occupied level in last_node.
return high_node;

}

Finally, we must determine how to tie in any subtrees that may not yet be con-
nected properly after all the nodes have been received. For example, if n = 21,
we must connect the three components shown in Figure 10.13 into a single tree. In
programming terms, the problem is that some nodes in the upper part of the tree
may still have their right links set to NULL, even though further nodes have been
inserted that now belong in their right subtrees.

Any one of these nodes (a node, not a leaf, for which the right child is still NULL)
will be one of the nodes in last_node. For n = 21, these will be nodes 16 and 20 (in
positions 5 and 3 of last_node, respectively), as shown in Figure 10.14.

In the following function we refer to a node with NULL right subtree by using
the pointer high_node. We need to determine a pointer, lower_node, to the right
child of high_node. The pointer lower_node can be determined as the highest

Section 10.3 • Building a Binary Search Tree 469

node in last_node that is not already in the left subtree of high_node. To determine

354

whether a node is in the left subtree, we need only compare its key with that of
high_node.

tying subtrees
together

template <class Record>
void Buildable_tree<Record> :: connect_trees(

const List < Binary_node<Record>* > &last_node)
/* Pre: The nearly-completed binary search tree has been initialized. The List

last_node has been initialized and contains links to the last node on each
level of the tree.

Post: The final links have been added to complete the binary search tree.
Uses: Methods of class List */

{
Binary_node<Record> *high_node, // from last_node with NULL right child

*low_node;
// candidate for right child of high_node

int high_level = last_node.size() − 1,
low_level;

while (high_level > 2) { // Nodes on levels 1 and 2 are already OK.
last_node.retrieve(high_level, high_node);
if (high_node->right != NULL)

high_level−−; // Search down for highest dangling node.
else { // Case: undefined right tree

low_level = high_level;
do { // Find the highest entry not in the left subtree.

last_node.retrieve(−−low_level, low_node);
} while (low_node != NULL && low_node->data < high_node->data);
high_node->right = low_node;
high_level = low_level;

}
}

}

10.3.5 Evaluation
The algorithm of this section produces a binary search tree that is not always
completely balanced. See, for example, the tree with 21 nodes in Figure 10.14.
if the tree has 31 nodes, then it will be completely balanced, but if 32 nodes come
in, then node 32 will become the root of the tree, and all 31 remaining nodes will
be in its left subtree. In this case, the leaves are five steps removed from the root. If
the root were chosen optimally, then most of the leaves would be four steps from
it, and only one would be five steps. Hence one comparison more than necessary
will usually be done in the tree with 32 nodes.

One extra comparison in a binary search is not really a very high price, and it is
easy to see that a tree produced by our method is never more than one level away
from optimality. There are sophisticated methods for building a binary search tree
that is as balanced as possible, but much remains to recommend a simpler method,
one that does not need to know in advance how many nodes are in the tree.

470 Chapter 10 • Binary Trees

The exercises outline ways in which our algorithm can be used to take an
arbitrary binary search tree and rearrange the nodes to bring it into better balance,
so as to improve search times. Again, there are more sophisticated methods (which,
however, will likely be slower) for rebalancing a tree. In Section 10.4 we shall study
AVL trees, in which we perform insertions and removals in such a way as always to
maintain the tree in a state of near balance. For many practical purposes, however,
the simpler algorithm described in this section should prove sufficient.

10.3.6 Random Search Trees and Optimality

To conclude this section, let us ask whether it is worthwhile, on average, to keep a
binary search tree balanced or to rebalance it. If we assume that the keys have ar-355

rived in random order, then, on average, how many more comparisons are needed
in a search of the resulting tree than would be needed in a completely balanced
tree?

extended binary tree In answering the question we first convert the binary search tree into a 2-tree,
as follows. Think of all the vertices of the binary tree as drawn as circles, and add
on new, square vertices replacing all the empty subtrees (NULL links). This process
is shown in Figure 10.15. All the vertices of the original binary tree become internal
vertices of the 2-tree, and the new vertices are all external (leaves).

becomes

Binary
search
tree

2-tree

Figure 10.15. Extension of a binary tree into a 2-tree

We can also apply Figure 10.15 in the reverse direction: By pruning all the
leaves (drawn as square vertices) from a 2-tree, it becomes a binary tree. In fact,one-to-one

correspondence we can observe:

There is a one-to-one correspondence between binary search trees and 2-trees in which
left and right are considered different from each other.

Section 10.3 • Building a Binary Search Tree 471

We must draw this left-right distinction, because in binary search trees, the left-right
distinction reflects the ordering of the keys, whereas in arbitrary 2-trees (without
the left-right distinction), the branching might represent any two-way decision.

A successful search in a binary search tree terminates at an interior vertex of
the corresponding 2-tree, and an unsuccessful search terminates at a leaf. Hencepath lengths
the internal path length of the 2-tree leads us to the number of comparisons for a
successful search, and the external path length of the 2-tree leads us to the number
for an unsuccessful search. Since two comparisons are done at each internal node,
the number of comparisons done in searching once for each key in the tree is, in
fact, twice the internal path length.

We shall assume that the n! possible orderings of keys are equally likely in
building the binary search tree. When there are n nodes in the tree, we denote
by S(n) the number of comparisons done in the average successful search and by
U(n) the number in the average unsuccessful search.

counting comparisons The number of comparisons needed to find any key in the tree is exactly one
more than the number of comparisons that were needed to insert it in the first place,
and inserting it required the same comparisons as the unsuccessful search showing
that it was not yet in the tree. We therefore have the relationship

S(n)= 1 + U(0)+U(1)+· · · + U(n − 1)
n

.

The relation between internal and external path length, as presented in Theorem 7.4,

356

states that

S(n)=
(

1 + 1
n

)
U(n)−3.

The last two equations together giverecurrence relation

(n + 1)U(n)= 4n + U(0)+U(1)+· · · + U(n − 1).

We solve this recurrence by writing the equation for n− 1 instead of n:

nU(n − 1)= 4(n − 1)+U(0)+U(1)+· · · + U(n − 2),

and subtracting, to obtain

U(n)= U(n − 1)+ 4
n + 1

.

The sum

Hn = 1 + 1
2
+ 1

3
+ · · · + 1

n

472 Chapter 10 • Binary Trees

is called the nth harmonic number, and it is shown in Theorem A.4 on page 656
that this number is approximately the natural logarithm lnn. Since U(0)= 0, weharmonic number
can now evaluate U(n) by starting at the bottom and adding:

U(n)= 4
[1

2
+ 1

3
+ · · · + 1

n + 1

]
= 4Hn+1 − 4 ≈ 4 lnn.

By Theorem 7.4, the number of comparisons for a successful search is also approxi-
mately 4 lnn. Since searching any binary search tree requires two comparisons per
node and the optimal height is lgn, the optimal number of comparisons is 2 lgn.
But (see Section A.2)

356

lnn = (ln 2)(lgn).

Converting natural logarithms to base 2 logarithms, we finally obtain:

Theorem 10.3 The average number of nodes visited in a search of the average binary search tree with
n nodes is approximately 2 lnn = (2 ln 2)(lgn)≈ 1.39 lgn, and the number of key
comparisons is approximately 4 lnn = (4 ln 2)(lgn)≈ 2.77 lgn.

Corollary 10.4 The average binary search tree requires approximately 2 ln 2 ≈ 1.39 times as many
comparisons as a completely balanced tree.

In other words, the average cost of not balancing a binary search tree is approxi-cost of not balancing
mately 39 percent more comparisons. In applications where optimality is impor-
tant, this cost must be weighed against the extra cost of balancing the tree, or of
maintaining it in balance. Note especially that these latter tasks involve not only
the cost of computer time, but the cost of the extra programming effort that will be
required.

Exercises
10.3

E1. Draw the sequence of partial binary search trees (like Figure 10.13) that the
method in this section will construct for the following values of n. (a) 6, 7, 8;
(b) 15, 16, 17; (c) 22, 23, 24; (d) 31, 32, 33.

E2. Write function build_tree for the case when supply is a queue.

E3. Write function build_tree for the case when the input structure is a binary
search tree. [This version gives a function to rebalance a binary search tree.]

E4. Write a version of function build_tree that will read keys from a file, one key
per line. [This version gives a function that reads a binary search tree from an
ordered file.]

E5. Extend each of the binary search trees shown in Figure 10.8 into a 2-tree.

E6. There are 6 = 3! possible ordered sequences of the three keys 1, 2, 3, but
only 5 distinct binary trees with three nodes. Therefore, these binary trees are
not equally likely to occur as search trees. Find which one of the five binary
search trees corresponds to each of the six possible ordered sequences of 1, 2, 3.
Thereby find the probability for building each of the binary search trees from
randomly ordered input.

Section 10.4 • Height Balance: AVL Trees 473

E7. There are 24 = 4! possible ordered sequences of the four keys 1, 2, 3, 4, but
only 14 distinct binary trees with four nodes. Therefore, these binary trees are
not equally likely to occur as search trees. Find which one of the 14 binary
search trees corresponds to each of the 24 possible ordered sequences of 1, 2,
3, 4. Thereby find the probability for building each of the binary search trees
from randomly ordered input.

E8. If T is an arbitrary binary search tree, let S(T) denote the number of ordered
sequences of the keys in T that correspond to T (that is, that will generate T if
they are inserted, in the given order, into an initially-empty binary search tree).
Find a formula for S(T) that depends only on the sizes of L and R and on S(L)
and S(R), where L and R are the left and right subtrees of the root of T .

10.4 HEIGHT BALANCE: AVL TREES

The algorithm of Section 10.3 can be used to build a nearly balanced binary search
357 tree, or to restore balance when it is feasible to restructure the tree completely. In

many applications, however, insertions and removals occur continually, with no
predictable order. In some of these applications, it is important to optimize search
times by keeping the tree very nearly balanced at all times. The method in this sec-
tion for achieving this goal was described in 1962 by two Russian mathematicians,
G. M. ADEL’SON-VEL’SKĬI and E. M. LANDIS, and the resulting binary search trees are
called AVL trees in their honor.

AVL trees achieve the goal that searches, insertions, and removals in a treenearly optimal height
with n nodes can all be achieved in time that is O(logn), even in the worst case.
The height of an AVL tree with n nodes, as we shall establish, can never exceed
1.44 lgn, and thus even in the worst case, the behavior of an AVL tree could not
be much below that of a random binary search tree. In almost all cases, however,
the actual length of a search is very nearly lgn, and thus the behavior of AVL trees
closely approximates that of the ideal, completely balanced binary search tree.

10.4.1 Definition

In a completely balanced tree, the left and right subtrees of any node would have
the same height. Although we cannot always achieve this goal, by building a search
tree carefully we can always ensure that the heights of every left and right subtree
never differ by more than 1. We accordingly make the following definition:

Definition An AVL tree is a binary search tree in which the heights of the left and right
subtrees of the root differ by at most 1 and in which the left and right subtrees
are again AVL trees.

With each node of an AVL tree is associated a balance factor that is left-
higher, equal-height, or right-higher according, respectively, as the left subtree
has height greater than, equal to, or less than that of the right subtree.

474 Chapter 10 • Binary Trees

–

AVL trees

non-AVL trees

–

– –

–

–

–

–

–

–

–

–

–

–

– – – –

–

–

–

–

–

–

=

–

–

–

–

=

–
–

=

–

–

–

=

–

–

= =

–

Figure 10.16. Examples of AVL trees and other binary trees

In drawing diagrams, we shall show a left-higher node by ‘/,’ a node whose balance

358

factor is equal by ‘−,’ and a right-higher node by ‘\.’ Figure 10.16 shows several
small AVL trees, as well as some binary trees that fail to satisfy the definition.

Note that the definition does not require that all leaves be on the same or
adjacent levels. Figure 10.17 shows several AVL trees that are quite skewed, with
right subtrees having greater height than left subtrees.

– – –
–

–

–

–

–

–

–

–

– –

–

–

–

–

–

–

–

–

–

–

– –

Figure 10.17. AVL trees skewed to the right

1. C++ Conventions
We employ an enumerated data type to record balance factors.

359

enum Balance_factor { left_higher, equal_height, right_higher };

Balance factors must be included in all the nodes of an AVL tree, and we must
adapt our former node specification accordingly.

Section 10.4 • Height Balance: AVL Trees 475

template <class Record>
struct AVL_node: public Binary_node<Record> {
// additional data member:

Balance_factor balance;
// constructors:

AVL_node();
AVL_node(const Record &x);

// overridden virtual functions:
void set_balance(Balance_factor b);
Balance_factor get_balance() const;

};

One slightly tricky point about this specification is that the left and right pointers
of a Binary_node have type Binary_node *. Therefore, the inherited pointer mem-
bers of an AVL_node have this type too. However, in an AVL tree, we obviously
need to use AVL nodes that point to other AVL nodes. The apparent pointer type
incompatibility is not a serious problem, because a pointer to an object from a base
class can also point to an object of a derived class. In our situation, the left and right
pointers of an AVL_node can legitimately point to other AVL nodes. The benefitbenefit
that we get in return for implementing AVL nodes with a derived structure is the
reuse of all of our functions for processing nodes of binary trees and search trees.
However, we shall have to make sure that when we insert new nodes into an AVL
tree, we do only insert genuine AVL nodes.

We shall use the AVL_node methods get_balance and set_balance to examine
and adjust the balance factor of an AVL node.

360

template <class Record>
void AVL_node<Record> :: set_balance(Balance_factor b)
{

balance = b;
}
template <class Record>
Balance_factor AVL_node<Record> :: get_balance() const
{

return balance;
}

For the most part, we shall call set_balance and get_balance through a pointer to
a node, with a call such as left->get_balance(). However, this particular call can
create a problem for the C++ compiler which regards left as merely pointing to a
Binary_node rather than to a specialized AVL_node. The compiler must therefore
reject the expression left->get_balance() because it cannot be sure whether there
is such a method attached to the object *left. We shall resolve this difficulty bydummy methods
including dummy versions of get_balance() and set_balance() in our Binary_node
structure. These dummy functions are included as Binary_node methods solely to
allow for implementations of derived AVL tree implementations.361

After we add appropriate dummy methods to the struct Binary_node, the com-
piler will allow the expression left->set_balance(). However, there is still a prob-
lem that cannot be resolved by the compiler: Should it use the AVL version or

476 Chapter 10 • Binary Trees

the dummy version of the method? The correct choice can only be made at run
time, when the type of the object *left is known. Accordingly, we must declare
the Binary_node versions of set_balance and get_balance as virtual methods. Thisvirtual methods
means that the choice of whether to use the dummy version or the more useful
AVL_node version is made at run time. For example, if set_balance() is called as a
method of an AVL_node, then the AVL version will be used, whereas if it is called
as a method of a Binary_node then the dummy version will be used.

Here is our modified specification of binary nodes, together with an imple-
mentation of appropriate dummy methods.

361

template <class Entry>
struct Binary_node {
// data members:

Entry data;
Binary_node<Entry> *left;
Binary_node<Entry> *right;

// constructors:
Binary_node();
Binary_node(const Entry &x);

// virtual methods:
virtual void set_balance(Balance_factor b);
virtual Balance_factor get_balance() const;

};

template <class Entry>
void Binary_node<Entry> :: set_balance(Balance_factor b)
{
}
template <class Entry>
Balance_factor Binary_node<Entry> :: get_balance() const
{

return equal_height;
}

No other related changes are needed to any of our earlier classes and functions,
and all of our prior node processing functions are now available for use with AVL
nodes.

We can now specify our AVL tree class. We shall only need to override our
earlier insertion and deletion functions with versions that maintain a balanced
tree structure. The other binary search tree methods can be inherited without any
changes. Hence we arrive at the following specification:

362

template <class Record>
class AVL_tree: public Search_tree<Record> {
public:

Error_code insert(const Record &new_data);
Error_code remove(const Record &old_data);

private: // Add auxiliary function prototypes here.
};

Section 10.4 • Height Balance: AVL Trees 477

The inherited data member of this class is the pointer root. This pointer has type
Binary_node<Record> * and therefore, as we have seen, it can store the address
of either an ordinary binary tree node or an AVL tree node. We must ensure
that the overridden insert method only creates nodes of type AVL_node; doing so
will guarantee that all nodes reached via the root pointer of an AVL tree are AVL
nodes.

10.4.2 Insertion of a Node

1. Introduction

We can insert a new node into an AVL tree by first following the usual binary tree
insertion algorithm: comparing the key of the new node with that in the root, andusual algorithm
inserting the new node into the left or right subtree as appropriate. It often turns
out that the new node can be inserted without changing the height of the subtree,
in which case neither the height nor the balance of the root will be changed. Even
when the height of a subtree does increase, it may be the shorter subtree that has
grown, so only the balance factor of the root will change. The only case that can
cause difficulty occurs when the new node is added to a subtree of the root that is
strictly taller than the other subtree, and the height is increased. This would causeproblem
one subtree to have height 2 more than the other, whereas the AVL condition is
that the height difference is never more than 1. Before we consider this situation
more carefully, let us illustrate in Figure 10.18 the growth of an AVL tree through
several insertions, and then we shall tie down the ideas by coding our algorithm
in C++.

The insertions in Figure 10.18 proceed in exactly the same way as insertions
into an ordinary binary search tree, except that the balance factors must be ad-example
justed. Note, however, that the balance factors can only be determined after the
insertion is made. When v is inserted in Figure 10.18, for example, the balance
factor in the root, k, changes, but it does not change when p is next inserted. Both
v and p are inserted (recursively) into the right subtree, t, of the root, and it is
only after the insertion is finished that the balance factor of the root, k, can be
determined.

The basic structure of our algorithm will thus be the same as the ordinary
recursive binary tree insertion algorithm of Section 10.2.3 (page 453), but with
significant additions to accommodate the processing of balance factors and other
structure of AVL trees.

We must keep track of whether an insertion (after recursion) has increased
the tree height or not, so that the balance factors can be changed appropriately.
This we do by including an additional calling parameter taller of type bool in the
auxiliary recursive function called by the insertion method. The task of restoring
balance when required will be done in the subsidiary functions left_balance and
right_balance.

With these decisions, we can now write the method and auxiliary function to
insert new data into an AVL tree.

478 Chapter 10 • Binary Trees

–

–

–

–

–

–

–

–

–

–

–

–

–

–

––– –

––

–

–

–

–––

–

–

–

–

–––

–

a

e

k

t

p v

m

k

a

e t

p v

m u

a

e

um

k

t

vph

k k

t e

k

t

e

k

t

v

––

––– a

e

k

t

p v

–

–

–

––

e

k

t

p v

k: t: e:

a:p:v:

m: u: h:

–

Figure 10.18. Simple insertions of nodes into an AVL tree

363

364

template <class Record>
Error_code AVL_tree<Record> :: insert(const Record &new_data)
/* Post: If the key of new_data is already in the AVL_tree, a code of duplicate_error

is returned. Otherwise, a code of success is returned and the Record
new_data is inserted into the tree in such a way that the properties of
an AVL tree are preserved.

Uses: avl_insert. */
{

bool taller;
return avl_insert(root, new_data, taller);

}
365

template <class Record>
Error_code AVL_tree<Record> :: avl_insert(Binary_node<Record> * &sub_root,

const Record &new_data, bool &taller)
/* Pre: sub_root is either NULL or points to a subtree of the AVL_tree

Post: If the key of new_data is already in the subtree, a code of duplicate_error
is returned. Otherwise, a code of success is returned and the Record
new_data is inserted into the subtree in such a way that the properties of
an AVL tree have been preserved. If the subtree is increased in height, the
parameter taller is set to true; otherwise it is set to false.

Uses: Methods of struct AVL_node; functions avl_insert recursively,
left_balance, and right_balance. */

Section 10.4 • Height Balance: AVL Trees 479

{
Error_code result = success;
if (sub_root == NULL) {

sub_root = new AVL_node<Record>(new_data);
taller = true;

}

else if (new_data == sub_root->data) {
result = duplicate_error;
taller = false;

}

else if (new_data < sub_root->data) { // Insert in left subtree.
result = avl_insert(sub_root->left, new_data, taller);
if (taller == true)

switch (sub_root->get_balance()) { // Change balance factors.
case left_higher:

left_balance(sub_root);
taller = false; // Rebalancing always shortens the tree.
break;

case equal_height:
sub_root->set_balance(left_higher);
break;

case right_higher:
sub_root->set_balance(equal_height);
taller = false;
break;

}
}

else { // Insert in right subtree.
result = avl_insert(sub_root->right, new_data, taller);
if (taller == true)

switch (sub_root->get_balance()) {
case left_higher:

sub_root->set_balance(equal_height);
taller = false;
break;

case equal_height:
sub_root->set_balance(right_higher);
break;

case right_higher:
right_balance(sub_root);
taller = false; // Rebalancing always shortens the tree.
break;

}
}
return result;

}

480 Chapter 10 • Binary Trees

2. Rotations

Let us now consider the case when a new node has been inserted into the taller
subtree of a root node and its height has increased, so that now one subtree has
height 2 more than the other, and the tree no longer satisfies the AVL requirements.
We must now rebuild part of the tree to restore its balance. To be definite, let us
assume that we have inserted the new node into the right subtree, its height has
increased, and the original tree was right higher. That is, we wish to consider the
case covered by the function right_balance. Let root denote the root of the tree and
right_tree the root of its right subtree.

There are three cases to consider, depending on the balance factor of right_tree.

3. Case 1: Right Higher

The first case, when right_tree is right higher, is illustrated in Figure 10.19. The ac-
tion needed in this case is called a left rotation; we have rotated the node right_treeleft rotation
upward to the root, dropping root down into the left subtree of right_tree; the sub-
tree T2 of nodes with keys between those of root and right_tree now becomes the
right subtree of root rather than the left subtree of right_tree. A left rotation is
succinctly described in the following C++ function. Note especially that, when
done in the appropriate order, the steps constitute a rotation of the values in three
pointer variables. Note also that, after the rotation, the height of the rotated tree
has decreased by 1; it had previously increased because of the insertion; hence the
height finishes where it began.367

= –

––

Rotate
left

Total height = h + 3 Total height = h + 2

h
h + 1

h + 1

root right_tree

root

right_tree

T3

T3 T2h

h

hT2

T1

T1

Figure 10.19. First case: Restoring balance by a left rotation

Section 10.4 • Height Balance: AVL Trees 481

template <class Record>
void AVL_tree<Record> :: rotate_left(Binary_node<Record> * &sub_root)
/* Pre: sub_root points to a subtree of the AVL_tree. This subtree has a nonempty

right subtree.
Post: sub_root is reset to point to its former right child, and the former sub_root

node is the left child of the new sub_root node. */
{

if (sub_root == NULL || sub_root->right == NULL) // impossible cases
cout << "WARNING: program error detected in rotate_left" << endl;

else {
Binary_node<Record> *right_tree = sub_root->right;
sub_root->right = right_tree->left;
right_tree->left = sub_root;
sub_root = right_tree;

}
}

4. Case 2: Left Higher

The second case, when the balance factor of right_tree is left higher, is slightly more
complicated. It is necessary to move two levels, to the node sub_tree that roots the
left subtree of right_tree, to find the new root. This process is shown in Figure
10.20 and is called a double rotation, because the transformation can be obtaineddouble rotation
in two steps by first rotating the subtree with root right_tree to the right (so that
sub_tree becomes its root), and then rotating the tree pointed to by root to the left
(moving sub_tree up to become the new root).368

h T4

T3T2

h T1

= root

right_tree–

h T4T3T2h T1

becomes

One of T2 or T3 has height h.
Total height = h + 3

Total height = h + 2

h – 1

root

sub_tree

right_tree

sub_tree

or
h

h – 1
or
h

Figure 10.20. Second case: Restoring balance by a double rotation

482 Chapter 10 • Binary Trees

In this second case, the new balance factors for root and right_tree depend on
the previous balance factor for sub_tree. (The new balance factor for sub_tree will
always be equal_height.) Figure 10.20 shows the subtrees of sub_tree as having
equal heights, but it is possible that sub_tree may be either left or right higher. The
resulting balance factors are368

old sub_tree new root new right_tree new sub_tree
− − − −
/ − \ −
\ / − −

5. Case 3: Equal Height

It would appear, finally, that we must consider a third case, when the two subtrees
of right_tree have equal heights, but this case, in fact, can never happen. To see
why, let us recall that we have just inserted a new node into the subtree rooted at
right_tree, and this subtree now has height 2 more than the left subtree of the root.
The new node went either into the left or right subtree of right_tree. Hence its
insertion increased the height of only one subtree of right_tree. If these subtrees
had equal heights after the insertion, then the height of the full subtree rooted at
right_tree was not changed by the insertion, contrary to what we already know.

6. C++ Function for Balancing

It is now straightforward to incorporate these transformations into a C++ function.
The forms of functions rotate_right and left_balance are clearly similar to those of
rotate_left and right_balance, respectively, and are left as exercises.369

template <class Record>
void AVL_tree<Record> :: right_balance(Binary_node<Record> * &sub_root)
/* Pre: sub_root points to a subtree of an AVL_tree that is doubly unbalanced on

the right.
Post: The AVL properties have been restored to the subtree.
Uses: Methods of struct AVL_node;

functions rotate_right and rotate_left. */

{
Binary_node<Record> * &right_tree = sub_root->right;
switch (right_tree->get_balance()) {
case right_higher: // single rotation left

sub_root->set_balance(equal_height);
right_tree->set_balance(equal_height);
rotate_left(sub_root);
break;

Section 10.4 • Height Balance: AVL Trees 483

case equal_height: // impossible case
cout << "WARNING: program error detected in right_balance" << endl;

case left_higher: // double rotation left
Binary_node<Record> *sub_tree = right_tree->left;
switch (sub_tree->get_balance()) {

case equal_height:
sub_root->set_balance(equal_height);
right_tree->set_balance(equal_height);
break;

case left_higher:
sub_root->set_balance(equal_height);
right_tree->set_balance(right_higher);
break;

case right_higher:
sub_root->set_balance(left_higher);
right_tree->set_balance(equal_height);
break;

}

sub_tree->set_balance(equal_height);
rotate_right(right_tree);
rotate_left(sub_root);
break;

}
}

Examples of insertions requiring single and double rotations are shown in Figure
10.21.363

–

=

–

–

–

– –

–

–

–

– –

–

–

–

–

–

= –

– –

– –

–

k, m: k

m

u: k

m

u

k

m

u

k

m

u

vt

k

m

u

vt

p

t

k

p:t, v : Double
rotation

left

Rotate
left

m u

vp

–

Figure 10.21. AVL insertions requiring rotations

484 Chapter 10 • Binary Trees

7. Behavior of the Algorithm

The number of times that function avl_insert calls itself recursively to insert a new
node can be as large as the height of the tree. At first glance it may appear that each
one of these calls might induce either a single or double rotation of the appropriate
subtree, but, in fact, at most only one (single or double) rotation will ever be done.
To see this, let us recall that rotations are done only in functions right_balance andcounting rotations
left_balance and that these functions are called only when the height of a subtree
has increased. When these functions return, however, the rotations have removed
the increase in height, so, for the remaining (outer) recursive calls, the height has
not increased, so no further rotations or changes of balance factors are done.

Most of the insertions into an AVL tree will induce no rotations. Even when
rotations are needed, they will usually occur near the leaf that has just been inserted.
Even though the algorithm to insert into an AVL tree is complicated, it is reasonable
to expect that its running time will differ little from insertion into an ordinary search
tree of the same height. Later we shall see that we can expect the height of AVL
trees to be much less than that of random search trees, and therefore both insertion
and retrieval will be significantly more efficient in AVL trees than in random binary
search trees.

10.4.3 Removal of a Node

370
Removal of a node x from an AVL tree requires the same basic ideas, including
single and double rotations, that are used for insertion. We shall give only the steps
of an informal outline of the method, leaving the writing of complete algorithms
as a programming project.

1. Reduce the problem to the case when the node x to be removed has at most onemethod
child. For suppose that x has two children. Find the immediate predecessor y
of x under inorder traversal (the immediate successor would be just as good),
by first taking the left child of x , and then moving right as far as possible to
obtain y . The node y is guaranteed to have no right child, because of the way
it was found. Place y (or a copy of y) into the position in the tree occupied by
x (with the same parent, left and right children, and balance factor that x had).
Now remove y from its former position, by proceeding as follows, using y in
place of x in each of the following steps.

2. Delete the node x from the tree. Since we know (by step 1) that x has at most
one child, we remove x simply by linking the parent of x to the single child of
x (or to NULL, if no child). The height of the subtree formerly rooted at x has
been reduced by 1, and we must now trace the effects of this change on height
through all the nodes on the path from x back to the root of the tree. We use
a bool variable shorter to show if the height of a subtree has been shortened.
The action to be taken at each node depends on the value of shorter, on the
balance factor of the node, and sometimes on the balance factor of a child of
the node.

Section 10.4 • Height Balance: AVL Trees 485

3. The bool variable shorter is initially true. The following steps are to be done for
each node p on the path from the parent of x to the root of the tree, provided
shorter remains true. When shorter becomes false, then no further changes are
needed, and the algorithm terminates.

4. Case 1: The current node p has balance factor equal. The balance factor of p is
changed accordingly as its left or right subtree has been shortened, and shorter
becomes false.

5. Case 2: The balance factor of p is not equal, and the taller subtree was shortened.
Change the balance factor of p to equal, and leave shorter as true.

6. Case 3: The balance factor of p is not equal, and the shorter subtree was short-
ened. The height requirement for an AVL tree is now violated at p , so we apply
a rotation, as follows, to restore balance. Let q be the root of the taller subtree
of p (the one not shortened). We have three cases according to the balance
factor of q .

7. Case 3a: The balance factor of q is equal. A single rotation (with changes to the
balance factors of p and q) restores balance, and shorter becomes false.

8. Case 3b: The balance factor of q is the same as that of p . Apply a single rotation,
set the balance factors of p and q to equal, and leave shorter as true.

9. Case 3c: The balance factors of p and q are opposite. Apply a double rotation
(first around q , then around p), set the balance factor of the new root to equal
and the other balance factors as appropriate, and leave shorter as true.

In cases 3a, b, c, the direction of the rotations depends on whether a left or right
subtree was shortened. Some of the possibilities are illustrated in Figure 10.22, and
an example of removal of a node appears in Figure 10.23.

10.4.4 The Height of an AVL Tree

It turns out to be very difficult to find the height of the average AVL tree, and
373 thereby to determine how many steps are done, on average, by the algorithms of

this section. It is much easier, however, to find what happens in the worst case, and
these results show that the worst-case behavior of AVL trees is essentially no worse
than the behavior of random trees. Empirical evidence suggests that the average
behavior of AVL trees is much better than that of random trees, almost as good as
that which could be obtained from a perfectly balanced tree.

worst-case analysis To determine the maximum height that an AVL tree with n nodes can have, we
can instead ask what is the minimum number of nodes that an AVL tree of height
h can have. If Fh is such a tree, and the left and right subtrees of its root are Fl
and Fr , then one of Fl and Fr must have height h − 1, say Fl , and the other has
height either h − 1 or h − 2. Since Fh has the minimum number of nodes among
AVL trees of height h, it follows that Fl must have the minimum number of nodes
among AVL trees of height h− 1 (that is, Fl is of the form Fh−1), and Fr must have
height h− 2 with minimum number of nodes (so that Fr is of the form Fh−2).

486 Chapter 10 • Binary Trees

371 p

T1 T2 T1 T2

h – 1

h – 2
or

h – 1

p

p p

T1 T2 T1 T2

h – 1

T1

T2 T3

T1
T2

T3

h – 1

h – 1 h – 1 h – 1

qp

q p

q

q

p

p

p

r

qq

p

T1

T2
T3

T1 T2

T3

T1

T2 T3
T1

T2
T4T4

T3
h – 1h – 1

h – 1
h – 2

or
h – 1

h – 1

r

–

–

– –

–

– –

–

–

–

Height
unchanged

Height
reduced

Deleted

no rotations

single left
rotations

double
rotation

Deleted

h h h

h

Deleted

Deleted

h

h

Height
unchanged

Height
reduced

Deleted

Height
reduced

–
Case 3c

Case 3b

–

–
–

–

Case 3a

Case 2

Case 1

Figure 10.22. Sample cases, removal from an AVL tree

Section 10.4 • Height Balance: AVL Trees 487
372

dd

––

–

–

–

–

–

–

–

–

–––

–

–

–

–

–

–

–

–

–

–
–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

Initial:

Delete p :

Adjust
balance
factors

Rotate
left:

Double rotate
right around m :

c

d

a

b

e

g

nj

h

i

k

l

o r

t

u

s

p

m

f

dd

–––

–

–

–

–

–

–

–

–

–

c

d

a

b

e

g

j

h

i

k

l

f

–

–

–

–

–

–

–

n

o r

t

u

s

p

m

o

–

–

–

–

–

–

n

r

t

u

s

o

m

=

–––

–

–

–

= m

n

s

o

r

u

– t

j

t

m

s

uo

k

l

ra

b

c

d

f

g

h

i

e

n

–

Figure 10.23. Example of removal from an AVL tree

488 Chapter 10 • Binary Trees

Fibonacci trees The trees built by the preceding rule, which are therefore as sparse as possible
for AVL trees, are called Fibonacci trees. The first few are shown in Figure 10.24.

–

– – –

–

–

–

–

–

– –

–

–

–

–

–

– –

–

–

–

–

––

–

F1

F2

F3

F4

Figure 10.24. Fibonacci trees
373

counting nodes of a
Fibonacci tree

If we write |T | for the number of nodes in a tree T , we then have (counting the
root as well as the subtrees) the recurrence relation

|Fh| = |Fh−1| + |Fh−2| + 1,

where |F0| = 1 and |F1| = 2. By adding 1 to both sides, we see that the numbers
|Fh| + 1 satisfy the definition of the Fibonacci numbers (see Section A.4), with the
subscripts changed by 3. By the evaluation of Fibonacci numbers in Section A.4,
we therefore see that

375

|Fh| + 1 ≈ 1√
5

[
1 + √5

2

]h+2

Next, we solve this relation for h by taking the logarithms of both sides, and
discarding all except the largest terms. The approximate result is thatheight of a

Fibonacci tree

h ≈ 1.44 lg |Fh|.

This means that the sparsest possible AVL tree with n nodes has height approxi-worst-case bound
mately 1.44 lgn. A perfectly balanced binary tree with n nodes has height about
lgn, and a degenerate tree has height as large as n. Hence the algorithms for ma-
nipulating AVL trees are guaranteed to take no more than about 44 percent more
time than the optimum. In practice, AVL trees do much better than this. It can be
shown that, even for Fibonacci trees, which are the worst case for AVL trees, the
average search time is only 4 percent more than the optimum. Most AVL trees are
not nearly as sparse as Fibonacci trees, and therefore it is reasonable to expect that
average search times for average AVL trees are very close indeed to the optimum.
Empirical studies, in fact, show that the average number of comparisons seems toaverage-case
be about lgn+ 0.25 when n is large.

Section 10.4 • Height Balance: AVL Trees 489

Exercises
10.4

E1. Determine which of the following binary search trees are AVL trees. For those
that are not, find all nodes at which the requirements are violated.

(a) (b) (c) (d)

E2. In each of the following, insert the keys, in the order shown, to build them into
an AVL tree.

(a) A, Z, B, Y, C, X.
(b) A, B, C, D, E, F.
(c) M, T, E, A, Z, G, P.

(d) A, Z, B, Y, C, X, D, W, E, V, F.
(e) A, B, C, D, E, F, G, H, I, J, K, L.
(f) A, V, L, T, R, E, I, S, O, K.

E3. Delete each of the keys inserted in Exercise E2 from the AVL tree, in LIFO order
(last key inserted is first removed).

E4. Delete each of the keys inserted in Exercise E2 from the AVL tree, in FIFO order
(first key inserted is first removed).

E5. Start with the following AVL tree and remove each of the following keys. Do
each removal independently, starting with the original tree each time.

(a) k
(b) c
(c) j

(d) a
(e) g

(f) m
(g) h

d

i k

m

l

h

jfb

e

ga c

490 Chapter 10 • Binary Trees

E6. Write a method that returns the height of an AVL tree by tracing only one path
to a leaf, not by investigating all the nodes in the tree.

E7. Write a function that returns a pointer to the leftmost leaf closest to the root of
a nonempty AVL tree.

E8. Prove that the number of (single or double) rotations done in deleting a key
from an AVL tree cannot exceed half the height of the tree.

Programming
Projects 10.4

P1. Write a C++ method to remove a node from an AVL tree, following the steps
outlined in the text.

P2. Substitute the AVL tree class into the menu-driven demonstration program for
binary search trees in Section 10.2, Project P2 (page 460), thereby obtaining a
demonstration program for AVL trees.

P3. Substitute the AVL tree class into the information-retrieval project of Project P5
of Section 10.2 ((page 461)). Compare the performance of AVL trees with
ordinary binary search trees for various combinations of input text files.

10.5 SPLAY TREES: A SELF-ADJUSTING DATA STRUCTURE

10.5.1 Introduction
Consider the problem of maintaining patient records in a hospital. The records
of a patient who is in hospital are extremely active, being consulted and updated
continually by the attending physicians and nurses. When the patient leaves hos-hospital records
pital, the records become much less active, but are still needed occasionally by
the patient’s physician or others. If, later, the patient is readmitted to hospital,
then suddenly the records become extremely active again. Since, moreover, this
readmission may be as an emergency, even the inactive records should be quickly
available, not kept only as backup archives that would be slow to access.

If we use an ordinary binary search tree, or even an AVL tree, for the hospital
records, then the records of a newly admitted patient will go into a leaf position,
far from the root, and therefore will be slow to access. Instead, we wish to keep
records that are newly inserted or frequently accessed very close to the root, whileaccess time
records that are inactive may be placed far off, near or in the leaves. But we cannot
shut down the hospital’s record system even for an hour to rebuild the tree into
the desired shape. Instead, we need to make the tree into a self-adjusting data

376

structure that automatically changes its shape to bring records closer to the root as
they are more frequently accessed, allowing inactive records to drift slowly out
toward the leaves.

Splay trees are binary search trees that achieve our goals by being self-adjustingself-adjusting trees
in a quite remarkable way: Every time we access a node of the tree, whether for

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 491

insertion or retrieval, we perform radical surgery on the tree, lifting the newly-
accessed node all the way up, so that it becomes the root of the modified tree.
Other nodes are pushed out of the way as necessary to make room for this new
root. Nodes that are frequently accessed will frequently be lifted up to become the
root, and they will never drift too far from the top position. Inactive nodes, on the
other hand, will slowly be pushed farther and farther from the root.

It is possible that splay trees can become highly unbalanced, so that a single
access to a node of the tree can be quite expensive. Later in this section, however,
we shall prove that, over a long sequence of accesses, splay trees are not at all ex-
pensive and are guaranteed to require not many more operations even than AVL
trees. The analytical tool used is called amortized algorithm analysis, since, likeamortized analysis
insurance calculations, the few expensive cases are averaged in with many less
expensive cases to obtain excellent performance over a long sequence of opera-
tions.

We perform the radical surgery on splay trees by using rotations of a similar
form to those used for AVL trees, but now with many rotations done for every
insertion or retrieval in the tree. In fact, rotations are done all along the path from
the root to the target node that is being accessed. Let us now discuss precisely how
these rotations proceed.

10.5.2 Splaying Steps

When a single rotation is performed in a binary search tree, such as shown in
Figure 10.19 on page 480, some nodes move higher in the tree and some lower. In
a left rotation, the parent node moves down and its right child moves up one level.
A double rotation, as shown in Figure 10.20 on page 481, is made up of two single
rotations, and one node moves up two levels, while all the others move up or down
by at most one level. By beginning with the just-accessed target node and working
up the path to the root, we could do single rotations at each step, thereby lifting
the target node all the way to the root. This method would achieve the goal of
making the target node into the root, but, it turns out, the performance of the tree
amortized over many accesses may not be good.

Instead, the key idea of splaying is to move the target node two levels up the
tree at each step. First some simple terminology: Consider the path going from
the root down to the accessed node. Each time we move left going down this path,
we say that we zig, and each time we move right we say that we zag. A move ofzig and zag
two steps left (going down) is then called zig-zig, two steps right zag-zag, left then
right zig-zag, and right then left zag-zig. These four cases are the only possibilities
in moving two steps down the path. If the length of the path is odd, however, there
will be one more step needed at its end, either a zig (left) move, or a zag (right)
move.

The rotations done in splaying for each of zig-zig, zig-zag, and zig moves are
shown in Figure 10.25. The other three cases, zag-zag, zag-zig, and zag are mirror
images of these.

492 Chapter 10 • Binary Trees

377

T4

small

becomes

Zig-zig:

Zig-zag:

Zig:

T3

T2

T1

middle

large

large

middle

small

T1 T2

T3

T4

T4T3T2T1

T4

T3T2

T1

T2

T1

small

large

large

small

T1 T2

T3

T3

becomes

becomes

small

large

middle

small large

target

target

target

target

target

target

middle

Figure 10.25. Splay rotations

The zig-zag case in Figure 10.25 is identical to that of an AVL double rotation, as
shown in Figure 10.20 on page 481, and the zig case is identical to a single rotation
(Figure 10.19 on page 480). The zig-zig case, however, is not the same as would be
obtained by lifting the target node twice with single rotations, as shown in Figure
10.26.

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 493

379

large

middle

small

T1 T2

T3

T4

T4

T3T2

T1

small

large

middle

becomes

becomes

large

middle

small

T1

T2 T3

T4

incorrect
result

Figure 10.26. Zig-zig incorrectly replaced by single rotations

To avoid the error shown in Figure 10.26, always think of lifting the target two
levels at a time (except when only a single zig or zag step remains at the end). Also,move two levels
note that it is only the nodes on the path from the target to the root whose relative
positions are changed, and that only in the ways shown by colored dashed curves
in Figure 10.25. None of the subtrees off the path (shown as T1 , T2 , T3 , and T4 in

378

Figure 10.25) changes its shape at all, and these subtrees are attached to the path in
the only places they can possibly go to maintain the search-tree ordering of all the
keys.

Let us fix these ideas in mind by working through an example, as shown in
Figure 10.27.

We start with the top left tree and splay at c. The path from the root to c goesexample
through h, f, b, e, d, c. From e to d to c is zig-zig (left-left, as shown by the dashed
oval), so we perform a zig-zig rotation on this part of the tree, obtaining the second
tree in Figure 10.27. Note that the remainder of the tree has not changed shape,
and the modified subtree is hung in the same position it originally occupied.

494 Chapter 10 • Binary Trees

d

a

b

c

i

h

a f

b h

c

g

e

f

a
c

d

e

b g

f
i

h

d g

e

a

b f

c
i

h

d g

e

i

Splay
at c :

Zig-zag:
Zig:

Zig-zig:

Figure 10.27. Example of splaying

For the next step, the path from f to b to c (shown inside the dashed curve in

380

the second tree) is now a zig-zag move, and the resulting zig-zag rotation yields
the third tree. Here the subtree d, e (off the path) does not change its shape but
moves to a new position, as shown for T3 in Figure 10.25.

In this third tree, c is only one step from the root, on the left, so a zig rotation
yields the final tree of Figure 10.27. Here, the subtree rooted at f does not change
shape but does change position.

In this example, we have performed bottom-up splaying, beginning at thebottom-up splaying
target node and moving up the path to the root two steps at a time. In working
through examples by hand, this is the natural method, since, after searching from
the top down, one would expect to turn around and splay from the bottom back
up to the top of the tree. Hence, being done at the end of the process if necessary, a

381

single zig or zag move occurs at the top of the tree. Bottom-up splaying is essentially
a two-pass method, first searching down the tree and then splaying the target up to
the root. In fact, if the target is not found but is then inserted, bottom-up splaying
might even be programmed with three passes, one to search, one to insert, and one
to splay.

In writing a computer algorithm, however, it turns out to be easier and more
efficient to splay from the top down while we are searching for the target node.top-down splaying
When we find the target, it is immediately moved to the root of the tree, or, if the
search is unsuccessful, a new root is created that holds the target. In top-down
splaying, a single zig or zag move occurs at the bottom of the splaying process.

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 495

Hence, if you run the splaying function we shall develop on the example trees, you
will obtain the same results as doing bottom-up splaying by hand when the target
is moved an even number of levels, but the results will be different when it moves
an odd number of levels.

10.5.3 Algorithm Development

We shall develop only one splaying function that can be used both for retrieval
and for insertion. Given a target key, the function will search through the tree for
the key, splaying as it goes. If it finds the key, then it retrieves it; if not, then the

382

function inserts it as a new node. In either case, the node with the target key ends
up as the root of the tree.

We shall implement splay trees as a derived class of the class Search_tree so
that, in addition to the special splay method, all of the usual Search_tree methods
can be applied to splay trees. The class specification follows:

template <class Record>
class Splay_tree: public Search_tree<Record> {
public:

Error_code splay(const Record &target);
private: // Add auxiliary function prototypes here.
};

A splay tree does not keep track of heights and does not use any balance factors
like an AVL tree.

1. Three-Way Tree Partition

Top-down splaying uses the same moves (zig-zig, zig-zag, and the rest) illustrated
in Figure 10.25, but, while splaying proceeds, the root must be left empty so that,
at the end, the target node can be moved or inserted directly into the root. Hence,
while splaying proceeds, the tree temporarily falls apart into separate subtrees,
which are reconnected after the target is made the root. We shall use three subtrees,three-way tree split
as follows:

383
➥ The central subtree contains nodes within which the target will lie if it is present.

➥ The smaller-key subtree contains nodes with keys strictly less than the target;
in fact, every key in the smaller-key subtree is less than every key in the central
subtree.

➥ The larger-key subtree contains nodes with keys strictly greater than the target;
in fact, every key in the larger-key subtree is greater than every key in the central
subtree.

These conditions will remain true throughout the splaying process, so we shall callthree-way invariant
them the three-way invariant.

496 Chapter 10 • Binary Trees

Initially, the central subtree is the whole tree, and the smaller-key and larger-
key subtrees are empty, so the three-way invariant is initially correct. As the search
proceeds, nodes are stripped off the central subtree and joined to one of the other
two subtrees. When the search ends, the root of the central subtree will be the
target node if it is present, and the central subtree will be empty if the target was
not found. In either case, all the components will finally be joined together with
the target as the root. See Figure 10.28.383

smaller-key
subtree

Keys less
than target.

central
subtree

If present, target
is in central subtree.

larger-key
subtree

Keys greater
than target.

Figure 10.28. Three-way tree split in splaying

2. Basic Action: link_right

At each stage of the search, we compare the target to the key in the root of the

384

central subtree. Suppose the target is smaller. Then the search will move to the left,
and we can take the root and its right subtree and adjoin them to the larger-key
tree, reducing the central subtree to the former left subtree of the root. We call this
process link_right, since it links nodes on the right into the larger-key subtree. Its
action is shown in Figure 10.29.

Note the similarity of link_right to a zig move: In both cases the left child nodezig compared to
link_right moves up to replace its parent node, which moves down into the right subtree. In

fact, link_right is exactly a zig move except that the link from the former left child
down to the former parent is deleted; instead, the parent (with its right subtree)
moves into the larger-key subtree.

Where in the larger-key subtree should this parent (formerly the root of the
central subtree) be attached? The three-way invariant tells us that every key in themoving the parent
central subtree comes before every key in the larger-key subtree; hence this parent
(with its right subtree) must be attached on the left of the leftmost node (first in
ordering of keys) in the larger-key subtree. This is shown in Figure 10.29. Note
especially that, after link_right is performed, the three-way invariant continues to
be true.

3. Programming the Splay Operations

The operation link_right accomplishes a zig transformation, and its symmetric
analogue link_left will perform a zag transformation, but most of the time splaying
requires a movement of two levels at a time. Surprisingly, all the remaining splay
operations can be performed using only link_right, link_left, and ordinary (single)
left and right rotations.

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 497

L R

Before:

central subtree

After:

R

new larger-key subtree

L

Case: target is less than root key.

smaller-key subtree larger-key subtree

smaller-key subtree new central subtree

Figure 10.29. Action of link_right: a zig move
385

First consider the zig-zig case, as illustrated in Figure 10.30. In this case, the
target key is not only less than that in the central subtree’s root (called large) but
also its left child (called middle), so the root, its left child, and their right subtrees
should all be moved into the larger-key subtree. To do so, we first right-rotate the
central tree around its root and then perform link_right.

498 Chapter 10 • Binary Trees

large

middle

small

T2T1

T3

large

middle

small

T2

T1

T3

Case: target is less than left child of root.

smaller-key subtree larger-key subtreecentral subtree

After rotate_right:

smaller-key subtree larger-key subtreecentral subtree

After link_right:

smaller-key subtree new larger-key subtreenew central subtree

T1

small

T3T2

middle

large

Figure 10.30. Zig-zig performed as rotate_right; link_right

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 499

Note that the change of relative positions in Figure 10.30 is the same as a zig-zig386
move: The chain moving leftward from large to middle to small becomes a chain
moving rightward; small moves up the tree, and although a right link from small
to middle is missing, the chain continues with a right link to large. Note also that,
in the final arrangement, the three-way invariant continues to hold.

In the zig-zag case, illustrated in Figure 10.31, the target key comes somewhere
between the root key (large) and its left child (small). Hence large and its right
subtree can be moved into the larger-key subtree, and small and its left subtree
can be moved into the smaller-key subtree. These steps are accomplished by first
doing link_right and then link_left. Note again that, after the process is complete,
the three-way invariant continues to hold.

4. Programming Conventions

The algorithm we develop uses five pointer variables to keep track of required

388

positions in the three subtrees. The first four of these are as follows:

➥ current gives the root of the central subtree of nodes not yet searched.variables

➥ child refers to either the left or right child of current, as required.

➥ last_small gives the largest (that is, the rightmost) node in the smaller-key
subtree, which is the place where additional nodes must be attached.

➥ first_large gives the smallest (that is, the leftmost) node in the larger-key sub-
tree, which is the place where additional nodes must be attached.

As we now turn to coding our functions, beginning with link_right, we immediately
discover two problems we must solve. First is the problem of empty subtrees.problem:

empty subtrees Since the larger-key subtree is initially empty, it would be reasonable to initialize
first_large to be NULL. We would then need to check for this case every time we
execute link_right, or else we would attempt to follow a NULL pointer. Second, we
must have some way to find the roots of the smaller- and larger-key subtrees soproblem:

lost roots that, after splaying is finished, we can link them back together as one tree. So far,
we have not set up pointers to these roots, and for the splaying itself, we do not
need them.

One way to solve these problems is to introduce conditional statements into
our functions to check for various special cases. Instead, let us introduce a new
programming device that is of considerable usefulness in many other applications,
and one that will spare us both the need to check for NULL pointers and (as we shall
see later) the need to keep track of the roots of the subtrees.

This programming device is to use an additional node, called a dummy node,dummy node
which will contain no key or other data and which will simply be substituted for
empty trees when convenient; that is, used when a NULL link might otherwise be
dereferenced. Hence our fifth and last pointer variable:

500 Chapter 10 • Binary Trees

Case: target is between root and its left child.

smaller-key subtree

large

middle

small

T2T1

T3

larger-key subtreecentral subtree

After link_right:

smaller-key subtree

small

T1 T2

large

central subtree

After link_left:

new smaller-key subtree new larger-key subtreenew central subtree

T2

small

T3

middle

large

middle

new larger-key subtree

T3

T1

Figure 10.31. Zig-zag performed as link_right; link_left

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 501

➥ dummy points to a dummy node that is created at the beginning of the splaying

387

function and is deleted at its end.

To indicate that the smaller- and larger-key subtrees are initially empty, we shall
initialize both last_small and first_large to dummy. In this way, last_small and
first_large will always refer to an actual Binary_node and therefore link_right and
link_left will not attempt to dereference NULL pointers.

5. Subsidiary Functions
With all these decisions, coding link_right and link_left is straightforward:

389

template <class Record>
void Splay_tree<Record> :: link_right(Binary_node<Record> * ¤t,

Binary_node<Record> * &first_large)
/* Pre: The pointer first_large points to an actual Binary_node (in particular, it is

not NULL). The three-way invariant holds.
Post: The node referenced by current (with its right subtree) is linked to the left

of the node referenced by first_large. The pointer first_large is reset to
current. The three-way invariant continues to hold. */

{
first_large->left = current;
first_large = current;
current = current->left;

}

template <class Record>
void Splay_tree<Record> :: link_left(Binary_node<Record> * ¤t,

Binary_node<Record> * &last_small)
/* Pre: The pointer last_small points to an actual Binary_node (in particular, it is

not NULL). The three-way invariant holds.
Post: The node referenced by current (with its left subtree) is linked to the right

of the node referenced by last_small. The pointer last_small is reset to
current. The three-way invariant continues to hold. */

{
last_small->right = current;
last_small = current;
current = current->right;

}

The rotation functions are also easy to code; they do not use the dummy node, and
they do not cause any change in the three-way partition.

template <class Record>
void Splay_tree<Record> :: rotate_right(Binary_node<Record> * ¤t)
/* Pre: current points to the root node of a subtree of a Binary_tree. This subtree

has a nonempty left subtree.
Post: current is reset to point to its former left child, and the former current

node is the right child of the new current node. */

502 Chapter 10 • Binary Trees

{
Binary_node<Record> *left_tree = current->left;
current->left = left_tree->right;
left_tree->right = current;
current = left_tree;

}

template <class Record>
void Splay_tree<Record> :: rotate_left(Binary_node<Record> * ¤t)
/* Pre: current points to the root node of a subtree of a Binary_tree. This subtree

has a nonempty right subtree.
Post: current is reset to point to its former right child, and the former current

node is the left child of the new current node. */
{

Binary_node<Record> *right_tree = current->right;
current->right = right_tree->left;
right_tree->left = current;
current = right_tree;

}

6. Finishing the Task

When the search finishes, the root of the central subtree points at the target nodetermination
or is NULL. If the target is found, it must become the root of the whole tree, but,
before that, its left and right subtrees are now known to belong in the smaller-

390

key and larger-key subtrees, respectively, so they should be moved there. If the
search instead terminates unsuccessfully, with current == NULL, then a new root
containing target must be created.

Finally, the left and right subtrees of the new root should now be the smaller-reassembly of the tree
key and larger-key subtrees. Now we must return to the second problem that we
have not yet solved: How do we find the roots of these subtrees, since we have
kept pointers only to their rightmost and leftmost nodes, respectively?

To answer this question, let us remember what happened at the beginning
of the search. Initially, both pointers last_small and first_large were set to refersolution:

no lost roots to the dummy node. When a node (and subtree) are attached to the larger-key
subtree, they are attached on its left, by changing first_large->left. Since first_large
is initially dummy, we can now, at the end of the search, find the first node inserted
into the larger-key subtree, and thus its root, simply as dummy->left. Similarly,
dummy->right points to the root of the smaller-key subtree. Hence the dummy
node provides us with pointers to the roots of the smaller- and larger-key subtrees
that would otherwise be lost. But note that the pointers are stored in positions
reversed from what one might expect.

These steps are illustrated in Figure 10.32.

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 503

smaller-key subtree

dummy

last_small

smaller-key subtree

first_large

targetcurrent

T2T1

central subtree larger-key subtree

Reconnect into one tree:

dummy ?

current

target

T2T1

root

After splaying:

larger-key subtree

Figure 10.32. Reconnecting the subtrees

391

504 Chapter 10 • Binary Trees

7. Splaying: The Final Method

With all the preliminary work through which we have gone, we can finally write
the function that actually retrieves and inserts a node in a binary search tree, si-
multaneously splaying the tree to make this target node into the root of the tree.392

template <class Record>
Error_code Splay_tree<Record> :: splay(const Record &target)
/* Post: If a node of the splay tree has a key matching that of target, it has been

moved by splay operations to be the root of the tree, and a code of en-
try_found is returned. Otherwise, a new node containing a copy of target
is inserted as the root of the tree, and a code of entry_inserted is re-
turned. */

{
Binary_node<Record> *dummy = new Binary_node<Record>;
Binary_node<Record> *current = root,

*child,
*last_small = dummy,
*first_large = dummy;

// Search for target while splaying the tree.
while (current != NULL && current->data != target)

if (target < current->data) {
child = current->left;
if (child == NULL || target == child->data) // zig move

link_right(current, first_large);
else if (target < child->data) { // zig-zig move

rotate_right(current);
link_right(current, first_large);

}
else { // zig-zag move

link_right(current, first_large);
link_left(current, last_small);

}
}

else { // case: target > current->data
child = current->right;
if (child == NULL || target == child->data)

link_left(current, last_small); // zag move
else if (target > child->data) { // zag-zag move

rotate_left(current);
link_left(current, last_small);

}
else { // zag-zig move

link_left(current, last_small);
link_right(current, first_large);

}
}

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 505

// Move root to the current node, which is created if necessary.
Error_code result;
if (current == NULL) { // Search unsuccessful: make a new root.

current = new Binary_node<Record>(target);
result = entry_inserted;
last_small->right = first_large->left = NULL;

}

else { // successful search
result = entry_found;
last_small->right = current->left; // Move remaining central nodes.
first_large->left = current->right;

}

root = current; // Define the new root.
root->right = dummy->left; // root of larger-key subtree
root->left = dummy->right; // root of smaller-key subtree
delete dummy;
return result;

}

All things considered, this is really quite a subtle and sophisticated algorithm inconclusion
its pointer manipulations and economical use of resources.

10.5.4 Amortized Algorithm Analysis: Introduction

We now wish to determine the behavior of splaying over long sequences of oper-
ations, but before doing so, let us introduce the amortized analysis of algorithms
with simpler examples.

1. Introduction

In the past, we have considered two kinds of algorithm analysis, worst-case analysis

394

and average-case analysis. In both of these, we have taken a single event or single
situation and attempted to determine how much work an algorithm does to process
it. Amortized analysis differs from both these kinds of analysis in that it considers
a long sequence of events rather than a single event in isolation. Amortized analysisdefinition
then gives a worst-case estimate of the cost of a long sequence of events.

It is quite possible that one event in a sequence affects the cost of later events.
One task may be difficult and expensive to perform, but it may leave a data structure
in a state where the tasks that follow become much easier. Consider, for example, a
stack where any number of entries may be pushed on at once, and any number may
be popped off at once. If there are n entries in the stack, then the worst-case cost
of a multiple pop operation is obviously n, since all the entries might be popped
off at once. If, however, almost all the entries are popped off (in one expensive
pop operation), then a subsequent pop operation cannot be expensive, since few
entries remain. Let us allow a pop of 0 entries at a cost of 0. Then, if we start with
n entries in the stack and do a series of n multiple pops, the amortized worst-case

506 Chapter 10 • Binary Trees

cost of each pop is only 1, even though the worst-case cost is n, the reason beingmultiple pops
that the n multiple pops together can only remove the n entries from the stack, so
their total cost cannot exceed n.

In the world of finance, amortization means to spread a large expense over a
period of time, such as using a mortgage to spread the cost of a house (with interest)amortization
over many monthly payments. Accountants amortize a large capital expenditure
over the income-producing activities for which it is used. Insurance actuaries
amortize high-risk cases over the general population.

2. Average versus Amortized Analysis
Amortized analysis is not the same as average-case analysis, since the former
considers a sequence of related situations and the latter all possible independentindependent vs.

related events situations. For sorting methods, we did average-case analysis over all possible
cases. It makes no sense to speak of sorting the same list twice in a row, and
therefore amortized analysis does not usually apply to sorting.

We can, however, contrive an example where it does. Consider a list that is
first sorted; then, after some use of the list, a new entry is inserted into a ran-
dom position of the list. After further use, the list is then sorted again. Later,
another entry is inserted at random, and so on. What sorting method should we
use? If we rely on average-case analysis, we might choose quicksort. If we prefersorting
worst-case analysis, then we might choose mergesort or heapsort with guaranteed
performance of O(n logn). Amortized analysis, however, will lead us to insertion
sort: Once the list is sorted and a new entry inserted at random, insertion sort will
move it to its proper place with O(n) performance. Since the list is nearly sorted,
quicksort (with the best average-case performance) may provide the worst actual
performance, since some choices of pivot may force it to nearly its worst case.

3. Tree Traversal
As another example, consider the inorder traversal of a binary tree, where we

395

measure the cost of visiting one vertex as the number of branches traversed to
reach that vertex from the last one visited. Figure 10.33 shows three binary trees,
with the inorder traversal shown as a colored path, with the cost of visiting each
vertex also shown in color.

1

2

3

2

1

1

2
1

1

1

1

1

4

2 2

11 1

(a) (b) (c)

1

Figure 10.33. Cost of inorder traversal

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 507

The best-case cost of visiting a vertex is 1, when we go from a vertex to one
of its children or to its parent. The worst-case cost, for a tree with n vertices, is
n − 1, as shown by the tree that is one long chain to the left, where it takes n − 1
branches to reach the first (leftmost) vertex. [See part (b) of Figure 10.33.] In this
chain, however, all the remaining vertices are reached in only 1 step each, as the
traversal moves from each vertex to its parent. In a completely balanced binary
tree of size n, some vertices require as many as lgn steps, others only 1. [See part
(c) of Figure 10.33.]

If, however, we amortize the cost over a traversal of the entire binary tree, then
the cost of going from each vertex to the next is less than 2. To see this, note first that
every binary tree with n vertices has precisely n− 1 branches, since every vertex
except the root has just one branch coming down into it. A complete traversal of
the tree goes over every branch twice, once going down and once up. (Here we
have included going up the path to the root after the last, rightmost vertex has
been visited.) Hence the total number of steps in a full traversal is 2(n − 1), and
the amortized number of steps from one vertex to the next is 2(n− 1)/n < 2.

4. Credit Balance: Making Costs Level
Suppose you are working with your household budget. If you are employed,
then (you hope) your income is usually fairly stable from month to month. Your
expenses, however, may not be. Some months large amounts are due for insurance,
or tuition, or a major purchase. Other months have no extraordinary expenses. To
keep your bank account solvent, you then need to save enough during the months
with low expenses so that you can pay all the large bills as they come due. At

396

the beginning of the month with large bills, you have a large bank balance. After
paying the bills, your bank balance is much smaller, but you are just as well off,
because you now owe less money.

We wish to apply this idea to algorithm analysis. To do so, we invent a func-
tion, which we call a credit balance, that behaves like the bank balance of a well-
budgeted family. The credit function will be chosen in such a way that it will be
large when the next operation is expensive, and smaller when the next operation
can be done quickly. We then think of the credit function as helping to bear somecredit function
of the cost of expensive operations, and, for inexpensive operations, we set aside
more than the actual cost, using the excess to build up the credit function for future
use.

To make this idea more precise, suppose that we have a sequence of m opera-
tions on a data structure, and let ti be the actual cost of operation i for 1 ≤ i ≤m.
Let the values of our credit function be c0, c1, . . . , cm , where c0 is the credit bal-
ance before the first operation and ci is the credit balance after operation i, for
1 ≤ i ≤m. Then we make the fundamental definition:

Definition The amortized cost ai of each operation is defined to be

ai = ti + ci − ci−1

for i = 1,2, . . . ,m, where ti and ci are as just defined.

508 Chapter 10 • Binary Trees

This equation says that the amortized cost is the actual cost plus the amount that
our credit balance has changed while doing the operation.

Remember that our credit balance is just an accounting tool: We are free to
invent any function we wish, but some are much better than others. Our goal is to
help with budgeting; therefore, our goal is:

Choose the credit-balance function ci so as to make the amortized costs ai as nearlygoal
equal as possible, no matter how the actual costs ti may vary.

We now wish to use the amortized cost to help us calculate the total actual cost

396

of the sequence of m operations. The fundamental definition rearranges as ti =
ai + ci−1 − ci , and the total actual cost is then

m∑
i=1
ti =

m∑
i=1
(ai + ci−1 − ci)=

 m∑
i=1
ai

 + c0 − cm.

Except for the first and last values, all the credit balances cancel each other out and
therefore do not enter the final calculation. For future reference, we restate this fact
as a lemma:

Lemma 10.5 The total actual cost and total amortized cost of a sequence of m operations on a data
structure are related by

m∑
i=1
ti =

 m∑
i=1
ai

 + c0 − cm.

Our goal is to choose the credit-balance function in such a way that the ai are
nearly equal; it will then be easy to calculate the right hand side of this equation,
and therefore the total actual cost of the sequence of m operations as well.

A sum like this one, where the terms have alternate plus and minus signs, so
that they cancel when added, is called a telescoping sum, since it may remind youtelescoping sum
of a toy (or portable) telescope made up of several short tubes that slide inside each
other but may be extended to make up one long telescope tube.

5. Incrementing Binary Integers

Let us tie down these ideas by studying one more simple example, and then it will
be time to apply these ideas to prove a fundamental and surprising theorem about
splay trees.

example The example we consider is an algorithm that continually increments a binary
(base 2) integer by 1. We start at the right side; while the current bit is 1, we change
it to 0 and move left, stopping when we reach the far left or hit a 0 bit, which we
change to 1 and stop. The cost of performing this algorithm is the number of bits

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 509

step i integer ti ci ai

0 0 0 0 0
1 0 0 0 1 1 1 2
2 0 0 1 0 2 1 2
3 0 0 1 1 1 2 2
4 0 1 0 0 3 1 2
5 0 1 0 1 1 2 2
6 0 1 1 0 2 2 2
7 0 1 1 1 1 3 2
8 1 0 0 0 4 1 2
9 1 0 0 1 1 2 2

10 1 0 1 0 2 2 2
11 1 0 1 1 1 3 2
12 1 1 0 0 3 2 2
13 1 1 0 1 1 3 2
14 1 1 1 0 2 3 2
15 1 1 1 1 1 4 2
16 0 0 0 0 4 0 0

Figure 10.34. Cost and amortized cost of incrementing binary integers

(binary digits) that are changed. The results of applying this algorithm 16 times to

397

a four digit integer are shown in the first three columns of Figure 10.34.
For the credit balance in this example, we take the total number of 1’s in the

binary integer. Clearly, the number of digits that must be changed is exactly one
more than the number of 1’s in the rightmost part of the integer, so it is reasonable
that the more 1’s there are, the more digits must be changed. With this choice, we
can calculate the amortized cost of each step, using the fundamental formula. The
result is shown in the last column of Figure 10.34 and turns out to be 2 for every step
except the last, which is 0. Hence we conclude that we can increment a four-digit
binary integer with an amortized cost of two digit changes, even though the actual
cost varies from one to four.

10.5.5 Amortized Analysis of Splaying
After all this preliminary introduction, we can now use the techniques of amortized
algorithm analysis to determine how much work our splay-tree algorithm does
over a long sequence of retrievals and insertions.

measure of actual
complexity

As the measure of the actual complexity, we shall take the depth within the
tree that the target node has before splaying, which is, of course, the number of
positions that the node will move up in the tree. All the actions of the algorithm—
key comparisons and rotations—go in lock step with this depth. The number of
iterations of the main loop that the function makes, for example, is about half this
depth.

510 Chapter 10 • Binary Trees

notation First, let us introduce some simple notation. We let T be a binary search tree
on which we are performing a splay insertion or retrieval. We let Ti denote the tree

398

T as it has been transformed after step i of the splaying process, with T0 = T . If x
is any node in Ti , then we denote by Ti(x) the subtree of Ti with root x , and we
denote by |Ti(x)| the number of nodes in this subtree.

We assume that we are splaying at a node x , and we consider a bottom-up
splay, so x begins somewhere in the tree T , but, after m splaying steps, ends up
as the root of T .

For each step i of the splaying process and each vertex x in T , we define thedefinition of
rank function rank at step i of x to be

ri(x)= lg |Ti(x)|.
This rank function behaves something like an idealized height: It depends on the
size of the subtree with root x , not on its height, but it indicates what the height of
the subtree would be if it were completely balanced.

If x is a leaf, then |Ti(x)| = 1, so ri(x)= 0. Nodes close to the fringe of the tree
have small ranks; the root has the largest rank in the tree.

The amount of work that the algorithm must do to insert or retrieve in a subtree
is clearly related to the height of the subtree, and so, we hope, to the rank of the
subtree’s root. We would like to define the credit balance in such a way that large
and tall trees would have a large credit balance and short or small trees a smaller
balance, since the amount of work in splaying increases with the height of the tree.
We shall use the rank function to achieve this. In fact, we shall portion out the
credit balance of the tree among all its vertices by always requiring the following
to hold:

The Credit Invariant

the credit invariant For every node x of T and after every step i of splaying,
node x has credit equal to its rank ri(x).

The total credit balance for the tree is then defined simply as the sum of the indi-total credit balance
vidual credits for all the nodes in the tree,

ci =
∑
x∈Ti

ri(x).

If the tree is empty or contains only one node, then its credit balance is 0. As the
tree grows, its credit balance increases, and this balance should reflect the work
needed to build the tree. The investment of credit in the tree is done in two ways:

➥ We invest the actual work done in the operation. We have already decided
to count this as one unit for each level that the target node rises during the
splaying process. Hence each splaying step counts as two units, except for a
zig or a zag step, which count as one unit.

➥ Since the shape of the tree changes during splaying, we must either add or
remove credit invested in the tree so as to maintain the credit invariant at all
times. (As we discussed in the last section, this is essentially an accounting
device to even out the costs of different steps.)

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 511

This investment is summarized by the equation defining the amortized complexity
ai of step i,amortized complexity

ai = ti + ci − ci−1,

where ti is the actual work and ci − ci−1 gives the change in the credit balance.
main goal Our principal goal now is, by using the given definitions and the way splaying

works, to determine bounds on ai that, in turn, will allow us to find the cost of the
whole splaying process, amortized over a sequence of retrievals and insertions.

First, we need a preliminary mathematical observation.

Lemma 10.6 If α, β, and γ are positive real numbers with α+ β ≤ γ , then

lgα + lgβ ≤ 2 lgγ − 2.

Proof We have
(√
α− √β)2 ≥ 0, since the square of any real number is nonnegative. This

expands and simplifies to √
αβ ≤ α + β

2
.

(This inequality is called the arithmetic-geometric mean inequality.) Since α+β ≤ γ ,arithmetic-geometric
mean inequality we obtain

√
αβ ≤ γ/2. Squaring both sides and taking (base 2) logarithms gives

the result in the lemma.end of proof

We next analyze the various kinds of splaying steps separately.399

Lemma 10.7 If the ith splaying step is a zig-zig or zag-zag step at node x , then its amortized
complexity ai satisfies

ai < 3
(
ri(x)−ri−1(x)

)
.

Proof This case is illustrated as follows:

D

x

C

B

A

y

z

z

y

x

A B

C

D Zig-zig:

Ti – 1 Ti

step i

The actual complexity ti of a zig-zig or a zag-zag step is 2 units, and only the sizes
of the subtrees rooted at x , y , and z change in this step. Therefore, all terms in

512 Chapter 10 • Binary Trees

the summation defining ci cancel against those for ci−1 except those indicated in
the following equation:

ai = ti + ci − ci−1

= 2 + ri(x)+ri(y)+ri(z)−ri−1(x)−ri−1(y)−ri−1(z)
= 2 + ri(y)+ri(z)−ri−1(x)−ri−1(y)

We obtain the last line by taking the logarithm of |Ti(x)| = |Ti−1(z)|, which is the
observation that the subtree rooted at z before the splaying step has the same size
as that rooted at x after the step.

Lemma 10.6 can now be applied to cancel the 2 in this equation (the actual
complexity). Let α = |Ti−1(x)|, β = |Ti(z)|, and γ = |Ti(x)|. From the diagram
for this case, we see that Ti−1(x) contains components x , A, and B ; Ti(z) contains
components z , C , and D ; and Ti(x) contains all these components (and y be-
sides). Hence α+β < γ , so Lemma 10.6 implies that ri−1(x)+ri(z)≤ 2ri(x)−2, or
2ri(x)−ri−1(x)−ri(z)−2 ≥ 0. Adding this nonnegative quantity to the right side
of the last equation for ai , we obtain

ai ≤ 2ri(x)−2ri−1(x)+ri(y)−ri−1(y).

Before step i, y is the parent of x , so |Ti−1(y)| > |Ti−1(x)|. After step i, x is

399

the parent of y , so |Ti(x)| > |Ti(y)|. Taking logarithms, we have ri−1(y)> ri−1(x)
and ri(x)> ri(y). Hence we finally obtain

ai < 3ri(x)−3ri−1(x),

which is the assertion in Lemma 10.7 that we wished to prove.end of proof

Lemma 10.8 If the ith splaying step is a zig-zag or zag-zig step at node x , then its amortized
complexity ai satisfies

ai < 2
(
ri(x)−ri−1(x)

)
.

Lemma 10.9 If the ith splaying step is a zig or a zag step at node x , then its amortized complexity
ai satisfies

ai < 1 + (ri(x)−ri−1(x)
)
.

The proof of Lemma 10.8 is similar to that of Lemma 10.7 (even though the result
is stronger), and the proof of Lemma 10.9 is straightforward; both of these are left
as exercises.

Finally, we need to find the total amortized cost of a retrieval or insertion. To
do so, we must add the costs of all the splay steps done during the retrieval or
insertion. If there are m such steps, then at most one (the last) can be a zig or
zag step to which Lemma 10.9 applies, and the others all satisfy the bounds in
Lemma 10.7 and Lemma 10.8, of which the coefficient of 3 in Lemma 10.7 provides
the weaker bound. Hence we obtain that the total amortized cost is

Section 10.5 • Splay Trees: A Self-Adjusting Data Structure 513

m∑
i=1
ai =

m−1∑
i=1

ai + am

≤
m−1∑
i=1

(
3ri(x)−3ri−1(x)

)
+
(

1 + 3rm(x)−3rm−1(x)
)

= 1 + 3rm(x)−3r0(x)
≤ 1 + 3rm(x)
= 1 + 3 lgn.

In this derivation, we have used the fact that the sum telescopes, so that only thetelescoping sum
first rank r0(x) and the final rank rm(x) remain. Since r0(x)≥ 0, its omission only
increases the right side, and since at the end of the splaying process x is the root
of the tree, we have rm(x)= lgn, where n is the number of nodes in the tree.

400

With this, we have now completed the proof of the principal result of this
section:

Theorem 10.10 The amortized cost of an insertion or retrieval with splaying in a binary search tree
with n nodes does not exceed

1 + 3 lgn

upward moves of the target node in the tree.

Finally, we can relate this amortized cost to the actual cost of each of a long sequence
of splay insertions or retrievals. To do so, we apply Lemma 10.5, noting that the
summations now are over a sequence of retrievals or insertions, not over the steps
of a single retrieval or insertion. We see that the total actual cost of a sequence
of m splay accesses differs from the total amortized cost only by c0 − cm , where
c0 and cm are the credit balances of the initial and final trees, respectively. If the
tree never has more than n nodes, then the credit of any individual node is always
somewhere between 0 and lgn. Therefore, the initial and final credit balances of
the tree are both between 0 and n lgn, so we need not add more than n lgn to the
cost in Theorem 10.10 to obtain:

Corollary 10.11 The total complexity of a sequence of m insertions or retrievals with splaying in a
binary search tree that never has more than n nodes does not exceed

m(1 + 3 lgn)+n lgn

upward moves of a target node in the tree.

In this result, each splaying step counts as two upward moves, except for zig or
zag steps, which count as one move each.

The fact that insertions and retrievals in a splay tree, over a long sequence, are
guaranteed to take only O(logn) time is quite remarkable, given that, at any time,
it is quite possible for a splay tree to degenerate into a highly unbalanced shape.

514 Chapter 10 • Binary Trees

Exercises
10.5

E1. Consider the following binary search tree:

a

b

g

f

e

c

d

Splay this tree at each of the following keys in turn:

d b g f a d b d

Each part builds on the previous; that is, use the final tree of each solution as
the starting tree for the next part. [Check: The tree should be completely
balanced after the last part, as well as after one previous part.]

E2. The depth of a node in a binary tree is the number of branches from the root to
the node. (Thus the root has depth 0, its children depth 1, and so on.) Define
the credit balance of a tree during preorder traversal to be the depth of the node
being visited. Define the (actual) cost of visiting a vertex to be the number
of branches traversed (either going down or up) from the previously visited
node. For each of the following binary trees, make a table showing the nodes
visited, the actual cost, the credit balance, and the amortized cost for a preorder
traversal.

4 4 5

7

6

8 9

5

4

3

1

2

5

4

3

1

2

5 6

3

1

2

7 8

2 3

1

(a) (b) (c)

(d)

Chapter 10 • Pointers and Pitfalls 515

E3. Define a rank function r(x) for the nodes of any binary tree as follows: If x is
the root, then r(x)= 0. If x is the left child of a node y , then r(x)= r(y)−1.
If x is the right child of a node y , then r(x)= r(y)+1. Define the credit balance
of a tree during a traversal to be the rank of the node being visited. Define the
(actual) cost of visiting a vertex to be the number of branches traversed (either
going down or up) from the previously visited node. For each of the binary
trees shown in Exercise E2, make a table showing the nodes visited, the actual
cost, the credit balance, and the amortized cost for an inorder traversal.

E4. In analogy with Exercise E3, devise a rank function for binary trees that, under
the same conditions as in Exercise E3, will make the amortized costs of a post-
order traversal almost all the same. Illustrate your rank function by making
a table for each of the binary trees shown in Exercise E2, showing the nodes
visited, the actual cost, the credit balance, and the amortized cost for a postorder
traversal.

E5. Generalize the amortized analysis given in the text for incrementing four-digit
binary integers to n-digit binary integers.

E6. Prove Lemma 10.8. The method is similar to the proof of Lemma 10.7.

E7. Prove Lemma 10.9. This proof does not require Lemma 10.6 or any intricate
calculations.

Programming
Projects 10.5

P1. Substitute the splay tree class into the menu-driven demonstration program
for binary search trees in Section 10.2, Project P2 (page 460), thereby obtaining
a demonstration program for splay trees.

P2. Substitute the function for splay retrieval and insertion into the information-
retrieval project of Project P5 of Section 10.2 (page 461). Compare the perfor-
mance of splay trees with ordinary binary search trees for various combinationsinformation retrieval
of input text files.

POINTERS AND PITFALLS

1. Consider binary search trees as an alternative to ordered lists (indeed, as a way401
of implementing the abstract data type list). At the cost of an extra pointer
member in each node, binary search trees allow random access (with O(logn)
key comparisons) to all nodes while maintaining the flexibility of linked lists
for insertions, removals, and rearrangement.

516 Chapter 10 • Binary Trees

2. Consider binary search trees as an alternative to tables (indeed, as a way of
implementing the abstract data type table). At the cost of access time that
is O(logn) instead of O(1), binary search trees allow traversal of the data
structure in the order specified by the keys while maintaining the advantage
of random access provided by tables.

3. In choosing your data structures, always carefully consider what operations
will be required. Binary trees are especially appropriate when random access,
traversal in a predetermined order, and flexibility in making insertions and
removals are all required.

4. While choosing data structures and algorithms, remain alert to the possibility
of highly unbalanced binary search trees. If the incoming data are likely to
be in random order, then an ordinary binary search tree should prove entirely
adequate. If the data may come in a sorted or nearly sorted order, then the
algorithms should take appropriate action. If there is only a slight possibility
of serious imbalance, it might be ignored. If, in a large project, there is greater
likelihood of serious imbalance, then there may still be appropriate places in
the software where the trees can be checked for balance and rebuilt if necessary.
For applications in which it is essential to maintain logarithmic access time at
all times, AVL trees provide nearly perfect balance at a slight cost in computer
time and space, but with considerable programming cost. If it is necessary for
the tree to adapt dynamically to changes in the frequency of the data, then a
splay tree may be the best choice.

5. Binary trees are defined recursively; algorithms for manipulating binary trees
are usually best written recursively. In programming with binary trees, be
aware of the problems generally associated with recursive algorithms. Be sure
that your algorithm terminates under any condition and that it correctly treats
the trivial case of an empty tree.

6. Although binary trees are usually implemented as linked structures, remain
aware of the possibility of other implementations. In programming with linked
binary trees, keep in mind the pitfalls attendant on all programming with linked
lists.

REVIEW QUESTIONS

1. Define the term binary tree.10.1

2. What is the difference between a binary tree and an ordinary tree in which each
vertex has at most two branches?

3. Give the order of visiting the vertices of each of the following binary trees under
(a) preorder, (b) inorder, and (c) postorder traversal.

Chapter 10 • Review Questions 517

(a) (b) (c)

4 5

2 3

6

1

3

2

1

4

4

2 3

1

4. Draw the expression trees for each of the following expressions, and show the
result of traversing the tree in (a) preorder, (b) inorder, and (c) postorder.

(a) a− b .
(b) n/m!.
(c) logm!.
(d) (logx)+(logy).
(e) x ×y ≤ x +y .
(f) (a > b) || (b >= a)

10.2 5. Define the term binary search tree.

6. If a binary search tree with n nodes is well balanced, what is the approximate
number of comparisons of keys needed to find a target? What is the number if
the tree degenerates to a chain?

7. In twenty words or less, explain how treesort works.

8. What is the relationship between treesort and quicksort?

9. What causes removal from a search tree to be more difficult than insertion into
a search tree?

10. When is the algorithm for building a binary search tree developed in Section 10.310.3
useful, and why is it preferable to simply using the function for inserting an
item into a search tree for each item in the input?

11. How much slower, on average, is searching a random binary search tree than
is searching a completely balanced binary search tree?

12. What is the purpose of AVL trees?10.4

13. What condition defines an AVL tree among all binary search trees?

518 Chapter 10 • Binary Trees

14. Suppose that A is a base class and B is a derived class, and that we declare: A
*pA; B *pB; Can pA reference an object of class B? Can pB reference an object
of class A?

15. Explain how the virtual methods of a class differ from other class methods.

16. Draw a picture explaining how balance is restored when an insertion into an
AVL tree puts a node out of balance.

17. How does the worst-case performance of an AVL tree compare with the worst-
case performance of a random binary search tree? How does it compare with
its average-case performance? How does the average-case performance of an
AVL tree compare with that of a random binary search tree?

18. In twenty words or less, describe what splaying does.10.5

19. What is the purpose of splaying?

20. What is amortized algorithm analysis?

21. What is a credit-balance function, and how is it used?

22. In the big-O notation, what is the cost of splaying amortized over a sequence
of retrievals and insertions? Why is this surprising?

REFERENCES FOR FURTHER STUDY

One of the most comprehensive source of information on binary trees is the series
of books by KNUTH. The properties of binary trees, other classes of trees, traversal,
path length, and history, altogether occupy pages 305–405 of Volume 1. Volume
3, pages 422–480, discusses binary search trees, AVL trees, and related topics. The
proof of Theorem 10.2 is from Volume 3, page 427.

A mathematical analysis of the behavior of AVL trees appears in

E. M. REINGOLD, J. NIEVERGELT, and N. DEO, Combinatorial Algorithms: Theory and
Practice, Prentice Hall, Englewood Cliffs, N. J., 1977.

The following book presents many interesting empirical studies and other analyses
of various data structures, including binary trees:

ROBERT SEDGEWICK and PHILIPPE FLAJOLET, An Introduction to the Analysis of Algorithms,
Addison-Wesley, Reading, Mass., 1996.

The original reference for AVL trees is

G. M. ADEL’SON-VEL’SKĬI and E. M. LANDIS, Dokl. Akad. Nauk SSSR 146 (1962), 263–266;
English translation: Soviet Math. (Dokl.) 3 (1962), 1259–1263.

Several algorithms for constructing a balanced binary search tree are discussed in

HSI CHANG and S. S. IYENGAR, “Efficient algorithms to globally balance a binary
search tree,” Communications of the ACM 27 (1984), 695–702.

Chapter 10 • References for Further Study 519

The notions of splay trees and amortized algorithm analysis, together with the
derivation of the algorithm we present, are due to:

D. D. SLEATOR and R. E. TARJAN, “Self-adjusting binary search trees,” Journal of the
ACM 32 (1985), 652–686.

Good sources for more advanced presentations of topics related to this chapter are:

HARRY R. LEWIS and LARRY DENENBERG, Data Structures & Their Algorithms, Harper-
Collins, New York, 1991, 509 pages.

DERICK WOOD, Data Structures, Algorithms, and Performance, Addison-Wesley, Read-
ing, Mass., 1993, 594 pages.

Another interesting method of adjusting the shape of a binary search tree, called
weighted path length trees and based on the frequencies with which the nodes are
accessed, appears in the following paper, easy to read and with a survey of related
results:

G. ARGO, “Weighting without waiting: the weighted path length tree,” Computer
Journal 34 (1991), 444–449.

Multiway Trees 11

T
HIS CHAPTER continues the study of trees as data structures, now concen-
trating on trees with possibly more than two branches at each node. We
begin by establishing a connection with binary trees. Next, we study a
class of trees called tries, which share some properties with table lookup.

Then we investigate B-trees, which prove invaluable for problems of external in-
formation retrieval. Each of these sections is independent of the others. Finally,
we apply the idea of B-trees to obtain another class of binary search trees, called
red-black trees.

11.1 Orchards, Trees, and Binary Trees 521
11.1.1 On the Classification of Species 521
11.1.2 Ordered Trees 522
11.1.3 Forests and Orchards 524
11.1.4 The Formal Correspondence 526
11.1.5 Rotations 527
11.1.6 Summary 527

11.2 Lexicographic Search Trees:
Tries 530
11.2.1 Tries 530
11.2.2 Searching for a Key 530
11.2.3 C++ Algorithm 531
11.2.4 Searching a Trie 532
11.2.5 Insertion into a Trie 533
11.2.6 Deletion from a Trie 533
11.2.7 Assessment of Tries 534

11.3 External Searching: B-Trees 535
11.3.1 Access Time 535

11.3.2 Multiway Search Trees 535
11.3.3 Balanced Multiway Trees 536
11.3.4 Insertion into a B-Tree 537
11.3.5 C++ Algorithms:

Searching and Insertion 539
11.3.6 Deletion from a B-Tree 547

11.4 Red-Black Trees 556
11.4.1 Introduction 556
11.4.2 Definition and Analysis 557
11.4.3 Red-Black Tree Specification 559
11.4.4 Insertion 560
11.4.5 Insertion Method

Implementation 561
11.4.6 Removal of a Node 565

Pointers and Pitfalls 566
Review Questions 567
References for Further Study 568

520

11.1 ORCHARDS, TREES, AND BINARY TREES

Binary trees, as we have seen, are a powerful and elegant form of data structure.
Even so, the restriction to no more than two children at each node is severe, and
there are many possible applications for trees as data structures where the number
of children of a node can be arbitrary. This section elucidates a pleasant and helpful
surprise: Binary trees provide a convenient way to represent what first appears to
be a far broader class of trees.

11.1.1 On the Classification of Species
Since we have already sighted several kinds of trees in the applications we havemathematical

definition studied, we should, before exploring further, put our gear in order by settling the
definitions. In mathematics, the term tree has a quite broad meaning: It is any
set of points (called vertices) and any set of pairs of distinct vertices (called edges

403

or branches) such that (1) there is a sequence of edges (a path) from any vertex to
any other, and (2) there are no circuits, that is, no paths starting from a vertex and
returning to the same vertex.

In computer applications we usually do not need to study trees in such gener-
ality, and when we do, for emphasis we call them free trees. Our trees are almostfree tree
always tied down by having one particular vertex singled out as the root, and for
emphasis we call such a tree a rooted tree.rooted tree

A rooted tree can be drawn in our usual way by picking it up by its root and
shaking it so that all the branches and vertices hang downward, with the leaves
at the bottom. Even so, rooted trees still do not have all the structure that we
usually use. In a rooted tree there is still no way to tell left from right, or, when
one vertex has several children, to tell which is first, second, and so on. If for no
other reason, the restraint of sequential execution of instructions (not to mention
sequential organization of storage) usually imposes an order on the children of each
vertex. Hence we define an ordered tree to be a rooted tree in which the childrenordered tree

of each vertex are assigned an order.
Note that ordered trees for which no vertex has more than two children are still

not the same class as binary trees. If a vertex in a binary tree has only one child,
then it could be either on the left side or on the right side, and the two resulting
binary trees are different, but both would be the same as ordered trees.

As a final remark related to the definitions, let us note that the 2-trees that we
studied as part of algorithm analysis are rooted trees (but not necessarily ordered
trees) with the property that every vertex has either 0 or 2 children. Thus 2-trees2-tree
do not coincide with any of the other classes we have introduced.

Figure 11.1 shows what happens for the various kinds of trees with a small
number of vertices. Note that each class of trees after the first can be obtained by
taking the trees from the previous class and distinguishing those that differ under
the new criterion. Compare the list of five ordered trees with four vertices with
the list of fourteen binary trees with four vertices constructed in Exercise E1 of
Section 10.1 (page 441). You will find that, again, the binary trees can be obtained
from the appropriate ordered trees by distinguishing a left branch from a right
branch.

521

522 Chapter 11 • Multiway Trees

Free trees with four or fewer vertices
(Arrangement of vertices is irrelevant.)

Rooted trees with four or fewer vertices
(Root is at the top of tree.)

Ordered trees with four or fewer vertices

Figure 11.1. Various kinds of trees

11.1.2 Ordered Trees

1. Computer Implementation

If we wish to use an ordered tree as a data structure, the obvious way to implement

404

it in computer memory would be to extend the standard way to implement a binary
tree, keeping as many link members in each node as there may be subtrees, in place
of the two links needed for binary trees. Thus in a tree where some nodes have
as many as ten subtrees, we would keep ten link members in each node. But thismultiple links

Section 11.1 • Orchards, Trees, and Binary Trees 523

will result in a great many of the link members being NULL. In fact, we can easily
determine exactly how many. If the tree has n nodes and each node has k link
members, then there are n×k links altogether. There is exactly one link that points
to each of the n− 1 nodes other than the root, so the proportion of NULL links must
be

(n × k) − (n − 1)
n × k > 1 − 1

k
.

Hence if a vertex might have ten subtrees, then more than ninety percent of the linkswasted space
will be NULL. Clearly this method of representing ordered trees is very wasteful of
space. The reason is that, for each node, we are maintaining a contiguous list of
links to all its children, and these contiguous lists reserve much unused space. We
now investigate a way that replaces these contiguous lists with linked lists and

405

leads to an elegant connection with binary trees.

2. Linked Implementation

To keep the children of each node in a linked list, we shall need two kinds of links.
First comes the header for a family of children; this will be a link from a parent
node to its leftmost child, which we may call first_child. Second, each node exceptfirst_child link
the root will appear in one of these lists, and hence requires a link to the next node
on the list, that is, to the next child of the parent. We may call this second linknext_sibling link
next_sibling. This implementation is illustrated in Figure 11.2.

first_child: black; next_sibling: color

Figure 11.2. Linked implementation of an ordered tree

3. The Natural Correspondence

For each node of the ordered tree we have defined two links (that will be NULL if
not otherwise defined), first_child and next_sibling. By using these two links we
now have the structure of a binary tree; that is, the linked implementation of an
ordered tree is a linked binary tree. If we wish, we can even form a better picture
of a binary tree by taking the linked representation of the ordered tree and rotating
it a few degrees clockwise, so that downward (first_child) links point leftward and
the horizontal (next_sibling) links point downward and to the right. For the tree
in Figure 11.2, we hence obtain the binary tree shown in Figure 11.3.

524 Chapter 11 • Multiway Trees

first_child (left) links: black
next_sibling (right) links: color

Figure 11.3. Rotated form of linked implementation

4. Inverse Correspondence
Suppose that we reverse the steps of the foregoing process, beginning with a bi-

405

nary tree and trying to recover an ordered tree. The first observation that we must
make is that not every binary tree is obtained from a rooted tree by the foregoing
process: Since the next_sibling link of the root is always NULL, the root of the corre-
sponding binary tree will always have an empty right subtree. To study the inverse
correspondence more carefully, we must consider another class of data structures.

11.1.3 Forests and Orchards
In our work so far with binary trees we have profited from using recursion, and
for other classes of trees we shall continue to do so. Employing recursion means
reducing a problem to a smaller one. Hence we should see what happens if we
take a rooted tree or an ordered tree and strip off the root. What is then left is (if
not empty) a set of rooted trees or an ordered set of ordered trees, respectively.

forest The standard term for an arbitrary set of trees is forest, but when we use this
term, we generally assume that the trees are rooted. The phrase ordered forest is
sometimes used for an ordered set of ordered trees, but we shall adopt the equally
descriptive (and more colorful) term orchard for this class.orchard

Note that not only can we obtain a forest or an orchard by removing the root
from a rooted tree or an ordered tree, respectively, but we can build a rooted or an
ordered tree by starting with a forest or an orchard, attaching a new vertex at the
top, and adding branches from the new vertex (which will be the root) to the roots
of all trees in the forest or the orchard. These actions are illustrated in Figure 11.4.

recursive definitions We shall use this process to give a new, recursive definition of ordered trees and
orchards, one that yields a formal proof of the connection with binary trees. First,
let us consider how to start. Recall that it is possible that a binary tree be empty;
that is, it may have no vertices. It is also possible that a forest or an orchard be

Section 11.1 • Orchards, Trees, and Binary Trees 525

Delete
root

Adjoin
new
root

Ordered tree Ordered treeOrchard

Figure 11.4. Deleting and adjoining a root

empty; that is, that it contain no trees. It is, however, not possible that a rooted or
an ordered tree be empty, since it is guaranteed to contain a root, at the minimum.
If we wish to start building trees and forests, we can note that the tree with only one

407

vertex is obtained by attaching a new root to an empty forest. Once we have this
tree, we can make a forest consisting of as many one-vertex trees as we wish. Then
we can attach a new root to build all rooted trees of height 1. In this way we can

406

continue to construct all the rooted trees in turn in accordance with the following
mutually recursive definitions.

Definition A rooted tree consists of a single vertex v , called the root of the tree, together
with a forest F , whose trees are called the subtrees of the root.

A forest F is a (possibly empty) set of rooted trees.

A similar construction works for ordered trees and orchards.

Definition An ordered tree T consists of a single vertex v , called the root of the tree,
together with an orchard O , whose trees are called the subtrees of the root v .
We may denote the ordered tree with the ordered pair

T = {v,O}.

An orchard O is either the empty set ∅, or consists of an ordered tree T ,
called the first tree of the orchard, together with another orchard O′ (which
contains the remaining trees of the orchard). We may denote the orchard with
the ordered pair

O = (T ,O′).

Notice how the ordering of trees is implicit in the definition of orchard. A nonempty
orchard contains a first tree, and the remaining trees form another orchard, which
again has a first tree that is the second tree of the original orchard. Continuing to

526 Chapter 11 • Multiway Trees

Orchard
of subtrees

First tree

Orchard of
remaining
trees

v

O′O

Figure 11.5. Recursive construction of ordered trees and orchards

examine the remaining orchard yields the third tree, and so on, until the remaining
orchard is the empty one. See Figure 11.5.

11.1.4 The Formal Correspondence
We can now obtain the principal result of this section.

Theorem 11.1 Let S be any finite set of vertices. There is a one-to-one correspondence f from the set
of orchards whose set of vertices is S to the set of binary trees whose set of vertices is
S .

Proof Let us use the notation introduced in the definitions to prove the theorem. First,
we need a similar notation for binary trees: A binary tree B is either the empty set
∅ or consists of a root vertex v with two binary trees B1 and B2 . We may thus
denote a nonempty binary tree with the ordered triple

408

B = [v, B1, B2].

We shall prove the theorem by mathematical induction on the number of ver-
tices in S . The first case to consider is the empty orchard ∅, which will correspond
to the empty binary tree:

f(∅)= ∅.
If the orchard O is not empty, then it is denoted by the ordered pair

O = (T ,O2)

where T is an ordered tree and O2 another orchard. The ordered tree T is denoted
as the pair

T = {v,O1}
where v is a vertex and O1 is another orchard. We substitute this expression for T
in the first expression, obtaining

O = ({v,O1},O2).

By the induction hypothesis, f provides a one-to-one correspondence from or-
chards with fewer vertices than in S to binary trees, and O1 and O2 are smaller

Section 11.1 • Orchards, Trees, and Binary Trees 527

than O , so the binary trees f(O1) and f(O2) are determined by the induction
hypothesis. We define the correspondence f from the orchard to a binary tree by

f({v,O1},O2)= [v, f (O1), f (O2)].

It is now obvious that the function f is a one-to-one correspondence between
orchards and binary trees with the same vertices. For any way to fill in the symbols
v , O1 , and O2 on the left side, there is exactly one way to fill in the same symbols
on the right, and vice versa.end of proof

11.1.5 Rotations
We can also use this notational form of the correspondence to help us form the
picture of the transformation from orchard to binary tree. In the binary tree
[v, f (O1), f (O2)] the left link from v goes to the root of the binary tree f(O1),
which in fact was the first child of v in the ordered tree {v,O1}. The right link
from v goes to the vertex that was formerly the root of the next ordered tree to
the right. That is, “left link” in the binary tree corresponds to “first child” in an
ordered tree, and “right link” corresponds to “next sibling.” In geometrical terms,
the transformation reduces to the following rules:

409

1. Draw the orchard so that the first child of each vertex is immediately
below the vertex, rather than centering the children below the vertex.

2. Draw a vertical link from each vertex to its first child, and draw a
horizontal link from each vertex to its next sibling.

3. Remove the remaining original links.

4. Rotate the diagram 45 degrees clockwise, so that the vertical links
appear as left links and the horizontal links as right links.

This process is illustrated in Figure 11.6.

Orchard Colored links added,
broken links removed

Rotate
45˚

Binary tree

Figure 11.6. Conversion from orchard to binary tree

11.1.6 Summary
We have seen three ways to describe the correspondence between orchards and
binary trees:

528 Chapter 11 • Multiway Trees

➥ first_child and next_sibling links,

➥ rotations of diagrams,

➥ formal notational equivalence.

Most people find the second way, rotation of diagrams, the easiest to remember
and to picture. It is the first way, setting up links to give the correspondence, that is
usually needed in actually writing computer programs. The third way, the formal
correspondence, finally, is the one that proves most useful in constructing proofs
of various properties of binary trees and orchards.

Exercises
11.1

E1. Convert each of the following orchards into a binary tree.

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Section 11.1 • Orchards, Trees, and Binary Trees 529

E2. Convert each of the following binary trees into an orchard.

(a)

(b)

(c)

(d)

(g)

(e)

(f)

(h)

E3. Draw all the (a) free trees, (b) rooted trees, and (c) ordered trees with five
vertices.

E4. We can define the preorder traversal of an orchard as follows: If the orchard is
empty, do nothing. Otherwise, first visit the root of the first tree, then traverse
the orchard of subtrees of the first tree in preorder, and then traverse the orchard
of remaining trees in preorder. Prove that preorder traversal of an orchard and
preorder traversal of the corresponding binary tree will visit the vertices in the
same order.

E5. We can define the inorder traversal of an orchard as follows: If the orchard
is empty, do nothing. Otherwise, first traverse the orchard of subtrees of the
first tree’s root in inorder, then visit the root of the first tree, and then traverse
the orchard of remaining subtrees in inorder. Prove that inorder traversal of
an orchard and inorder traversal of the corresponding binary tree will visit the
vertices in the same order.

E6. Describe a way of traversing an orchard that will visit the vertices in the same
order as postorder traversal of the corresponding binary tree. Prove that your
traversal method visits the vertices in the correct order.

530 Chapter 11 • Multiway Trees

11.2 LEXICOGRAPHIC SEARCH TREES: TRIES

Several times in previous chapters we have contrasted searching a list with looking
up an entry in a table. We can apply the idea of table lookup to information retrieval
from a tree by using a key or part of a key to make a multiway branch.multiway branching

Instead of searching by comparison of entire keys, we can consider a key as a
sequence of characters (letters or digits, for example), and use these characters to
determine a multiway branch at each step. If our keys are alphabetic names, then
we make a 26-way branch according to the first letter of the name, followed by
another branch according to the second letter, and so on. This multiway branching
is the idea of a thumb index in a dictionary. A thumb index, however, is generally
used only to find the words with a given initial letter; some other search method
is then used to continue. In a computer we can proceed two or three levels by
multiway branching, but then the tree will become too large, and we shall need to
resort to some other device to continue.

11.2.1 Tries

One method is to prune from the tree all the branches that do not lead to any key.
In English, for example, there are no words that begin with the letters ‘bb,’ ‘bc,’
‘bf,’ ‘bg,’ . . . , but there are words beginning with ‘ba,’ ‘bd,’ or ‘be.’ Hence all the
branches and nodes for nonexistent words can be removed from the tree. The

410

resulting tree is called a trie. (This term originated as letters extracted from the
word retrieval, but it is usually pronounced like the word “try.”)

A trie of order m can be defined formally as being either empty or consisting
of an ordered sequence of exactly m tries of order m.

11.2.2 Searching for a Key

A trie describing the English words (as listed in the Oxford English Dictionary) made
up only from the letters a, b, and c is shown in Figure 11.7. Along with the branches
to the next level of the trie, each node contains a pointer to a record of information
about the key, if any, that has been found when the node is reached. The search
for a particular key begins at the root. The first letter of the key is used as an index
to determine which branch to take. An empty branch means that the key being
sought is not in the tree. Otherwise, we use the second letter of the key to determine
the branch at the next level, and so continue. When we reach the end of the word,
the information pointer directs us to the desired information. We shall use a NULL
information pointer to show that the string is not a word in the trie. Note, therefore,
that the word a is a prefix of the word aba, which is a prefix of the word abaca. On
the other hand, the string abac is not an English word, and therefore its node has
a NULL information pointer.

Section 11.2 • Lexicographic Search Trees: Tries 531

a b c

aa ab
ac ba ca

aba abc baa bab bac cab

abba baba caba

abaca caaba

Figure 11.7. Trie of words constructed from a, b, c

11.2.3 C++ Algorithm

We shall translate the search process just described into a method for searching for
records that have character arrays as their keys. We shall therefore assume that the
classes Record and Key have the implementation described in Section 9.5, where we
used similar keys for a radix sort: Every Record has a Key that is an alphanumeric
string. We shall only make use of a single Record method, char key_letter(int
position), that returns the character in the given position of the key (or returns

411

a blank, if the key has length less than position). As in Section 9.5, an auxiliary
function int alphabetic_order(char symbol) returns the alphabetic position of the
character symbol. According to our earlier convention, this function will return
a value of 27 for nonblank, nonalphabetic characters, and a value of 0 for blank
characters. In a linked implementation, a trie contains a pointer to its root.

532 Chapter 11 • Multiway Trees

class Trie {
public: // Add method prototypes here.

private: // data members
Trie_node *root;

};

Each node of the trie needs to store a pointer to a Record and an array of pointers
to its branches. The branches correspond to the 28 results that can be returned by
the function position. We thus arrive at the following specifications:

const int num_chars = 28;

struct Trie_node {
// data members

Record *data;
Trie_node *branch[num_chars];

// constructors
Trie_node();

};

The constructor for a Trie_node simply sets all pointer members in the node to NULL.

11.2.4 Searching a Trie
The searching procedure becomes the following Trie method.

412 Error_code Trie :: trie_search(const Key &target, Record &x) const
/* Post: If the search is successful, a code of success is returned, and the output pa-

rameter x is set as a copy of the Trie’s record that holds target. Otherwise,
a code of not_present is returned.

Uses: Methods of class Key. */
{

int position = 0;
char next_char;
Trie_node *location = root;
while (location != NULL && (next_char = target.key_letter(position)) != ′ ′) {

// Terminate search for a NULL location or a blank in the target.
location = location->branch[alphabetic_order(next_char)];

// Move down the appropriate branch of the trie.
position++;

// Move to the next character of the target.
}
if (location != NULL && location->data != NULL) {

x = *(location->data);
return success;

}
else

return not_present;
}

Section 11.2 • Lexicographic Search Trees: Tries 533

The termination condition for the while loop is constructed to avoid either going
beyond a NULL trie node or passing the end of a Key. At the conclusion of the loop,
location (if not NULL) points to the node in the trie corresponding to the target.

11.2.5 Insertion into a Trie
Adding a new key to a trie is quite similar to searching for the key: We must trace
our way down the trie to the appropriate point and set the data pointer to the
information record for the new key. If, on the way, we hit a NULL branch in the trie,
we must not terminate the search, but instead we must create new nodes and put
them into the trie so as to complete the path corresponding to the new key. We
thereby obtain the following method.413

Error_code Trie :: insert(const Record &new_entry)
/* Post: If the Key of new_entry is already in the Trie, a code of duplicate_error is re-

turned. Otherwise, a code of success is returned and the Record new_entry
is inserted into the Trie.

Uses: Methods of classes Record and Trie_node. */
{

Error_code result = success;
if (root == NULL) root = new Trie_node; // Create a new empty Trie.
int position = 0; // indexes letters of new_entry
char next_char;
Trie_node *location = root; // moves through the Trie
while (location != NULL &&

(next_char = new_entry.key_letter(position)) != ′ ′) {
int next_position = alphabetic_order(next_char);
if (location->branch[next_position] == NULL)

location->branch[next_position] = new Trie_node;
location = location->branch[next_position];
position++;

}
// At this point, we have tested for all nonblank characters of new_entry.
if (location->data != NULL) result = duplicate_error;
else location->data = new Record(new_entry);
return result;

}

11.2.6 Deletion from a Trie
The same general plan used for searching and insertion also works for deletion from
a trie. We trace down the path corresponding to the key being deleted, and when we
reach the appropriate node, we set the corresponding data member to NULL. If now,
however, this node has all its members NULL (all branches and the data member),
then we should delete this node. To do so, we can set up a stack of pointers to the
nodes on the path from the root to the last node reached. Alternatively, we can
use recursion in the deletion algorithm and avoid the need for an explicit stack. In
either case, we shall leave the programming as an exercise.

534 Chapter 11 • Multiway Trees

11.2.7 Assessment of Tries
The number of steps required to search a trie (or insert into it) is proportional to the
number of characters making up a key, not to a logarithm of the number of keys
as in other tree-based searches. If this number of characters is small relative to the
(base 2) logarithm of the number of keys, then a trie may prove superior to a binary
tree. If, for example, the keys consist of all possible sequences of five letters, then
the trie can locate any of n = 265 = 11,881,376 keys in 5 iterations, whereas the best
that binary search can do is lgn ≈ 23.5 key comparisons.comparison with

binary search In many applications, however, the number of characters in a key is larger,
and the set of keys that actually occur is sparse in the set of all possible keys. In
these applications, the number of iterations required to search a trie may very well
exceed the number of key comparisons needed for a binary search.

The best solution, finally, may be to combine the methods. A trie can be used
for the first few characters of the key, and then another method can be employed
for the remainder of the key. If we return to the example of the thumb index in adictionary

thumb index dictionary, we see that, in fact, we use a multiway branch to locate the first letter
of the word, but we then use some other search method to locate the desired word
among those with the same first letter.

Exercises
11.2

E1. Draw the tries constructed from each of the following sets of keys.
(a) All three-digit integers containing only 1, 2, 3 (in decimal representation).
(b) All three-letter sequences built from a, b, c, d where the first letter is a.
(c) All four-digit binary integers (built from 0 and 1).
(d) The words

a ear re rare area are ere era rarer rear err

built from the letters a, e, r.
(e) The words

gig i inn gin in inning gigging ginning

built from the letters g, i, n.
(f) The words

pal lap a papa al papal all ball lab

built from the letters a, b, l, p.

E2. Write a method that will traverse a trie and print out all its words in alphabetical
order.

E3. Write a method that will traverse a trie and print out all its words, with the
order determined first by the length of the word, with shorter words first, and,
second, by alphabetical order for words of the same length.

E4. Write a method that will delete a word from a trie.

Section 11.3 • External Searching: B-Trees 535

Programming
Project 11.2

P1. Construct a menu-driven demonstration program for tries. The keys should
be words constructed from the 26 lowercase letters, up to 8 characters long.
The only information that should be kept in a record (apart from the key) is a
serial number indicating when the word was inserted.

11.3 EXTERNAL SEARCHING: B-TREES

In our work throughout this book we have assumed that all our data structures are
kept in high-speed memory; that is, we have considered only internal information
retrieval. For many applications, this assumption is reasonable, but for many other
important applications, it is not. Let us now turn briefly to the problem of external
information retrieval, where we wish to locate and retrieve records stored in a
file.

11.3.1 Access Time

The time required to access and retrieve a word from high-speed memory is a few
microseconds at most. The time required to locate a particular record on a disk is
measured in milliseconds, and for floppy disks can exceed a second. Hence the
time required for a single access is thousands of times greater for external retrieval
than for internal retrieval. On the other hand, when a record is located on a disk,
the normal practice is not to read only one word, but to read in a large page or block
of information at once. Typical sizes for blocks range from 256 to 1024 charactersblock of storage
or words.

Our goal in external searching must be to minimize the number of disk ac-
cesses, since each access takes so long compared to internal computation. With
each access, however, we obtain a block that may have room for several records.
Using these records we may be able to make a multiway decision concerning which
block to access next. Hence multiway trees are especially appropriate for external
searching.

11.3.2 Multiway Search Trees

Binary search trees generalize directly to multiway search trees in which, for some414
integerm called the order of the tree, each node has at mostm children. If k ≤m is
the number of children, then the node contains exactly k− 1 keys, which partition
all the keys in the subtrees into k subsets. If some of these subsets are empty, then
the corresponding children in the tree are empty. Figure 11.8 shows a 5-way search
tree (between 1 and 4 entries in each node) in which some of the children of some
nodes are empty.

536 Chapter 11 • Multiway Trees

d e p v

i m n o q s t u

b c h j k l r w x y z

f ga

Figure 11.8. A 5-way search tree (not a B-tree)

11.3.3 Balanced Multiway Trees

Our goal is to devise a multiway search tree that will minimize file accesses; hence
we wish to make the height of the tree as small as possible. We can accomplish
this by insisting, first, that no empty subtrees appear above the leaves (so that the
division of keys into subsets is as efficient as possible); second, that all leaves be
on the same level (so that searches will all be guaranteed to terminate with about
the same number of accesses); and, third, that every node (except the leaves) have

415

at least some minimal number of children. We shall require that each node (except
the leaves) have at least half as many children as the maximum possible. These
conditions lead to the following formal definition:

Definition A B-tree of order m is an m-way search tree in which

1. All leaves are on the same level.

2. All internal nodes except the root have at most m nonempty children, and
at least dm/2e nonempty children.

3. The number of keys in each internal node is one less than the number of
its nonempty children, and these keys partition the keys in the children in
the fashion of a search tree.

4. The root has at most m children, but may have as few as 2 if it is not a leaf,
or none if the tree consists of the root alone.

The tree in Figure 11.8 is not a B-tree, since some nodes have empty children, some
have too few children, and the leaves are not all on the same level. Figure 11.9
shows a B-tree of order 5 whose keys are the 26 letters of the alphabet.

Section 11.3 • External Searching: B-Trees 537
415

l

p q r

o s wd g

h i j ke f t u v x y za b c m n

Figure 11.9. A B-tree of order 5

11.3.4 Insertion into a B-Tree
The condition that all leaves be on the same level forces a characteristic behavior of
B-trees: In contrast to binary search trees, B-trees are not allowed to grow at their
leaves; instead, they are forced to grow at the root. The general method of insertion
is as follows. First, a search is made to see if the new key is in the tree. This searchmethod
(if the key is truly new) will terminate in failure at a leaf. The new key is then added
to the leaf node. If the node was not previously full, then the insertion is finished.

When a key is added to a full node, then the node splits into two nodes, side by
side on the same level, except that the median key is not put into either of the two
new nodes; instead, it is sent up the tree to be inserted into the parent node. When
a search is later made through the tree, therefore, a comparison with the median
key will serve to direct the search into the proper subtree. When a key is added to
a full root, then the root splits in two and the median key sent upward becomes a

416

new root. This is the only time when the B-tree grows in height.
This process is greatly elucidated by studying an example such as the growth

of the B-tree of order 5 shown in Figure 11.10. We shall insert the keys

a g f b k d h m j e s i r x c l n t u p

into an initially empty tree, in the order given.
The first four keys will be inserted into one node, as shown in the first diagram

of Figure 11.10. They are sorted into the proper order as they are inserted. There is
no room, however, for the fifth key, k, so its insertion causes the node to split into
two, and the median key, f, moves up to enter a new node, which is a new root. Sincenode splitting
the split nodes are now only half full, the next three keys can be inserted without
difficulty. Note, however, that these simple insertions can require rearrangement
of the keys within a node. The next insertion, j, again splits a node, and this time
it is j itself that is the median key and therefore moves up to join f in the root.

538 Chapter 11 • Multiway Trees

1. 2.

3. 4.

5. 6.

7.

8.

a, g, f, b: k :

d, h, m: j :

e, s, i, r : x:

c, l, n, t, u:

p:

a b f g f

ba kg

f jf

hga b da b d g h k m mk

jf f j r

a b d e k m r sg h i a b d e g h i mk xs

c f j r

ba ed g h i k l m n s t u x

j

fc rm

edba lk png h i s t u x

Figure 11.10. Growth of a B-tree

upward propagation The next several insertions proceed similarly. The final insertion, that of p, is

417

more interesting. This insertion first splits the node originally containing k l m
n, sending the median key m upward into the node containing c f j r, which is,
however, already full. Hence this node in turn splits, and a new root containing j
is created.

Section 11.3 • External Searching: B-Trees 539

Two comments regarding the growth of B-trees are in order. First, when a nodeimproving balance
splits, it produces two nodes that are now only half full. Later insertions, therefore,
can more likely be made without need to split nodes again. Hence one splitting
prepares the way for several simple insertions. Second, it is always a median
key that is sent upward, not necessarily the key being inserted. Hence repeated
insertions tend to improve the balance of the tree, no matter in what order the keys
happen to arrive.

11.3.5 C++ Algorithms: Searching and Insertion

To develop C++ algorithms for searching and insertion in a B-tree, let us begin with
the declarations needed to set up a B-tree. For simplicity we shall construct our
B-tree entirely in high-speed memory, using pointers to describe its structure. In
most applications, these pointers would be replaced by the addresses of variouspointers and

disk accesses blocks or pages on a disk, and taking a pointer reference would become making a
disk access.

1. Declarations
We leave clients free to choose what records they wish to store in a B-tree. Ac-
cordingly, our B-tree class, and the corresponding node class, will be templates
parameterized by the class Record. We shall also add a second template parameter,parameter: order
an integer representing the order of a B-tree. This allows a client to customize a
B-tree object with a simple declaration such as: B_tree<int, 5> sample_tree; which
declares sample_tree as a B_tree of order 5 that holds integer records. We arrive at

418

the following class template specification:

template <class Record, int order>
class B_tree {
public: // Add public methods.
private: // data members

B_node<Record, order> *root;
// Add private auxiliary functions here.

};

Within each node of a B-tree, we need a list of entries and a list of pointers to
the children of the node. Since these lists are short, we shall, for simplicity, usecontiguous lists
contiguous arrays and a separate data member count for their representation.

template <class Record, int order>
struct B_node {
// data members:

int count;
Record data[order − 1];
B_node<Record, order> *branch[order];

// constructor:
B_node();

};

540 Chapter 11 • Multiway Trees

The data member count gives the number of records in the B_node. If count is
nonzero then the node has count + 1 children. branch[0] points to the subtree
containing all records with keys less than that in data[0]; for each value of po-
sition between 1 and count − 1, inclusive, branch[position] points to the subtree
with keys strictly between those of data[position − 1] and data[position]; andmeanings of data and

branch indices branch[count]points to the subtree with keys greater than that of data[count − 1].
The B_node constructor creates an empty node; emptiness is implemented by

setting count to 0 in the newly created node.419

2. Searching
As a simple first example we write a method to search through a B-tree for a record
that matches the key of a target record. In our search method we shall assume, as
usual, that records can be compared with the standard operators. As in a search
through a binary tree, we begin by calling a recursive auxiliary function.

template <class Record, int order>
Error_code B_tree<Record, order> :: search_tree(Record &target)
/* Post: If there is an entry in the B-tree whose key matches that in target, the

parameter target is replaced by the corresponding Record from the B-tree
and a code of success is returned. Otherwise a code of not_present is
returned.

Uses: recursive_search_tree */
{

return recursive_search_tree(root, target);
}

The input parameters for the auxiliary function recursive_search_tree are a pointerparameters
to the root of a subtree of the B-tree and a record holding the target key. The function
returns an Error_code to report whether it matched the target with a B_tree entry:
if it is successful it updates the value of its parameter target to match the record
found in the B-tree.

The general method of searching by working our way down through the tree
is similar to a search through a binary search tree. In a multiway tree, however, we
must examine each node more extensively to find which branch to take at the nextsearching a node
step. This examination is done by another auxiliary B-tree function search_node
that seeks a target among the records stored in a current node. The function
search_node uses an output parameter position, which is the index of the target if
found within the current node and otherwise is the index of the branch on which
to continue the search.

420

template <class Record, int order>
Error_code B_tree<Record, order> :: recursive_search_tree(

B_node<Record, order> *current, Record &target)
/* Pre: current is either NULL or points to a subtree of the B_tree.

Post: If the Key of target is not in the subtree, a code of not_present is re-
turned. Otherwise, a code of success is returned and target is set to the
corresponding Record of the subtree.

Uses: recursive_search_tree recursively and search_node */

Section 11.3 • External Searching: B-Trees 541

{
Error_code result = not_present;
int position;
if (current != NULL) {

result = search_node(current, target, position);
if (result == not_present)

result = recursive_search_tree(current->branch[position], target);
else

target = current->data[position];
}
return result;

}

This function has been written recursively to exhibit the similarity of its structure to
that of the insertion function to be developed shortly. The recursion is tail recursion,tail recursion
however, and can easily be replaced by iteration if desired.

3. Searching a Node

This function must determine whether the target is present in the current node,
and, if not, find which of the count + 1 branches will contain the target key. We
initialize the counter position to 0 and keep incrementing it until we either arrive
at or pass beyond the target.421

template <class Record, int order>
Error_code B_tree<Record, order> :: search_node(

B_node<Record, order> *current, const Record &target, int &position)
/* Pre: current points to a node of a B_tree.

Post: If the Key of target is found in *current, then a code of success is returned,
the parameter position is set to the index of target, and the corresponding
Record is copied to target. Otherwise, a code of not_present is returned,
and position is set to the branch index on which to continue the search.

Uses: Methods of class Record. */
{

position = 0;
while (position < current->count && target > current->data[position])

position++; // Perform a sequential search through the keys.
if (position < current->count && target == current->data[position])

return success;
else

return not_present;
}

For B-trees of large order, this function should be modified to use binary search
instead of sequential search. In some applications, a significant amount of infor-binary search
mation is stored with each record of the B-tree, so that the order of the B-tree will

542 Chapter 11 • Multiway Trees

be relatively small, and sequential search within a node is appropriate. In many
applications, only keys are kept in the nodes, so the order is much larger, and binary
search should be used to locate the position of a key within a node.

Yet another possibility is to use a linked binary search tree instead of a sequen-binary search tree
tial array of entries for each node; this possibility will be investigated at length later
in this chapter.

4. Insertion: The Main Function

Insertion into a B-tree can be most naturally formulated as a recursive function,

422

since, after insertion in a subtree has been completed, a (median) record may remain
that must be reinserted higher in the tree. Recursion allows us to keep track of the
position within the tree and work our way back up the tree without need for an
explicit auxiliary stack.

As usual, we shall require that the key being inserted is not already present
in the tree. The insertion method then needs only one parameter: new_entry,
the record being inserted. For the recursion, however, we need three additionalparameters
output parameters. The first of these is current, the root of the current subtree
under consideration. If *current needs to be split to accommodate new_entry, the
recursive function will return a code of overflow (since there was no room for the
key) and will determine a (median) record to be reinserted higher in the tree. When
this happens, we shall adopt the convention that the old node *current contains the
left half of the entries and a new node contains the right half of the entries. When
such a split occurs, a second output parameter median gives the median record,
and the third parameter right_branch gives a pointer to the new node, the right
half of the former root *current of the subtree.

To keep all these parameters straight, we shall do the recursion in a function
called push_down. This situation, when a nodes splits, is illustrated in Figure
11.11.

new_entry

a b cd a bc d

*current

right_branchcurrent

splits
*current

median

Figure 11.11. Action of push_down function when a node splits

Section 11.3 • External Searching: B-Trees 543

The recursion is started by the B_tree method insert. If the outermost call to
function push_down should return a code of overflow, then there is still one record,
median, that remains to be (re-)inserted into the B-tree. A new root must then be
created to hold this record, and the height of the entire B-tree will thereby increase.
This is the only way that the B-tree grows in height.

The insertion method appears as follows:423

template <class Record, int order>
Error_code B_tree<Record, order> :: insert(const Record &new_entry)
/* Post: If the Key of new_entry is already in the B_tree, a code of duplicate_error

is returned. Otherwise, a code of success is returned and the Record
new_entry is inserted into the B-tree in such a way that the properties
of a B-tree are preserved.

Uses: Methods of struct B_node and the auxiliary function push_down. */
{

Record median;
B_node<Record, order> *right_branch, *new_root;
Error_code result = push_down(root, new_entry, median, right_branch);
if (result == overflow) { // The whole tree grows in height.

// Make a brand new root for the whole B-tree.
new_root = new B_node<Record, order>;
new_root->count = 1;
new_root->data[0] = median;
new_root->branch[0] = root;
new_root->branch[1] = right_branch;
root = new_root;
result = success;

}
return result;

}

5. Recursive Insertion into a Subtree
Next we turn to the recursive function push_down, which uses a parameter current
to point to the root of the subtree being searched. In a B-tree, a new record is first
inserted into a leaf. We shall thus use the condition current == NULL to terminate thestopping rule

recursion; that is, we shall continue to move down the tree searching for new_entry
until we hit an empty subtree. Since the B-tree does not grow by adding new
leaves, we do not then immediately insert new_entry, but instead we return a code
of overflow (since an empty subtree cannot have a record inserted) and send the
record back up (now called median) for later insertion.

When a recursive call returns a code of overflow, the record median has not been
inserted, and we attempt to insert it in the current node. If there is room, then wereinserting a record
are finished. Otherwise, the node *current splits into *current and *right_branch
and a (possibly different) median record is sent up the tree. The function uses three
auxiliary functions: search_node (same as for searching); push_in puts the median
record into node *current provided that there is room; and split chops a full node
*current into two nodes that will be siblings on the same level in the B-tree.

544 Chapter 11 • Multiway Trees

424 template <class Record, int order>
Error_code B_tree<Record, order> :: push_down(

B_node<Record, order> *current,
const Record &new_entry,
Record &median,
B_node<Record, order> * &right_branch)

/* Pre: current is either NULL or points to a node of a B_tree.
Post: If an entry with a Key matching that of new_entry is in the subtree to

which current points, a code of duplicate_error is returned. Otherwise,
new_entry is inserted into the subtree: If this causes the height of the
subtree to grow, a code of overflow is returned, and the Record median is
extracted to be reinserted higher in the B-tree, together with the subtree
right_branch on its right. If the height does not grow, a code of success is
returned.

Uses: Functions push_down (called recursively), search_node, split_node, and
push_in. */

{
Error_code result;
int position;
if (current == NULL) {

// Since we cannot insert in an empty tree, the recursion terminates.
median = new_entry;
right_branch = NULL;
result = overflow;

}
else { // Search the current node.

if (search_node(current, new_entry, position) == success)
result = duplicate_error;

else {
Record extra_entry;
B_node<Record, order> *extra_branch;
result = push_down(current->branch[position], new_entry,

extra_entry, extra_branch);
if (result == overflow) {

// Record extra_entry now must be added to current
if (current->count < order − 1) {

result = success;
push_in(current, extra_entry, extra_branch, position);

}
else split_node(current, extra_entry, extra_branch, position,

right_branch, median);
// Record median and its right_branch will go up to a higher node.

}
}

}
return result;

}

Section 11.3 • External Searching: B-Trees 545

6. Inserting a Key into a Node
The next auxiliary function, push_in, inserts the Record entry and its right-hand
pointer right_branch into the node *current, provided there is room for the inser-
tion. This situation is illustrated in Figure 11.12.426

b d h

A

j

0 1 2 3 4 5

0 1 2 3 4 5 6

Before:

C E I K

current
fentry

right_branch

G

position == 2

b d

A

h

0 1 2 3 4 5

0 1 2 3 4 5 6

After:

C E G I

j

K

current f

Figure 11.12. Action of push_in function

template <class Record, int order>
void B_tree<Record, order> :: push_in(B_node<Record, order> *current,

const Record &entry, B_node<Record, order> *right_branch, int position)
/* Pre: current points to a node of a B_tree. The node *current is not full and

entry belongs in *current at index position.
Post: entry has been inserted along with its right-hand branch right_branch into

*current at index position. */
{

for (int i = current->count; i > position; i−−) {
// Shift all later data to the right.

current->data[i] = current->data[i − 1];
current->branch[i + 1] = current->branch[i];

}
current->data[position] = entry;
current->branch[position + 1] = right_branch;
current->count++;

}

7. Splitting a Full Node
The final auxiliary insertion function, split_node, must insert a record extra_entry
with subtree pointer extra_branch into a full node *current, and split the right half
off as a new node *right_half. It must also remove the median record from its nodegeneral outline
and send it upward for reinsertion later.

It is, of course, not possible to insert record extra_entry directly into the full
node: We must instead first determine whether extra_entry belongs in the left
or right half, divide the node accordingly, and then insert extra_entry into the

546 Chapter 11 • Multiway Trees

appropriate half. While all this work proceeds, we shall divide the node so that
427 the Record median is the largest entry in the left half. This situation is illustrated

in Figure 11.13.

428 template <class Record, int order>
void B_tree<Record, order> :: split_node(

B_node<Record, order> *current, // node to be split
const Record &extra_entry, // new entry to insert
B_node<Record, order> *extra_branch, // subtree on right of extra_entry
int position, // index in node where extra_entry goes
B_node<Record, order> * &right_half, // new node for right half of entries
Record &median) // median entry (in neither half)

/* Pre: current points to a node of a B_tree. The node *current is full, but if
there were room, the record extra_entry with its right-hand pointer ex-
tra_branch would belong in *current at position position, 0 ≤ position <
order.

Post: The node *current with extra_entry and pointer extra_branch at position
position are divided into nodes *current and *right_half separated by a
Record median.

Uses: Methods of struct B_node, function push_in. */
{

right_half = new B_node<Record, order>;
int mid = order/2; // The entries from mid on will go to right_half.
if (position <= mid) { // First case: extra_entry belongs in left half.

for (int i = mid; i < order − 1; i++) { // Move entries to right_half.
right_half->data[i − mid] = current->data[i];
right_half->branch[i + 1 − mid] = current->branch[i + 1];

}
current->count = mid;
right_half->count = order − 1 − mid;
push_in(current, extra_entry, extra_branch, position);

}
else { // Second case: extra_entry belongs in right half.

mid++; // Temporarily leave the median in left half.
for (int i = mid; i < order − 1; i++) { // Move entries to right_half.

right_half->data[i − mid] = current->data[i];
right_half->branch[i + 1 − mid] = current->branch[i + 1];

}
current->count = mid;
right_half->count = order − 1 − mid;
push_in(right_half, extra_entry, extra_branch, position − mid);

}
median = current->data[current->count − 1];

// Remove median from left half.
right_half->branch[0] = current->branch[current->count];
current->count−−;

}

Section 11.3 • External Searching: B-Trees 547

1 2

I K

1 2

I K

A C E I K

b d h j

0 1 2 3

0 1 2 3 4

current

mid = 2;

Case 1: position == 2; order == 5;

fextra_entry

fmedian

extra_branch

G A C E G K

b d f j

0 1 2 3

0 1 2 3 4

current

(extra_entry belongs in left half.)

0 1 2current

h j

0 1right_half

Insert extra_entry and extra_branch:

Remove median; move branch:

mid = 3;

Case 2: position == 3; order == 5;

hextra_entry

fmedian

extra_branch

I

(extra_entry belongs in right half.)

Shift entry right:

Remove median; move branch:

A

0 1 2

C E

A

0 1 2 3

C E G

b d

0 1current

h j

0 1right_half

1

KA

0 1 2

C E

3

G

b d f

0 1 2current

j

0right_half

Shift entries right:

b d f

1 2

I K

0 1 2current

h j

0 1right_half

Insert extra_entry and extra_branch:

A

0 1 2 3

C E G

b d f

1 2

I

0

G K

0 1current

h j

0 1right_half

A

0 1 2

C E

b d

1 2

I

0

G K

0 1current

h j

0 1right_half

A

0 1 2

C E

b d

Figure 11.13. Action of split function

548 Chapter 11 • Multiway Trees

11.3.6 Deletion from a B-Tree

1. Method

During insertion, the new entry always goes first into a leaf. For deletion we shall
also wish to remove an entry from a leaf. If the entry that is to be deleted is not
in a leaf, then its immediate predecessor (or successor) under the natural order of
keys is guaranteed to be in a leaf (prove it!). Hence we can promote the immediate
predecessor (or successor) into the position occupied by the deleted entry, and
delete the entry from the leaf.

If the leaf contains more than the minimum number of entries, then one of them

430

can be deleted with no further action. If the leaf contains the minimum number,
then we first look at the two leaves (or, in the case of a node on the outside, one leaf)
that are immediately adjacent to each other and are children of the same node. If
one of these has more than the minimum number of entries, then one of them can
be moved into the parent node, and the entry from the parent moved into the leafmoving entries
where the deletion is occurring. If, finally, the adjacent leaf has only the minimum
number of entries, then the two leaves and the median entry from the parent can
all be combined as one new leaf, which will contain no more than the maximum
number of entries allowed. If this step leaves the parent node with too few entries,
then the process propagates upward. In the limiting case, the last entry is removed
from the root, and then the height of the tree decreases.

2. Example

The process of deletion in our previous B-tree of order 5 is shown in Figure 11.14.
The first deletion, h, is from a leaf with more than the minimum number of entries,
and hence it causes no problem. The second deletion, r, is not from a leaf, and
therefore the immediate successor of r, which is s, is promoted into the position
of r, and then s is deleted from its leaf. The third deletion, p, leaves its node with
too few entries. The key s from the parent node is therefore brought down and
replaced by the key t.

Deletion of d has more extensive consequences. This deletion leaves the node
with too few entries, and neither of its sibling nodes can spare an entry. The nodecombining nodes
is therefore combined with one of the siblings and with the median entry from the
parent node, as shown by the dotted line in the first diagram and the combined
node a b c e in the second diagram. This process, however, leaves the parent node
with only the one key f. The top three nodes of the tree must therefore be combined,
yielding the tree shown in the final diagram of Figure 11.14.431

3. C++ Implementation

We can write a deletion algorithm with overall structure similar to that used for
insertion. As usual, we shall employ recursion, with a separate method to start
the recursion. Rather than attempting to pull an entry down from a parent node

Section 11.3 • External Searching: B-Trees 549

j

fc

edba g i

m

pnlk

ig t u x

h s t u x

r

1. Delete h, r :

2. Delete p:

3. Delete d:

Combine:

Combine:

Promote s
and delete from leaf.

Pull s down;
pull t up.

s

j

fc m

edba ig nlk xut

ts

s
p

j

fc

eba ig

tm

snlk xu

j

tmf

sn xulkiga b c e

d

f j m t

a b c e ig lk sn xu

Figure 11.14. Deletion from a B-tree

550 Chapter 11 • Multiway Trees

during an inner recursive call, we shall allow the recursive function to return evenpostpone the work
though there are too few entries in its root node. The outer call will then detect this
occurrence and move entries as required. When the last entry is removed from the
root, then the empty node is deleted and the height of the B-tree shrinks.

The method implementation is:432

template <class Record, int order>
Error_code B_tree<Record, order> :: remove(const Record &target)
/* Post: If a Record with Key matching that of target belongs to the B_tree, a code

of success is returned and the corresponding node is removed from the
B-tree. Otherwise, a code of not_present is returned.

Uses: Function recursive_remove */

{
Error_code result;
result = recursive_remove(root, target);
if (root != NULL && root->count == 0) { // root is now empty.

B_node<Record, order> *old_root = root;
root = root->branch[0];
delete old_root;

}
return result;

}

4. Recursive Deletion

Most of the work is done in the recursive function recursive_remove. It first searches
the current node for the target. If target is found and the current node is not a
leaf, then the immediate successor of target is located and is placed in the current
node; then the successor is deleted. Deletion from a leaf is straightforward, and
otherwise the process continues by recursion. When a recursive call returns, the
function checks to see if enough entries remain in the appropriate node, and, if
not, it moves entries as required. Auxiliary functions are used in several of these
steps.433

template <class Record, int order>
Error_code B_tree<Record, order> :: recursive_remove(

B_node<Record, order> *current, const Record &target)
/* Pre: current is either NULL or points to the root node of a subtree of a B_tree.

Post: If a Record with Key matching that of target belongs to the subtree, a
code of success is returned and the corresponding node is removed from
the subtree so that the properties of a B-tree are maintained. Otherwise,
a code of not_present is returned.

Uses: Functions search_node, copy_in_predecessor, recursive_remove (recursive-
ly), remove_data, and restore. */

Section 11.3 • External Searching: B-Trees 551

{
Error_code result;
int position;
if (current == NULL) result = not_present;
else {

if (search_node(current, target, position) == success) {
// The target is in the current node.

result = success;
if (current->branch[position] != NULL) { // not at a leaf node

copy_in_predecessor(current, position);
recursive_remove(current->branch[position],

current->data[position]);
}
else remove_data(current, position); // Remove from a leaf node.

}
else result = recursive_remove(current->branch[position], target);
if (current->branch[position] != NULL)

if (current->branch[position]->count < (order − 1)/2)
restore(current, position);

}
return result;

}

5. Auxiliary Functions
We now can conclude the process of B-tree deletion by writing several of the auxil-
iary functions required for various purposes. The function remove_data straight-
forwardly deletes an entry and the branch to its right from a node of a B-tree. This
function is invoked only in the case when the entry is to be removed from a leaf of
the tree.434

template <class Record, int order>
void B_tree<Record, order> :: remove_data(B_node<Record, order> *current,

int position)
/* Pre: current points to a leaf node in a B-tree with an entry at position.

Post: This entry is removed from *current. */
{

for (int i = position; i < current->count − 1; i++)
current->data[i] = current->data[i + 1];

current->count−−;
}

The function copy_in_predecessor is invoked when an entry must be deleted from
a node that is not a leaf. In this case, the immediate predecessor (in order of keys)
is found by first taking the branch to the left of the entry and then taking rightmost
branches until a leaf is reached. The rightmost entry in this leaf then replaces the
entry to be deleted.

552 Chapter 11 • Multiway Trees

434 template <class Record, int order>
void B_tree < Record, order > :: copy_in_predecessor(

B_node<Record, order> *current, int position)
/* Pre: current points to a non-leaf node in a B-tree with an entry at position.

Post: This entry is replaced by its immediate predecessor under order of keys. */
{

B_node<Record, order> *leaf = current->branch[position];
// First go left from the current entry.

while (leaf->branch[leaf->count] != NULL)
leaf = leaf->branch[leaf->count]; // Move as far rightward as possible.

current->data[position] = leaf->data[leaf->count − 1];
}

Finally, we must show how to restore root->branch[position] to the required min-
imum number of entries if a recursive call has reduced its count below this mini-
mum. The function we write is somewhat biased to the left; that is, it looks first to
the sibling on the left to take an entry and uses the right sibling only when there
are no entries to spare in the left one. The steps that are needed are illustrated in
Figure 11.15.435

t z

tw

u

wv

w u v w

a

u

v u

t v z
combine

move_right

t

b c d a b c d

a b c da b c d

Figure 11.15. Restoration of the minimum number of entries
436

template <class Record, int order>
void B_tree<Record, order> :: restore(B_node<Record, order> *current,

int position)
/* Pre: current points to a non-leaf node in a B-tree; the node to which

current->branch[position] points has one too few entries.
Post: An entry is taken from elsewhere to restore the minimum number of en-

tries in the node to which current->branch[position] points.
Uses: move_left, move_right, combine. */

Section 11.3 • External Searching: B-Trees 553

{
if (position == current->count) // case: rightmost branch

if (current->branch[position − 1]->count > (order − 1)/2)
move_right(current, position − 1);

else
combine(current, position);

else if (position == 0) // case: leftmost branch
if (current->branch[1]->count > (order − 1)/2)

move_left(current, 1);
else

combine(current, 1);
else // remaining cases: intermediate branches

if (current->branch[position − 1]->count > (order − 1)/2)
move_right(current, position − 1);

else if (current->branch[position + 1]->count > (order − 1)/2)
move_left(current, position + 1);

else
combine(current, position);

}

The actions of the remaining three functions move_left, move_right, and combine
are clear from Figure 11.15.437

template <class Record, int order>
void B_tree<Record, order> :: move_left(B_node<Record, order> *current,

int position)
/* Pre: current points to a node in a B-tree with more than the minimum num-

ber of entries in branch position and one too few entries in branch posi-
tion − 1.

Post: The leftmost entry from branch position has moved into current, which
has sent an entry into the branch position − 1. */

{
B_node<Record, order> *left_branch = current->branch[position − 1],

*right_branch = current->branch[position];
left_branch->data[left_branch->count] = current->data[position − 1];

// Take entry from the parent.
left_branch->branch[++left_branch->count] = right_branch->branch[0];
current->data[position − 1] = right_branch->data[0];

// Add the right-hand entry to the parent.
right_branch->count−−;
for (int i = 0; i < right_branch->count; i++) {

// Move right-hand entries to fill the hole.
right_branch->data[i] = right_branch->data[i + 1];
right_branch->branch[i] = right_branch->branch[i + 1];

}
right_branch->branch[right_branch->count] =

right_branch->branch[right_branch->count + 1];
}

554 Chapter 11 • Multiway Trees

438

439

template <class Record, int order>
void B_tree<Record, order> :: move_right(B_node<Record, order> *current,

int position)
/* Pre: current points to a node in a B-tree with more than the minimum num-

ber of entries in branch position and one too few entries in branch posi-
tion + 1.

Post: The rightmost entry from branch position has moved into current, which
has sent an entry into the branch position + 1. */

{ B_node<Record, order> *right_branch = current->branch[position + 1],
*left_branch = current->branch[position];

right_branch->branch[right_branch->count + 1] =
right_branch->branch[right_branch->count];

for (int i = right_branch->count ; i > 0; i−−) { // Make room for new entry.
right_branch->data[i] = right_branch->data[i − 1];
right_branch->branch[i] = right_branch->branch[i − 1];

}
right_branch->count++;
right_branch->data[0] = current->data[position];

// Take entry from parent.
right_branch->branch[0] = left_branch->branch[left_branch->count−−];
current->data[position] = left_branch->data[left_branch->count];

}

template <class Record, int order>
void B_tree<Record, order> :: combine(B_node<Record, order> *current,

int position)
/* Pre: current points to a node in a B-tree with entries in the branches position

and position − 1, with too few to move entries.
Post: The nodes at branches position − 1 and position have been combined

into one node, which also includes the entry formerly in current at index
position − 1. */

{ int i;
B_node<Record, order> *left_branch = current->branch[position − 1],

*right_branch = current->branch[position];
left_branch->data[left_branch->count] = current->data[position − 1];
left_branch->branch[++left_branch->count] = right_branch->branch[0];
for (i = 0; i < right_branch->count; i++) {

left_branch->data[left_branch->count] = right_branch->data[i];
left_branch->branch[++left_branch->count] =

right_branch->branch[i + 1];
}
current->count−−;
for (i = position − 1; i < current->count; i++) {

current->data[i] = current->data[i + 1];
current->branch[i + 1] = current->branch[i + 2];

}
delete right_branch;

}

Section 11.3 • External Searching: B-Trees 555

Exercises
11.3

E1. Insert the six remaining letters of the alphabet in the order

z, v, o, q, w, y

into the final B-tree of Figure 11.10 (page 538).

E2. Insert the following entries, in the order stated, into an initially empty B-tree
of order (a) 3, (b) 4, (c) 7:

a g f b k d h m j e s i r x c l n t u p

E3. What is the smallest number of entries that, when inserted in an appropriate
order, will force a B-tree of order 5 to have height 3 (that is, 3 levels)?

E4. Draw all the B-trees of order 5 (between 2 and 4 keys per node) that can be
constructed from the keys 1, 2, 3, 4, 5, 6, 7, and 8.

E5. If a key in a B-tree is not in a leaf, prove that both its immediate predecessor
and immediate successor (under the natural order) are in leaves.

E6. Suppose that disk hardware allows us to choose the size of a disk record any
way we wish, but that the time it takes to read a record from the disk is a+bd,
where a and b are constants and d is the order of the B-tree. (One node in thedisk accesses
B-tree is stored as one record on the disk.) Let n be the number of entries in
the B-tree. Assume for simplicity that all the nodes in the B-tree are full (each
node contains d− 1 entries).
(a) Explain why the time needed to do a typical B-tree operation (searching or

insertion, for example) is approximately (a+ bd)logd n.
(b) Show that the time needed is minimized when the value of d satisfies

d(lnd−1)= a/b . (Note that the answer does not depend on the number n
of entries in the B-tree.) [Hint: For fixed a, b , and n, the time is a function
of d: f(d)= (a+ bd)logd n. Note that logd n = (lnn)/(lnd). To find the
minimum, calculate the derivative f ′(d) and set it to 0.]

(c) Suppose a is 20 milliseconds and b is 0.1 millisecond. (The records are
very short.) Find the value of d (approximately) that minimizes the time.

(d) Suppose a is 20 milliseconds and b is 10 milliseconds. (The records are
longer.) Find the value of d (approximately) that minimizes the time.

E7. Write a method that will traverse a linked B-tree, visiting all its entries in order
of keys (smaller keys first).traversal

E8. Define preorder traversal of a B-tree recursively to mean visiting all the entries
in the root node first, then traversing all the subtrees, from left to right, in
preorder. Write a method that will traverse a B-tree in preorder.

E9. Define postorder traversal of a B-tree recursively to mean first traversing all
the subtrees of the root, from left to right, in postorder, then visiting all the
entries in the root. Write a method that will traverse a B-tree in postorder.

E10. Remove the tail recursion from the function recursive_search_tree and integrate
it into a nonrecursive version of search_tree.

556 Chapter 11 • Multiway Trees

E11. Rewrite the function search_node to use binary search.

E12. A B*-tree is a B-tree in which every node, except possibly the root, is at least
two-thirds full, rather than half full. Insertion into a B*-tree moves entries
between sibling nodes (as done during deletion) as needed, thereby delayingB*-tree
splitting a node until two sibling nodes are completely full. These two nodes
can then be split into three, each of which will be at least two-thirds full.

(a) Specify the changes needed to the insertion algorithm so that it will main-
tain the properties of a B*-tree.

(b) Specify the changes needed to the deletion algorithm so that it will maintain
the properties of a B*-tree.

(c) Discuss the relative advantages and disadvantages of B*-trees compared
to ordinary B-trees.

Programming
Projects 11.3

P1. Combine all the functions of this section into a menu-driven demonstration
program for B-trees. If you have designed the demonstration program for
binary search trees from Section 10.2, Project P2 (page 460) with sufficient care,
you should be able to make a direct replacement of one package of operations
by another.

P2. Substitute the functions for B-tree retrieval and insertion into the information-
retrieval project of Project P5 of Section 10.2 (page 461). Compare the perfor-
mance of B-trees with binary search trees for various combinations of input
text files and various orders of B-trees.

11.4 RED-BLACK TREES

11.4.1 Introduction

In the last section, we used a contiguous list to store the entries within a single node
of a B-tree. Doing so was appropriate because the number of entries in one nodeB-tree nodes
is usually relatively small and because we were emulating methods that might be
used in external files on a disk, where dynamic memory may not be available, and
records may be stored contiguously on the disk.

In general, however, we may use any ordered structure we wish for storing the
entries in each B-tree node. Small binary search trees turn out to be an excellentbinary tree

representation choice. We need only be careful to distinguish between the links within a single
B-tree node and the links from one B-tree node to another. Let us therefore draw
the links within one B-tree node as curly colored lines and the links between B-tree
nodes as straight black lines. Figure 11.16 shows a B-tree of order 4 constructed
this way.

Section 11.4 • Red-Black Trees 557
440

j

q

f

d h

m
s

u

a

b

c

e g i k

l n

o

p r t v

w

x

Figure 11.16. A B-tree of order 4 as a binary search tree

11.4.2 Definition and Analysis
This construction is especially useful for a B-tree of order 4 (like Figure 11.16), where
each node of the tree contains one, two, or three entries. A node with one key is the
same in the B-tree and the binary search tree; a node with three entries transforms
as:

441

T4T3T2T1T4T3T2T1

becomes
α

β

γ

α β γ

A node with two entries has two possible representations:

T1 T2

T3

T3T2T1

T1

T2 T3

or

α β
α

β α

β

becomes

If we wished, we could always use only one of these two, but there is no reason to
do so, and we shall find that our algorithms naturally produce both possible forms,
so let us allow either form to represent a B-tree node with two entries.

558 Chapter 11 • Multiway Trees

Hence we obtain the fundamental definition of this section: A red-black tree isfirst definition

a binary search tree, with links colored red or black, obtained from a B-tree of order
4 in the way just described. After we have converted a B-tree into a red-black tree,
we can use it like any other binary search tree. In particular, searching and traversal
of a red-black tree are exactly the same as for an ordinary binary search tree; we
simply ignore the color of the links. Insertion and deletion, however, require more

442

care to maintain the underlying B-tree structure. Let us therefore translate the
requirements for a B-tree into corresponding requirements for red-black trees.

First, however, let us adopt some more notation: We shall consider each node
of a red-black tree as colored with the same color as the link immediately above it;colored nodes
hence we shall often speak of red nodes and black nodes instead of red links and
black links. In this way, we need keep only one extra bit of information for each
node to indicate its color.

Since the root has no link above it, it does not obtain a color in this way. Inroot color
order to simplify some algorithms, we adopt the convention that the root is colored
black. Similarly, we shall consider that all the empty subtrees (corresponding to
NULL links) are colored black.

The first condition defining a B-tree, that all its empty subtrees are on the same
level, means that every simple path from the root to an empty subtree (NULL) goes
through the same number of B-tree nodes. The corresponding red-black tree has
one black node (and perhaps one or two red nodes) for each B-tree node. Hence
we obtain the black condition:black condition

Every simple path from the root to an empty subtree
goes through the same number of black nodes.

The assertion that a B-tree satisfies search-tree properties is automatically satisfied
for a red-black tree, and, for order 4, the remaining parts of the definition amount
to saying that each node contains one, two, or three entries. We need a condition
on red-black trees that will guarantee that no more than three nodes are identified
together (by red links) as one B-tree node, and that nodes with three entries are in
the balanced form we are using. This guarantee comes from the red condition:red condition

If a node is red, then its parent exists and is black.

(Since we have required the root to be black, the parent of a red node always exists.)
We can summarize this discussion by presenting a formal definition that no

longer refers to B-trees at all:

Definition A red-black tree is a binary search tree in which each node has either the color
red or black and that satisfies the following conditions:

1. Every simple path from the root to an empty subtree (a NULL link) goesblack condition
through the same number of black nodes.

2. If a node is red, then its parent exists and is black.red condition

Section 11.4 • Red-Black Trees 559

From this definition it follows that no path from the root to an empty subtree can

443

be more that twice as long as another, since, by the red condition, no more than
half the nodes on such a path can be red, and, by the black condition, there are the
same number of black nodes on each such path. Hence we obtain:

Theorem 11.2 The height of a red-black tree containing n nodes is no more than 2 lgn.

Hence the time for searching a red-black tree with n nodes is O(logn) in everysearch performance
case. We shall find that the time for insertion is also O(logn), but first we need to
devise the associated algorithm.

Recall from Section 10.4, however, that an AVL tree, in its worst case, has height
about 1.44 lgn and, on average, has an even smaller height. Hence red-black trees
do not achieve as good a balance as AVL trees. This does not mean, however, that
red-black trees are necessarily slower than AVL trees, since AVL trees may require
many more rotations to maintain balance than red-black trees require.

11.4.3 Red-Black Tree Specification
We could consider several options for the specification of a C++ class to represent
red-black tree objects. We might go back to our original motivation and implement
red-black trees as B-trees whose nodes store search trees rather than contiguous
lists. This approach would force us to recode most of the methods and auxiliary
functions of a B-tree, because the original versions relied heavily on the contiguous
representation of node entries. We shall therefore investigate an alternative imple-
mentation, where we construct a red-black tree class that inherits the properties of
our search-tree class of Section 10.2.

We must begin by incorporating colors into the nodes that will make up red-
black trees:

444

enum Color {red, black};
template <class Record>
struct RB_node: public Binary_node<Record> {

Color color;
RB_node(const Record &new_entry) { color = red; data = new_entry;

left = right = NULL; }
RB_node() { color = red; left = right = NULL; }
void set_color(Color c) { color = c; }
Color get_color() const { return color; }

};

For convenience, we have included inline definitions for the constructors and othernode constructors and
methods methods of a red-black node. We see that the struct RB_node is very similar to the

earlier struct AVL_node that we used to store nodes of AVL-trees in Section 10.4:
The only change is that we now maintain color information rather than balance
information.

In order to invoke the node methods get_color and set_color via pointers, we
need to add corresponding virtual functions to the base struct Binary_node. Wepointer access to

methods added analogous virtual functions to access balance information in Section 10.4.
The modified node specification takes the following form:

560 Chapter 11 • Multiway Trees

445
template <class Entry>
struct Binary_node {

Entry data;
Binary_node<Entry> *left;
Binary_node<Entry> *right;
virtual Color get_color() const { return red; }
virtual void set_color(Color c) { }
Binary_node() { left = right = NULL; }
Binary_node(const Entry &x) { data = x; left = right = NULL; }

};

Just as in Section 10.4, once this modification is made, we can reuse all of our earlier
methods and functions for manipulating binary search trees and their nodes. In
particular, searching and traversal are identical for red-black trees and for binary
search trees.

Our main objective is to create an updated insertion method for the class of
red-black trees. The new method must insert new data into a red-black tree so
that the red-black properties still hold after the insertion. We therefore require the
following class specification:

template <class Record>
class RB_tree: public Search_tree<Record> {
public:

Error_code insert(const Record & new_entry);
private: // Add prototypes for auxiliary functions here.
};

11.4.4 Insertion
Let us begin with the standard recursive algorithm for insertion into a binary search
tree. That is, we compare the new key of target with the key at the root (if the treeoverall outline
is nonempty) and then recursively insert the new entry into the left or right subtree
of the root. This process terminates when we hit an empty subtree, whereupon we
create a new node and attach it to the tree in place of the empty subtree.

Should this new node be red or black? Were we to make it black, we would
increase the number of black nodes on one path (and only one path), thereby vi-new node
olating the black condition. Hence the new node must be red. (Recall also that
insertion of a new entry into a B-tree first goes into an existing node, a process that
corresponds to attaching a new red node to a red-black tree.) If the parent of the
new red node is black, then the insertion is finished, but if the parent is red, then

446

we have introduced a violation of the red condition into the tree, since we have
two adjacent red nodes on the path. The major work of the insertion algorithm is
to remove such a violation of the red condition, and we shall find several different
cases that we shall need to process separately.

Our algorithm is considerably simplified, however, if we do not consider these
cases immediately, but instead postpone the work as long as we can. Hence, whenpostpone work
we make a node red, we do not immediately try to repair the tree, but instead

Section 11.4 • Red-Black Trees 561

simply return from the recursive call with a status indicator set to indicate that thestatus variable
node just processed is red.

After this return, we are again processing the parent node. If it is black, thenparent node:
red violation the conditions for a red-black tree are satisfied and the process terminates. If it is

red, then again we do not immediately attempt to repair the tree, but instead we
set the status variable to indicate that we have two red nodes together, and then
simply return from the recursive call. It turns out, in this case, to be helpful to use
the status variable also to indicate if the two red nodes are related as left child or
right child.

After returning from the second recursive call, we are processing the grandpar-
ent node. Here is where our convention that the root will always be black is helpful:
Since the parent node is red, it cannot be the root, and hence the grandparent exists.
This grandparent, moreover, is guaranteed to be black, since its child (the parent
node) is red, and the only violation of the red condition is farther down the tree.

Finally, at the recursive level of the grandparent node, we can transform the
tree to restore the red-black conditions. We shall examine only the cases wheregrandparent node:

restoration the parent is the left child of the grandparent; those where it is the right child are
symmetric. We need to distinguish two cases according to the color of the other
(the right) child of the grandparent, that is, the “aunt” or “uncle” of the original
node.

First suppose this aunt node is black. This case also covers the possibility thatblack aunt
the aunt node does not exist. (Recall that an empty subtree is considered black.)
Then the red-black properties are restored by a single or double rotation to the
right, as shown in the first two parts of Figure 11.17. You will need to verify that,

447

in both these diagrams, the rotation (and associated color changes) removes the
violation of the red condition and preserves the black condition by not changing
the number of black nodes on any path down the tree.

Now suppose the aunt node is red, as shown in the last two parts of Figure 11.17.
Here the transformation is simpler: No rotation occurs, but the colors are changed.red aunt
The parent and aunt nodes become black, and the grandparent node becomes red.
Again, you should verify that the number of black nodes on any path down the
tree remains the same. Since the grandparent node has become red, however, it is
quite possible that the red condition is still violated: The great-grandparent node
may also be red. Hence the process may not terminate. We need to set the status
indicator to show that we have a newly red node, and then we can continue to
work out of the recursion. Any violation of the red condition, however, moves two
levels up the tree, and, since the root is black, the process will eventually terminate.
It is also possible that this process will change the root from black to red; hence, in
the outermost call, we need to make sure that the root is changed back to black if
necessary.

11.4.5 Insertion Method Implementation

Let us now take this procedure for insertion and translate it into C++. As usual, we
shall do almost all the work within a recursive function, so the insertion method
only does some setup and error checking. The most important part of this work is

562 Chapter 11 • Multiway Trees

T1

T1

T1 T2

T3

T4

T4T3

T4

T3T2
T2T1

T4T3T2T1

T3T2T1 T3T2T1

T3T2 T3T2T1

Rotate
right

Double
rotate
right

Color
flip

Color
flip

grandparent

parent
aunt

child

parent

child
grandparent

aunt

parent

child

grandparent

aunt

grandparent

parent

child

aunt

child

grandparent

parent
auntaunt

child

grandparent

parent

grandparent

parent aunt

child

grandparent

parent

child

aunt

Figure 11.17. Restoring red-black conditions

Section 11.4 • Red-Black Trees 563

to keep track of the status, indicating the outcome of the recursive insertion. For
this status indicator, we set up a new enumerated type, as follows:448

enum RB_code {okay, red_node, left_red, right_red, duplicate};

/* These outcomes from a call to the recursive insertion function describe the fol-
lowing results:

okay: The color of the current root (of the subtree) has not changed; the
tree now satisfies the conditions for a red-black tree.

red_node: The current root has changed from black to red; modification may
or may not be needed to restore the red-black properties.

right_red: The current root and its right child are now both red; a color flip or
rotation is needed.

left_red: The current root and its left child are now both red; a color flip or
rotation is needed.

duplicate: The entry being inserted duplicates another entry; this is an error.
*/

The only other task of the insertion method is to force the root to be colored black.
Thus we have:449

template <class Record>
Error_code RB_tree<Record> :: insert(const Record &new_entry)
/* Post: If the key of new_entry is already in the RB_tree, a code of duplicate_error

is returned. Otherwise, a code of success is returned and the Record
new_entry is inserted into the tree in such a way that the properties of an
RB-tree have been preserved.

Uses: Methods of struct RB_node and recursive function rb_insert. */
{

RB_code status = rb_insert(root, new_entry);
switch (status) { // Convert private RB_code to public Error_code.

case red_node: // Always split the root node to keep it black.
root->set_color(black); /*Doing so prevents two red nodes at the top of

the tree and a resulting attempt to rotate using a parent node that
does not exist. */

case okay:
return success;

case duplicate:
return duplicate_error;

case right_red:
case left_red:

cout << "WARNING: Program error detected in RB_tree::insert" << endl;
return internal_error;

}
}

564 Chapter 11 • Multiway Trees

The recursive function rb_insert does the actual insertion, searching the tree in the
usual way, proceeding until it hits the empty subtree where the actual insertion is
placed by a call to the RB_node constructor. As the function then works its way
out of the recursive calls, it uses either modify_left or modify_right to perform
the rotations and color flips required by the conditions shown in Figure 11.17 and
specified by the RB_code status.450

template <class Record>
RB_code RB_tree<Record> :: rb_insert(Binary_node<Record> * ¤t,

const Record &new_entry)
/* Pre: current is either NULL or points to the first node of a subtree of an RB_tree

Post: If the key of new_entry is already in the subtree, a code of duplicate is
returned. Otherwise, the Record new_entry is inserted into the subtree
pointed to by current. The properties of a red-black tree have been re-
stored, except possibly at the root current and one of its children, whose
status is given by the output RB_code.

Uses: Methods of class RB_node, rb_insert recursively, modify_left, and mod-
ify_right. */

{
RB_code status,

child_status;
if (current == NULL) {

current = new RB_node<Record>(new_entry);
status = red_node;

}
else if (new_entry == current->data)

return duplicate;
else if (new_entry < current->data) {

child_status = rb_insert(current->left, new_entry);
status = modify_left(current, child_status);

}
else {

child_status = rb_insert(current->right, new_entry);
status = modify_right(current, child_status);

}
return status;

}

The function modify_left updates the status variable and recognizes the situations
shown in Figure 11.17 that require rotations or color flips. It is in this function that
our decision to postpone the restoration of the red-black properties pays off. When
modify_left is invoked, we know that the insertion was made in the left subtree
of the current node; we know its color; and, by using the RB_code status variable,
we know the condition of the subtree into which the insertion went. By using all
this information, we can now determine exactly what actions, if any, are needed to
restore the red-black properties.

Section 11.4 • Red-Black Trees 565

451
template <class Record>
RB_code RB_tree<Record> :: modify_left(Binary_node<Record> * ¤t,

RB_code &child_status)
/* Pre: An insertion has been made in the left subtree of *current that has re-

turned the value of child_status for this subtree.
Post: Any color change or rotation needed for the tree rooted at current has

been made, and a status code is returned.
Uses: Methods of struct RB_node, with rotate_right, double_rotate_right, and

flip_color. */
{

RB_code status = okay;
Binary_node<Record> *aunt = current->right;
Color aunt_color = black;
if (aunt != NULL) aunt_color = aunt->get_color();
switch (child_status) {
case okay:

break; // No action needed, as tree is already OK.
case red_node:

if (current->get_color() == red)
status = left_red;

else
status = okay; // current is black, left is red, so OK.

break;
case left_red:

if (aunt_color == black) status = rotate_right(current);
else status = flip_color(current);
break;

case right_red:
if (aunt_color == black) status = double_rotate_right(current);
else status = flip_color(current);
break;

}
return status;

}

The auxiliary function modify_right is similar, treating the mirror images of the
situations shown in Figure 11.17. The actions of the rotation and color-flip func-
tions are shown in Figure 11.17, and these may all safely be left as exercises. The
rotation functions may be based on those for AVL trees, but for red-black trees it
becomes important to set the colors and the status indicator correctly, as shown in
Figure 11.17.

11.4.6 Removal of a Node
Just as removal of a node from a B-tree is considerably more complicated than
insertion, removal from a red-black tree is much more complicated than insertion.
Since insertion produces a new red node, which might violate the red condition, we

566 Chapter 11 • Multiway Trees

needed to devote careful attention to restoring the red condition after an insertion.
On the other hand, removal of a red node causes little difficulty, but removal of a
black node can cause a violation of the black condition, and it requires consideration
of many special cases in order to restore the black condition for the tree. There are
so many special cases that we shall not even attempt to outline the steps that are
needed. Consult the references at the end of this chapter for further information
on removal algorithms.

Exercises
11.4

E1. Insert the keys c, o, r, n, f, l, a, k, e, s into an initially empty red-black tree.
E2. Insert the keys a, b, c, d, e, f, g, h, i, j, k into an initially empty red-black tree.
E3. Find a binary search tree whose nodes cannot be colored so as to make it a

red-black tree.
E4. Find a red-black tree that is not an AVL tree.
E5. Prove that any AVL tree can have its nodes colored so as to make it a red-black

tree. You may find it easier to prove the following stronger statement: An AVL
tree of height h can have its nodes colored as a red-black tree with exactly
dh/2e black nodes on each path to an empty subtree, and, if h is odd, then both
children of the root are black.

Programming
Projects 11.4

P1. Complete red-black insertion by writing the following missing functions:

(a) modify_right
(b) flip_color
(c) rotate_left

(d) rotate_right
(e) double_rotate_left
(f) double_rotate_right

Be sure that, at the end of each function, the colors of affected nodes have
been set properly, and the returned RB_code correctly indicates the current
condition. By including extensive error testing for illegal situations, you can
simplify the process of correcting your work.

P2. Substitute the function for red-black insertion into the menu-driven demon-
stration program for binary search trees from Section 10.2, Project P2 (page 460),
thereby obtaining a demonstration program for red-black trees. You may leave
removal not implemented.

P3. Substitute the function for red-black insertion into the information-retrieval
project of Project P5 of Section 10.2 (page 461). Compare the performance of
red-black trees with other search trees for various combinations of input text
files.

POINTERS AND PITFALLS

1. Trees are flexible and powerful structures both for modeling problems and for
452 organizing data. In using trees in problem solving and in algorithm design,

first decide on the kind of tree needed (ordered, rooted, free, or binary) before
considering implementation details.

Chapter 11 • Review Questions 567

2. Most trees can be described easily by using recursion; their associated algo-
rithms are often best formulated recursively.

3. For problems of information retrieval, consider the size, number, and location
of the records along with the type and structure of the entries while choosing
the data structures to be used. For small records or small numbers of entries,
high-speed internal memory will be used, and binary search trees will likely
prove adequate. For information retrieval from disk files, methods employ-
ing multiway branching, such as tries, B-trees, and hash tables, will usually
be superior. Tries are particularly well suited to applications where the keys
are structured as a sequence of symbols and where the set of keys is relatively
dense in the set of all possible keys. For other applications, methods that treat
the key as a single unit will often prove superior. B-trees, together with vari-
ous generalizations and extensions, can be usefully applied to many problems
concerned with external information retrieval.

REVIEW QUESTIONS

1. Define the terms (a) free tree, (b) rooted tree, and (c) ordered tree.11.1

2. Draw all the different (a) free trees, (b) rooted trees, and (c) ordered trees with
three vertices.

3. Name three ways describing the correspondence between orchards and binary
trees, and indicate the primary purpose for each of these ways.

4. What is a trie?11.2

5. How may a trie with six levels and a five-way branch in each node differ from
the rooted tree with six levels and five children for every node except the leaves?
Will the trie or the tree likely have fewer nodes, and why?

6. Discuss the relative advantages in speed of retrieval of a trie and a binary search
tree.

7. How does a multiway search tree differ from a trie?11.3

8. What is a B-tree?

9. What happens when an attempt is made to insert a new entry into a full node
of a B-tree?

10. Does a B-tree grow at its leaves or at its root? Why?

11. In deleting an entry from a B-tree, when is it necessary to combine nodes?

12. For what purposes are B-trees especially appropriate?

13. What is the relationship between red-black trees and B-trees?11.4

14. State the black and the red conditions.

15. How is the height of a red-black tree related to its size?

568 Chapter 11 • Multiway Trees

REFERENCES FOR FURTHER STUDY

One of the most thorough available studies of trees is in the series of books by
KNUTH. The correspondence from ordered trees to binary trees appears in Volume
1, pp. 332–347. Volume 3, pp. 471–505, discusses multiway trees, B-trees, and tries.

Tries were first studied in
EDWARD FREDKIN, “Trie memory,” Communications of the ACM 3 (1960), 490–499.

The original reference for B-trees is

R. BAYER and E. MCCREIGHT, “Organization and maintenance of large ordered in-
dexes,” Acta Informatica 1 (1972), 173–189.

An interesting survey of applications and variations of B-trees is

D. COMER, “The ubiquitous B-tree,” Computing Surveys 11 (1979), 121–137.

For an alternative treatment of red-black trees, including a removal algorithm, see:

THOMAS H. CORMEN, CHARLES E. LEISERSON, and RONALD L. RIVEST, Introduction to
Algorithms, M.I.T. Press, Cambridge, Mass., and McGraw-Hill, New York, 1990,
1028 pages.

This book gives comprehensive coverage of many different kinds of algorithms.
Another outline of a removal algorithm for red-black trees, with more extensive

mathematical analysis, appears in

DERICK WOOD, Data Structures, Algorithms, and Performance, Addison-Wesley, Read-
ing, Mass., 1993, pages 353–366.

Graphs 12

T
HIS CHAPTER introduces important mathematical structures called graphs
that have applications in subjects as diverse as sociology, chemistry, ge-
ography, and electrical engineering. We shall study methods to represent
graphs with the data structures available to us and shall construct several

important algorithms for processing graphs. Finally, we look at the possibility
of using graphs themselves as data structures.

12.1 Mathematical Background 570
12.1.1 Definitions and Examples 570
12.1.2 Undirected Graphs 571
12.1.3 Directed Graphs 571

12.2 Computer Representation 572
12.2.1 The Set Representation 572
12.2.2 Adjacency Lists 574
12.2.3 Information Fields 575

12.3 Graph Traversal 575
12.3.1 Methods 575
12.3.2 Depth-First Algorithm 577
12.3.3 Breadth-First Algorithm 578

12.4 Topological Sorting 579
12.4.1 The Problem 579
12.4.2 Depth-First Algorithm 580
12.4.3 Breadth-First Algorithm 581

12.5 A Greedy Algorithm: Shortest Paths 583
12.5.1 The Problem 583
12.5.2 Method 584
12.5.3 Example 585
12.5.4 Implementation 586

12.6 Minimal Spanning Trees 587
12.6.1 The Problem 587
12.6.2 Method 589
12.6.3 Implementation 590
12.6.4 Verification of Prim’s Algorithm 593

12.7 Graphs as Data Structures 594

Pointers and Pitfalls 596
Review Questions 597
References for Further Study 597

569

12.1 MATHEMATICAL BACKGROUND

12.1.1 Definitions and Examples
A graph G consists of a set V , whose members are called the vertices of G , together

454 with a set E of pairs of distinct vertices from V . These pairs are called the edges
of G . If e = (v,w) is an edge with vertices v and w , then v and w are said to lie
on e, and e is said to be incident with v and w . If the pairs are unordered, then
G is called an undirected graph; if the pairs are ordered, then G is called a directedgraphs and directed

graphs graph. The term directed graph is often shortened to digraph, and the unqualified
term graph usually means undirected graph. The natural way to picture a graph is to
represent vertices as points or circles and edges as line segments or arcs connecting
the vertices. If the graph is directed, then the line segments or arcs have arrowheads
indicating the direction. Figure 12.1 shows several examples of graphs.drawings

455

Honolulu

Tahiti
Fiji

Samoa

Noumea

Sydney
Auckland

C

A

B

C

D

Selected South Pacific air routes

Message transmission in a network

C

C

H

H

H

H

C

H

C

C

H

E

F

Benzene molecule

Figure 12.1. Examples of graphs

The places in the first part of Figure 12.1 are the vertices of the graph, and the
air routes connecting them are the edges. In the second part, the hydrogen and
carbon atoms (denoted H and C) are the vertices, and the chemical bonds are the
edges. The third part of Figure 12.1 shows a directed graph, where the nodes of
the network (A, B, . . . , F) are the vertices and the edges from one to another have
the directions shown by the arrows.

570

Section 12.1 • Mathematical Background 571

Graphs find their importance as models for many kinds of processes or struc-
tures. Cities and the highways connecting them form a graph, as do the compo-applications
nents on a circuit board with the connections among them. An organic chemical
compound can be considered a graph with the atoms as the vertices and the bonds
between them as edges. The people living in a city can be regarded as the vertices
of a graph with the relationship is acquainted with describing the edges. People
working in a corporation form a directed graph with the relation “supervises” de-

456

scribing the edges. The same people could also be considered as an undirected
graph, with different edges describing the relationship “works with.”

1 2

Connected

(a)

4 3

1 2

Path

(b)

4 3

1 2

Cycle

(c)

4 3

1 2

Disconnected

(d)

4 3

1 2

Tree

(e)

4 3

Figure 12.2. Various kinds of undirected graphs

12.1.2 Undirected Graphs
Several kinds of undirected graphs are shown in Figure 12.2. Two vertices in an
undirected graph are called adjacent if there is an edge from one to the other.454

Hence, in the undirected graph of part (a), vertices 1 and 2 are adjacent, as are 3
and 4, but 1 and 4 are not adjacent. A path is a sequence of distinct vertices, each
adjacent to the next. Part (b) shows a path. A cycle is a path containing at leastpaths, cycles,

connected three vertices such that the last vertex on the path is adjacent to the first. Part (c)
shows a cycle. A graph is called connected if there is a path from any vertex to any
other vertex; parts (a), (b), and (c) show connected graphs, and part (d) shows a
disconnected graph. If a graph is disconnected, we shall refer to a maximal subset
of connected vertices as a component. For example, the disconnected graph in part
(c) has two components: The first consists of vertices 1, 2, and 4, and the second has
just the vertex 3. Part (e) of Figure 12.2 shows a connected graph with no cycles.
You will notice that this graph is, in fact, a tree, and we take this property as the
definition: A free tree is defined as a connected undirected graph with no cycles.free tree

12.1.3 Directed Graphs
For directed graphs, we can make similar definitions. We require all edges in a
path or a cycle to have the same direction, so that following a path or a cycle means
always moving in the direction indicated by the arrows. Such a path (cycle) is
called a directed path (cycle). A directed graph is called strongly connected if theredirected paths and

cycles is a directed path from any vertex to any other vertex. If we suppress the direction
of the edges and the resulting undirected graph is connected, we call the directed
graph weakly connected. Figure 12.3 illustrates directed cycles, strongly connected
directed graphs, and weakly connected directed graphs.

572 Chapter 12 • Graphs

456

Directed cycle Strongly connected Weakly connected

(a) (b) (c)

Figure 12.3. Examples of directed graphs

The directed graphs in parts (b) and (c) of Figure 12.3 show pairs of vertices with
directed edges going both ways between them. Since directed edges are orderedmultiple edges
pairs and the ordered pairs (v,w) and (w,v) are distinct if v 6= w , such pairs
of edges are permissible in directed graphs. Since the corresponding unordered
pairs are not distinct, however, in an undirected graph there can be at most one
edge connecting a pair of vertices. Similarly, since the vertices on an edge are
required to be distinct, there can be no edge from a vertex to itself. We should
remark, however, that (although we shall not do so) sometimes these requirementsself-loops
are relaxed to allow multiple edges connecting a pair of vertices and self-loops
connecting a vertex to itself.

12.2 COMPUTER REPRESENTATION
If we are to write programs for solving problems concerning graphs, then we must
first find ways to represent the mathematical structure of a graph as some kind
of data structure. There are several methods in common use, which differ funda-
mentally in the choice of abstract data type used to represent graphs, and there are
several variations depending on the implementation of the abstract data type. In
other words, we begin with one mathematical system (a graph), then we study how
it can be described in terms of abstract data types (sets, tables, and lists can all be
used, as it turns out), and finally we choose implementations for the abstract data
type that we select.

12.2.1 The Set Representation
Graphs are defined in terms of sets, and it is natural to look first to sets to determine
their representation as data. First, we have a set of vertices, and, second, we have
the edges as a set of pairs of vertices. Rather than attempting to represent this set
of pairs directly, we divide it into pieces by considering the set of edges attached
to each vertex separately. In other words, we can keep track of all the edges in the
graph by keeping, for all vertices v in the graph, the set Ev of edges containing v ,
or, equivalently, the set Av of all vertices adjacent to v . In fact, we can use this idea
to produce a new, equivalent definition of a graph:

Section 12.2 • Computer Representation 573

Definition A digraph G consists of a set V , called the vertices of G , and, for all v ∈ V , a
subset Av of V , called the set of vertices adjacent to v .

From the subsets Av we can reconstruct the edges as ordered pairs by the following

457

rule: The pair (v,w) is an edge if and only if w ∈ Av . It is easier, however, to work
with sets of vertices than with pairs. This new definition, moreover, works for both
directed and undirected graphs. The graph is undirected means that it satisfies the
following symmetry property: w ∈ Av implies v ∈ Aw for all v , w ∈ V . This
property can be restated in less formal terms: It means that an undirected edge
between v and w can be regarded as made up of two directed edges, one from v
to w and the other from w to v .

1. Implementation of Sets
There are two general ways for us to implement sets of vertices in data structures
and algorithms. One way is to represent the set as a list of its elements; this method
we shall study presently. The other implementation, often called a bit string, keeps
a Boolean value for each potential element of the set to indicate whether or not itsets as Boolean arrays
is in the set. For simplicity, we shall consider that the potential elements of a set
are indexed with the integers from 0 to max_set − 1, where max_set denotes the
maximum number of elements that we shall allow. This latter strategy is easily
implemented either with the standard template library class std :: bitset<max_set>
or with our own class template that uses a template parameter to give the maximal
number of potential members of a set.

template <int max_set>
struct Set {

bool is_element[max_set];
};

We can now fully specify a first representation of a graph:

first implementation:
sets

template <int max_size>
class Digraph {

int count; // number of vertices, at most max_size
Set<max_size> neighbors[max_size];

};

In this implementation, the vertices are identified with the integers from 0 to
count − 1. If v is such an integer, the array entry neighbors[v] is the set of all
vertices adjacent to the vertex v.

2. Adjacency Tables
In the foregoing implementation, the structure Set is essentially implemented as
an array of bool entries. Each entry indicates whether or not the correspondingsets as arrays
vertex is a member of the set. If we substitute this array for a set of neighbors, we
find that the array neighbors in the definition of class Graph can be changed to an
array of arrays, that is, to a two-dimensional array, as follows:

574 Chapter 12 • Graphs

second
implementation:

adjacency table

template <int max_size>
class Digraph {

int count; // number of vertices, at most max_size
bool adjacency[max_size][max_size];

};

The adjacency table has a natural interpretation: adjacency[v][w] is true if andmeaning
only if vertex v is adjacent to vertex w. If the graph is directed, we interpret adja-
cency[v][w] as indicating whether or not the edge from v to w is in the graph. If
the graph is undirected, then the adjacency table must be symmetric; that is, ad-
jacency[v][w] = adjacency[w][v] for all v and w. The representation of a graph
by adjacency sets and by an adjacency table is illustrated in Figure 12.4.459

0

3

1 vertex Set
0

0 1 2 3

F T T F
F F T T
F F F F
T T T F

{ 1, 2 }
1 { 2, 3 }
2 ø
3 { 0, 1, 2 }

0
1
2
3

2

Directed graph Adjacency sets Adjacency table

Figure 12.4. Adjacency set and an adjacency table

12.2.2 Adjacency Lists
Another way to represent a set is as a list of its elements. For representing a graph,
we shall then have both a list of vertices and, for each vertex, a list of adjacent
vertices. We can consider implementations of graphs that use either contiguous
lists or simply linked lists. For more advanced applications, however, it is often
useful to employ more sophisticated implementations of lists as binary or multiway
search trees or as heaps. Note that, by identifying vertices with their indices in
the previous representations, we have ipso facto implemented the vertex set as a
contiguous list, but now we should make a deliberate choice concerning the use of
contiguous or linked lists.

1. List-based Implementation
We obtain list-based implementations by replacing our earlier sets of neighbors by

458

lists. This implementation can use either contiguous or linked lists. The contiguous
version is illustrated in part (b) of Figure 12.5, and the linked version is illustrated
in part (c) of Figure 12.5.

third implementation:
lists

typedef int Vertex;
template <int max_size>
class Digraph {

int count; // number of vertices, at most max_size
List<Vertex> neighbors[max_size];

};

Section 12.3 • Graph Traversal 575

2. Linked Implementation
Greatest flexibility is obtained by using linked objects for both the vertices and the
adjacency lists. This implementation is illustrated in part (a) of Figure 12.5 and
results in a definition such as the following:

fourth
implementation:

linked vertices and
edges

class Edge; // forward declaration
class Vertex {

Edge *first_edge; // start of the adjacency list
Vertex *next_vertex; // next vertex on the linked list

};
class Edge {

Vertex *end_point; // vertex to which the edge points
Edge *next_edge; // next edge on the adjacency list

};
class Digraph {

Vertex *first_vertex; // header for the list of vertices
};

12.2.3 Information Fields
Many applications of graphs require not only the adjacency information specified
in the various representations but also further information specific to each vertex or
each edge. In the linked representations, this information can be included as addi-
tional members within appropriate records, and, in the contiguous representations,
it can be included by making array entries into records. An especially important
case is that of a network, which is defined as a graph in which a numerical weightnetworks, weights
is attached to each edge. For many algorithms on networks, the best representation
is an adjacency table, where the entries are the weights rather than Boolean values.
We shall return to this topic later in the chapter.

12.3 GRAPH TRAVERSAL

12.3.1 Methods
In many problems, we wish to investigate all the vertices in a graph in some sys-

460
tematic order, just as with binary trees, where we developed several systematic
traversal methods. In tree traversal, we had a root vertex with which we generally
started; in graphs, we often do not have any one vertex singled out as special, and
therefore the traversal may start at an arbitrary vertex. Although there are many
possible orders for visiting the vertices of the graph, two methods are of particu-
lar importance. Depth-first traversal of a graph is roughly analogous to preorderdepth-first
traversal of an ordered tree. Suppose that the traversal has just visited a vertex v ,
and letw1,w2, . . . ,wk be the vertices adjacent to v . Then we shall next visitw1 and
keep w2, . . . ,wk waiting. After visiting w1 , we traverse all the vertices to which

576 Chapter 12 • Graphs

0 1

3 2

Digraph

Directed graph

(a) Linked lists

(b) Contiguous lists (c) Mixed

vertex 0

vertex 1

vertex 2

vertex 3

edge (0, 1) edge (0, 2)

edge (1, 2) edge (1, 3)

edge (3, 0) edge (3, 1) edge (3, 2)

vertex adjacency list first_edge

1 2

2 3

0 1 2

count = 4 count = 4

1

2

−

0

−

−

−

2

3

−

1

−

−

−

−

−

−

2

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Figure 12.5. Implementations of a graph with lists

it is adjacent before returning to traverse w2, . . . ,wk . Breadth-first traversal of

459

breadth-first
a graph is roughly analogous to level-by-level traversal of an ordered tree. If the
traversal has just visited a vertex v , then it next visits all the vertices adjacent to
v , putting the vertices adjacent to these in a waiting list to be traversed after all
vertices adjacent to v have been visited. Figure 12.6 shows the order of visiting
the vertices of one graph under both depth-first and breadth-first traversals.

Section 12.3 • Graph Traversal 577

Start 0 1 2

348

Depth-first traversal
5 6 7

Start 0 1 4

623

Breadth-first traversal
5 7 8

Figure 12.6. Graph traversal

12.3.2 Depth-First Algorithm
Depth-first traversal is naturally formulated as a recursive algorithm. Its action,

460

when it reaches a vertex v , is:

visit(v);
for (each vertex w adjacent to v)

traverse(w);

In graph traversal, however, two difficulties arise that cannot appear for tree
traversal. First, the graph may contain cycles, so our traversal algorithm may reachcomplications
the same vertex a second time. To prevent infinite recursion, we therefore introduce
a bool array visited. We set visited[v] to true immediately before visiting v, and
check the value of visited[w] before processing w. Second, the graph may not be
connected, so the traversal algorithm may fail to reach all vertices from a single
starting point. Hence we enclose the action in a loop that runs through all vertices
to make sure that we visit all components of the graph. With these refinements,

461

we obtain the following outline of depth-first traversal. Further details depend
on the choice of implementation of graphs and vertices, and we postpone them to
application programs.

main function outline template <int max_size>
void Digraph<max_size> :: depth_first(void (*visit)(Vertex &)) const
/* Post: The function *visit has been performed at each vertex of the Digraph in

depth-first order.
Uses: Method traverse to produce the recursive depth-first order. */

{ bool visited[max_size];
Vertex v;
for (all v in G) visited[v] = false;
for (all v in G) if (!visited[v])

traverse(v, visited, visit);
}

The recursion is performed in an auxiliary function traverse. Since traverse needs
access to the internal structure of a graph, it should be a member function of the
class Digraph. Moreover, since traverse is merely an auxiliary function, used in the
construction of the method depth_first, it should be private to the class Digraph.

578 Chapter 12 • Graphs

recursive traversal
outline

template <int max_size>
void Digraph<max_size> :: traverse(Vertex &v, bool visited[],

void (*visit)(Vertex &)) const
/* Pre: v is a vertex of the Digraph.

Post: The depth-first traversal, using function *visit, has been completed for v
and for all vertices that can be reached from v.

Uses: traverse recursively. */
{ Vertex w;

visited[v] = true;
(*visit)(v);
for (all w adjacent to v)

if (!visited[w])
traverse(w, visited, visit);

}

12.3.3 Breadth-First Algorithm
Since using recursion and programming with stacks are essentially equivalent, we462

could formulate depth-first traversal with a Stack, pushing all unvisited vertices
adjacent to the one being visited onto the Stack and popping the Stack to find thestacks and queues
next vertex to visit. The algorithm for breadth-first traversal is quite similar to the
resulting algorithm for depth-first traversal, except that a Queue is needed instead
of a Stack. Its outline follows.

breadth-first traversal
outline

template <int max_size>
void Digraph<max_size> :: breadth_first(void (*visit)(Vertex &)) const
/* Post: The function *visit has been performed at each vertex of the Digraph in

breadth-first order.
Uses: Methods of class Queue. */

{ Queue q;
bool visited[max_size];
Vertex v, w, x;
for (all v in G) visited[v] = false;
for (all v in G)

if (!visited[v]) {
q.append(v);
while (!q.empty()){

q.retrieve(w);
if (!visited[w]) {

visited[w] = true;
(*visit)(w);
for (all x adjacent to w)

q.append(x);
}
q.serve();

}
}

}

Section 12.4 • Topological Sorting 579

12.4 TOPOLOGICAL SORTING

12.4.1 The Problem

If G is a directed graph with no directed cycles, then a topological order for G is a
sequential listing of all the vertices in G such that, for all vertices v,w ∈ G , if theretopological order
is an edge from v to w , then v precedes w in the sequential listing. Throughout
this section, we shall consider only directed graphs that have no directed cycles.
The term acyclic is often used to mean that a graph has no cycles.

Such graphs arise in many problems. As a first application of topological order,applications
consider the courses available at a university as the vertices of a directed graph,
where there is an edge from one course to another if the first is a prerequisite for
the second. A topological order is then a listing of all the courses such that all
prerequisites for a course appear before it does. A second example is a glossary
of technical terms that is ordered so that no term is used in a definition before it

463

is itself defined. Similarly, the author of a textbook uses a topological order for
the topics in the book. Two different topological orders of a directed graph are
shown in Figure 12.7. As an example of algorithms for graph traversal, we shall
develop functions that produce a topological ordering of the vertices of a directed
graph that has no cycles. We shall develop two methods: first, using depth-first
traversal, and, then, using breadth-first traversal. Both methods apply to an object
of a class Digraph that uses the list-based implementation. Thus we shall assume
the following class specification:graph representation

464 typedef int Vertex;

template <int graph_size>
class Digraph {
public:

Digraph();
void read();
void write();

// methods to do a topological sort
void depth_sort(List<Vertex> &topological_order);
void breadth_sort(List<Vertex> &topological_order);

private:
int count;
List <Vertex> neighbors[graph_size];
void recursive_depth_sort(Vertex v, bool visited[],

List<Vertex> &topological_order);
};

The auxiliary member function recursive_depth_sort will be used by the method
depth_sort. Both sorting methods should create a list giving a topological order of
the vertices.

580 Chapter 12 • Graphs

Directed graph with no directed cycles

Depth-first ordering

Breadth-first ordering

43210

98765

9 6 3 2 0 5 74 8 1

3 6 9 4 1 5 70 2 8

Figure 12.7. Topological orderings of a directed graph

12.4.2 Depth-First Algorithm

In a topological order, each vertex must appear before all the vertices that are

463

its successors in the directed graph. For a depth-first topological ordering, we
therefore start by finding a vertex that has no successors and place it last in thestrategy
order. After we have, by recursion, placed all the successors of a vertex into the
topological order, then we can place the vertex itself in a position before any of its
successors. Since we first order the last vertices, we can repeatedly add vertices to
the beginning of the List topological_order. The method is a direct implementation
of the general depth first traversal procedure developed in the last section.

Section 12.4 • Topological Sorting 581

465
template <int graph_size>
void Digraph<graph_size> :: depth_sort(List<Vertex> &topological_order)
/* Post: The vertices of the Digraph are placed into List topological_order with a

depth-first traversal of those vertices that do not belong to a cycle.
Uses: Methods of class List, and function recursive_depth_sort to perform depth-

first traversal. */
{

bool visited[graph_size];
Vertex v;
for (v = 0; v < count; v++) visited[v] = false;
topological_order.clear();
for (v = 0; v < count; v++)

if (!visited[v]) // Add v and its successors into topological order.
recursive_depth_sort(v, visited, topological_order);

}

The auxiliary function recursive_depth_sort that performs the recursion, based on
the outline for the general function traverse, first places all the successors of v into
their positions in the topological order and then places v into the order.

template <int graph_size>
void Digraph<graph_size> :: recursive_depth_sort(Vertex v, bool *visited,

List<Vertex> &topological_order)
/* Pre: Vertex v of the Digraph does not belong to the partially completed List

topological_order.
Post: All the successors of v and finally v itself are added to topological_order

with a depth-first search.
Uses: Methods of class List and the function recursive_depth_sort. */

{
visited[v] = true;
int degree = neighbors[v].size();
for (int i = 0; i < degree; i++) {

Vertex w; // A (neighboring) successor of v
neighbors[v].retrieve(i, w);
if (!visited[w]) // Order the successors of w.

recursive_depth_sort(w, visited, topological_order);
}
topological_order.insert(0, v); // Put v into topological_order.

}

Since this algorithm visits each node of the graph exactly once and follows each
edge once, doing no searching, its running time is O(n+e), where n is the number
of vertices and e is the number of edges in the graph.performance

12.4.3 Breadth-First Algorithm
In a breadth-first topological ordering of a directed graph with no cycles, we start
by finding the vertices that should be first in the topological order and then applymethod

582 Chapter 12 • Graphs

the fact that every vertex must come before its successors in the topological order.
The vertices that come first are those that are not successors of any other vertex.
To find these, we set up an array predecessor_count whose entry at index v is the
number of immediate predecessors of vertex v. The vertices that are not successors
are those with no predecessors. We therefore initialize the breadth-first traversal
by placing these vertices into a Queue of vertices to be visited. As each vertex is
visited, it is removed from the Queue, assigned the next available position in the
topological order (starting at the beginning of the order), and then removed from
further consideration by reducing the predecessor count for each of its immediate
successors by one. When one of these counts reaches zero, all predecessors of the
corresponding vertex have been visited, and the vertex itself is then ready to be
processed, so it is added to the Queue. We thereby obtain the following function:466

template <int graph_size>
void Digraph<graph_size> :: breadth_sort(List<Vertex> &topological_order)
/* Post: The vertices of the Digraph are arranged into the List topological_order

which is found with a breadth-first traversal of those vertices that do not
belong to a cycle.

Uses: Methods of classes Queue and List. */

{
topological_order.clear();
Vertex v, w;
int predecessor_count[graph_size];

for (v = 0; v < count; v++) predecessor_count[v] = 0;
for (v = 0; v < count; v++)

for (int i = 0; i < neighbors[v].size(); i++) {
// Loop over all edges v — w.

neighbors[v].retrieve(i, w);
predecessor_count[w]++;

}

Queue ready_to_process;
for (v = 0; v < count; v++)

if (predecessor_count[v] == 0)
ready_to_process.append(v);

while (!ready_to_process.empty()) {
ready_to_process.retrieve(v);
topological_order.insert(topological_order.size(), v);
for (int j = 0; j < neighbors[v].size(); j++) { // Traverse successors of v.

neighbors[v].retrieve(j, w);
predecessor_count[w]−−;
if (predecessor_count[w] == 0)

ready_to_process.append(w);
}
ready_to_process.serve();

}
}

Section 12.5 • A Greedy Algorithm: Shortest Paths 583

This algorithm requires one of the packages for processing queues. The queue can
be implemented in any of the ways described in Chapter 3 and Chapter 4. Since
the entries in the Queue are to be vertices, we should add a specification: typedef
Vertex Queue_entry; before the implementation of breadth_sort. As with depth-
first traversal, the time required by the breadth-first function is O(n+ e), where nperformance
is the number of vertices and e is the number of edges in the directed graph.

12.5 A GREEDY ALGORITHM: SHORTEST PATHS

12.5.1 The Problem

As another application of graphs, one requiring somewhat more sophisticated rea-
467 soning, we consider the following problem. We are given a directed graph G in

which every edge has a nonnegative weight attached: In other words, G is a di-
rected network. Our problem is to find a path from one vertex v to another w
such that the sum of the weights on the path is as small as possible. We call such a
path a shortest path, even though the weights may represent costs, time, or someshortest path
quantity other than distance. We can think of G as a map of airline routes, for
example, with each vertex representing a city and the weight on each edge the cost
of flying from one city to the second. Our problem is then to find a routing from
city v to city w such that the total cost is a minimum. Consider the directed graph
shown in Figure 12.8. The shortest path from vertex 0 to vertex 1 goes via vertex 2
and has a total cost of 4, compared to the cost of 5 for the edge directly from 0 to 1
and the cost of 8 for the path via vertex 4.

2 5

3
6

10
4

2

1

6

2

0

1

23

4

Figure 12.8. A directed graph with weights

It turns out that it is just as easy to solve the more general problem of starting
at one vertex, called the source, and finding the shortest path to every other vertex,source
instead of to just one destination vertex. In our implementation, the source vertex
will be passed as a parameter. Our problem then consists of finding the shortest
path from vertex source to every vertex in the graph. We require that the weights
are all nonnegative.

584 Chapter 12 • Graphs

12.5.2 Method
The algorithm operates by keeping a set S of those vertices whose shortest distance
from source is known. Initially, source is the only vertex in S . At each step, we add

468 to S a remaining vertex for which the shortest path from source has been found.
The problem is to determine which vertex to add to S at each step. Let us think of
the vertices already in S as having been labeled with some color, and think of the
edges making up the shortest paths from source to these vertices as also colored.

We shall maintain a table distance that gives, for each vertex v , the distance
from source to v along a path all of whose edges are colored, except possibly thedistance table
last one. That is, if v is in S , then distance[v]gives the shortest distance to v and all
edges along the corresponding path are colored. If v is not in S , then distance[v]
gives the length of the path from source to some vertex w in S plus the weight of
the edge from w to v , and all the edges of this path except the last one are colored.
The table distance is initialized by setting distance[v] to the weight of the edge
from source to v if it exists and to infinity if not.

To determine what vertex to add to S at each step, we apply the greedy criteriongreedy algorithm
of choosing the vertex v with the smallest distance recorded in the table distance,
such that v is not already in S . We must prove that, for this vertex v , the distance
recorded in distance really is the length of the shortest path from source to v . Forverification
suppose that there were a shorter path from source to v , such as shown in Figure
12.9. This path first leaves S to go to some vertex x , then goes on to v (possibly
even reentering S along the way). But if this path is shorter than the colored path
to v , then its initial segment from source to x is also shorter, so that the greedy
criterion would have chosen x rather than v as the next vertex to add to S , since
we would have had distance[x] < distance[v].end of proof

Colored

Source0

S

Hypothetical

v

x

path shortest path

Figure 12.9. Finding a shortest path

When we add v to S , we think of v as now colored and also color the shortest
path from source to v (every edge of which except the last was actually already
colored). Next, we must update the entries of distance by checking, for each vertex
w not in S , whether a path through v and then directly to w is shorter than the
previously recorded distance tow . That is, we replace distance[w] by distance[v]maintain the invariant
plus the weight of the edge from v to w if the latter quantity is smaller.

Section 12.5 • A Greedy Algorithm: Shortest Paths 585
469

2 5

3
6

10
4

2

1

6

2

0

1

23

4

2 5

3
1

23

4

2 5

3
6

10
4

0

1

23

4

2 5

4

2

1

3
1

3

2

3

2

1

6

3

2

3

2

1

0

4

2

1

2

4

0

14

3 2

0

Source

(a) (b)

d = 2 d = 5

d = 3d = ∞

S = {0}

S = {0, 4} S = {0, 4, 2}

S = {0, 4, 2, 1} S = {0, 4, 2, 1, 3}

d = 2 d = 4

d = 3d = 5

d = 2 d = 4

d = 3d = 5

d = 2 d = 4

d = 3d = 5

d = 2 d = 5

d = 3d = 6

(c) (d)

(e) (f)

0

Figure 12.10. Example of shortest paths

12.5.3 Example
Before writing a formal function incorporating this method, let us work through
the example shown in Figure 12.10. For the directed graph shown in part (a), the
initial situation is shown in part (b): The set S (colored vertices) consists of source,
vertex 0, alone, and the entries of the distance table distance are shown as numbers

586 Chapter 12 • Graphs

in color beside the other vertices. The distance to vertex 4 is shortest, so 4 is added
to S in part (c), and the distance distance[3] is updated to the value 6. Since the
distances to vertices 1 and 2 via vertex 4 are greater than those already recorded
in T , their entries remain unchanged. The next closest vertex to source is vertex 2,
and it is added in part (d), which also shows the effect of updating the distances
to vertices 1 and 3, whose paths via vertex 2 are shorter than those previously
recorded. The final two steps, shown in parts (e) and (f), add vertices 1 and 3 to S
and yield the paths and distances shown in the final diagram.

12.5.4 Implementation
For the sake of writing a function to embody this algorithm for finding shortest
distances, we must choose an implementation of the directed graph. Use of the
adjacency-table implementation facilitates random access to all the vertices of the
graph, as we need for this problem. Moreover, by storing the weights in the table,
we can use the table to give weights as well as adjacencies. In the following Digraph
specification, we add a template parameter to allow clients to specify the type of
weights to be used. For example, a client using our class Digraph to model a
network of airline routes might wish to use either integer or real weights for the
cost of an airline route.470

template <class Weight, int graph_size>
class Digraph {
public:

// Add a constructor and methods for Digraph input and output.
void set_distances(Vertex source, Weight distance[]) const;

protected:
int count;
Weight adjacency[graph_size][graph_size];

};

The data member count records the number of vertices in a particular Digraph.
In applications, we would need to flesh out this class by adding methods for in-
put and output, but since these will not be needed in the implementation of the
method set_distances, which calculates shortest paths, we shall leave the additional
methods as exercises.

We shall assume that the class Weight has comparison operators. Moreover, we
shall expect clients to declare a largest possible Weight value called infinity. For ex-
ample, client code working with integer weights could make use of the information
in the ANSI C++ standard library <limits> and use a global definition:

const Weight infinity = numeric_limits<int> :: max();

We shall place the value infinity in any position of the adjacency table for which the
corresponding edge does not exist. The method set_distances that we now write
will calculate the table of closest distances into its output parameter distance[].

Section 12.6 • Minimal Spanning Trees 587

shortest distance
procedure

template <class Weight, int graph_size>
void Digraph<Weight, graph_size> :: set_distances(Vertex source,

Weight distance[]) const
/* Post: The array distance gives the minimal path weight from vertex source to

each vertex of the Digraph. */
{

Vertex v, w;
bool found[graph_size]; // Vertices found in S
for (v = 0; v < count; v++) {

found[v] = false;
distance[v] = adjacency[source][v];

}

found[source] = true; // Initialize with vertex source alone in the set S.
distance[source] = 0;
for (int i = 0; i < count; i++) { // Add one vertex v to S on each pass.

Weight min = infinity;
for (w = 0; w < count; w++) if (!found[w])

if (distance[w] < min) {
v = w;
min = distance[w];

}

found[v] = true;
for (w = 0; w < count; w++) if (!found[w])

if (min + adjacency[v][w] < distance[w])
distance[w] = min + adjacency[v][w];

}
}

To estimate the running time of this function, we note that the main loop is executedperformance
n− 1 times, where n is the number of vertices, and within the main loop are two
other loops, each executed n − 1 times, so these loops contribute a multiple of
(n − 1)2 operations. Statements done outside the loops contribute only O(n), so
the running time of the algorithm is O(n2).

12.6 MINIMAL SPANNING TREES

12.6.1 The Problem

The shortest-path algorithm of the last section applies without change to networks
and graphs as well as to directed networks and digraphs. For example, in Figure
12.11 we illustrate the result of its application to find shortest paths (shown in color)
from a source vertex, labeled 0, to the other vertices of a network.

588 Chapter 12 • Graphs

471

3

3 3 33

4 4

12

3

0

51

42
2

2

Figure 12.11. Finding shortest paths in a network

If the original network is based on a connected graph G , then the shortest paths
from a particular source vertex link that source to all other vertices in G . Therefore,
as we can see in Figure 12.11, if we combine the computed shortest paths together,
we obtain a tree that links up all the vertices of G . In other words, we obtain a
connected tree that is build up out of all the vertices and some of the edges of G .
We shall refer to any such tree as a spanning tree of G . As in the previous section,
we can think of a network on a graph G as a map of airline routes, with each
vertex representing a city and the weight on each edge the cost of flying from one
city to the second. A spanning tree of G represents a set of routes that will allow
passengers to complete any conceivable trip between cities. Of course, passengers
will frequently have to use several flights to complete journeys. However, this
inconvenience for the passengers is offset by lower costs for the airline and cheaper
tickets. In fact, spanning trees have been commonly adopted by airlines as hub-
spoke route systems. If we imagine the network of Figure 12.11 as representing
a hub-spoke system, then the source vertex corresponds to the hub airport, and
the paths emerging from this vertex are the spoke routes. It is important for an
airline running a hub-spoke system to minimize its expenses by choosing a system
of routes whose costs have a minimal sum. For example, in Figure 12.12, where a
pair of spanning trees of a network are illustrated with colored edges, an airline
would prefer the second spanning tree, because the sum of its labels is smaller. To
model an optimal hub-spoke system, we make the following definition:

Definition A minimal spanning tree of a connected network is a spanning tree such that
the sum of the weights of its edges is as small as possible.minimal spanning tree

Although it is not difficult to compare the two spanning trees of Figure 12.12, it is
much harder to see whether there are any other, cheaper spanning trees. Our prob-
lem is to devise a method that determines a minimal spanning tree of a connected
network.

Section 12.6 • Minimal Spanning Trees 589

3

3 3 33

4 4

12

3

0

51

42
2

Weight sum of tree = 15
(a)

2

3

3 3 33

4 4

12

3

0

51

42
2

Weight sum of tree = 12
(b)

2

Figure 12.12. Two spanning trees in a network

12.6.2 Method

We already know an algorithm for finding a spanning tree of a connected graph,
since the shortest path algorithm will do this. It turns out that we can make a small

473 change to our shortest path algorithm to obtain a method, first implemented in
1957 by R. C. PRIM, that finds a minimal spanning tree.

We start out by choosing a starting vertex, that we call source, and, as we
proceed through the method, we keep a set X of those vertices whose paths to the
source in the minimal spanning tree that we are building have been found. We also
need to keep track of the set Y of edges that link the vertices in X in the tree under
construction. Thus, over the course of time, we can visualize the vertices in X and
edges in Y as making up a small tree that grows to become our final spanning tree.
Initially, source is the only vertex in X , and the edge set Y is empty. At each step,
we add an additional vertex to X : This vertex is chosen so that an edge back to X
has as small as possible a weight. This minimal edge back to X is added to Y .

It is quite tricky to prove that Prim’s algorithm does give a minimal spanning
tree, and we shall postpone this verification until the end of this section. However,
we can understand the selection of the new vertex that we add to X and the new
edge that we add to Y by noting that eventually we must incorporate an edge
linking X to the other vertices of our network into the spanning tree that we are
building. The edge chosen by Prim’s criterion provides the cheapest way to ac-
complish this linking, and so according to the greedy criterion, we should use it.
When we come to implement Prim’s algorithm, we shall maintain a list of vertices
that belong to X as the entries of a Boolean array component. It is convenient for
us to store the edges in Y as the edges of a graph that will grow to give the output
tree from our program.

We shall maintain an auxiliary table neighbor that gives, for each vertex v ,
the vertex of X whose edge to v has minimal cost. It is convenient to maintain aneighbor table
second table distance that records these minimal costs. If a vertex v is not joined bydistance table
an edge to X we shall record its distance as the value infinity. The table neighbor

590 Chapter 12 • Graphs

is initialized by setting neighbor[v] to source for all vertices v , and distance is
initialized by setting distance[v] to the weight of the edge from source to v if it
exists and to infinity if not.

To determine what vertex to add to X at each step, we choose the vertex v
with the smallest value recorded in the table distance, such that v is not already in
X . After this we must update our tables to reflect the change that we have made
to X . We do this by checking, for each vertex w not in X , whether there is an edge
linking v and w , and if so, whether this edge has a weight less than distance[w].
In case there is an edge (v,w) with this property, we reset neighbor[w] to v andmaintain the invariant
distance[w] to the weight of the edge.

474
For example, let us work through the network shown in part (a) of Figure 12.13.

The initial situation is shown in part (b): The set X (colored vertices) consists
of source alone, and for each vertex w the vertex neighbor[w] is visualized by
following any arrow emerging from w in the diagram. (The value of distance[w]
is the weight of the corresponding edge.) The distance to vertex 1 is among the
shortest, so 1 is added to X in part (c), and the entries in tables distance and
neighbor are updated for vertices 2 and 5. The other entries in these tables remain
unchanged. Among the next closest vertices to X is vertex 2, and it is added in part
(d), which also shows the effect of updating the distance and neighbor tables. The
final three steps are shown in parts (e), (f), and (g).

12.6.3 Implementation
To implement Prim’s algorithm, we must begin by choosing a C++ class to represent
a network. The similarity of the algorithm to the shortest path algorithm of the last
section suggests that we should base a class Network on our earlier class Digraph.475

template <class Weight, int graph_size>
class Network: public Digraph<Weight, graph_size> {
public:

Network();
void read(); // overridden method to enter a Network
void make_empty(int size = 0);
void add_edge(Vertex v, Vertex w, Weight x);
void minimal_spanning(Vertex source,

Network<Weight, graph_size> &tree) const;
};

Here, we have overridden an input method, read, to make sure that the weight
of any edge (v,w) matches that of the edge (w,v): In this way, we preserve our
data structure from the potential corruption of undirected edges. The new method
make_empty(int size) creates a Network with size vertices and no edges. The other
new method, add_edge, adds an edge with a specified weight to a Network. Just
as in the last section, we shall assume that the class Weight has comparison oper-
ators. Moreover, we shall expect clients to declare a largest possible Weight value
called infinity. The method minimal_spanning that we now write will calculate a
minimal spanning tree into its output parameter tree. Although the method can
only compute a spanning tree when applied to a connected Network, it will always

Section 12.6 • Minimal Spanning Trees 591

3

3 3 33

4 4

12

3

0

51

42
2

2

3

3 3 33

4 4

12

51

42
2

2

3

3

3 3 33

4 4

12

2

2

3

3 3 33

4 4

12

5

2

2

3

3

3 3 33

4 4

12

2

2

3

3

3 3 33

4 4

12

5

4
2

2

3

3

3 3 33

4 4

12

51

42
2

(a) (b)

Minimal spanning tree, weight sum = 11
(g)

(e) (f)(d)

(c)

2

3

0

0

51

42

0

1

42

0

51

42

0

1

2

0

3

Figure 12.13. Example of Prim’s algorithm

592 Chapter 12 • Graphs

compute a spanning tree for the connected component determined by the vertex
source in a Network.476

template <class Weight, int graph_size>
void Network < Weight, graph_size > :: minimal_spanning(Vertex source,

Network<Weight, graph_size> &tree) const
/* Post: The Network tree contains a minimal spanning tree for the connected

component of the original Network that contains vertex source. */

{
tree.make_empty(count);
bool component[graph_size]; // Vertices in set X
Weight distance[graph_size]; // Distances of vertices adjacent to X
Vertex neighbor[graph_size]; // Nearest neighbor in set X
Vertex w;

for (w = 0; w < count; w++) {
component[w] = false;
distance[w] = adjacency[source][w];
neighbor[w] = source;

}

component[source] = true; // source alone is in the set X.
for (int i = 1; i < count; i++) {

Vertex v; // Add one vertex v to X on each pass.
Weight min = infinity;
for (w = 0; w < count; w++) if (!component[w])

if (distance[w] < min) {
v = w;
min = distance[w];

}

if (min < infinity) {
component[v] = true;
tree.add_edge(v, neighbor[v], distance[v]);
for (w = 0; w < count; w++) if (!component[w])

if (adjacency[v][w] < distance[w]) {
distance[w] = adjacency[v][w];
neighbor[w] = v;

}
}
else break; // finished a component in disconnected graph

}
}

To estimate the running time of this function, we note that the main loop is executedperformance
n− 1 times, where n is the number of vertices, and within the main loop are two
other loops, each executed n − 1 times, so these loops contribute a multiple of
(n − 1)2 operations. Statements done outside the loops contribute only O(n), so
the running time of the algorithm is O(n2).

Section 12.6 • Minimal Spanning Trees 593

12.6.4 Verification of Prim’s Algorithm

We must prove that, for a connected graph G , the spanning tree S that is produced
by Prim’s algorithm has a smaller edge-weight sum than any other spanning tree
of G . Prim’s algorithm determines a sequence of edges s1, s2, . . . , sn that make up

477

the tree S . Here, as shown in Figure 12.14, s1 is the first edge added to the set Y in
Prim’s algorithm, s2 is the second edge added to Y , and so on.

s3
s1

s4

S

(a)

T

t
tX

(b)

T + sm + 1

(c)

C leaves and reenters X

(d)

s5 s6

s2 s1 s2 = sm
sm + 1

C

U = T + sm + 1 – t

(e)

sm + 1

sm + 1

C

Figure 12.14. Optimality of the output tree of Prim’s algorithm

In order to show that S is a minimal spanning tree, we prove instead that if m

478

is an integer with 0 ≤m ≤ n, then there is a minimal spanning tree that contains
the edges si with i ≤m. We can work by induction on m to prove this result. Theinduction: base case
base case, where m = 0, is certainly true, since any minimal spanning tree does
contain the requisite empty set of edges. Moreover, once we have completed the
induction, the final case with m = n shows that there is a minimal spanning treefinal case
that contains all the edges of S , and therefore agrees with S . (Note that adding
any edge to a spanning tree creates a cycle, so any spanning tree that does contain
all the edges of S must be S itself). In other words, once we have completed our
induction, we will have shown that S is a minimal spanning tree.

We must therefore establish the inductive step, by showing that if m < n andinductive step
T is a minimal spanning tree that contains the edges si with i ≤ m, then there is
a minimal spanning tree U with these edges and sm+1 . If sm+1 already belongs to

479 T , we can simply set U = T , so we shall also suppose that sm+1 is not an edge of
T . See part (b) of Figure 12.14.

594 Chapter 12 • Graphs

Let us write X for the set of vertices of S belonging to the edges s1, s2, . . . , sm
and R for the set of remaining vertices of S . We recall that, in Prim’s algorithm, the
selected edge sm+1 links a vertex of X to R , and sm+1 is at least as cheap as any other
edge between these sets. Consider the effect of adding sm+1 to T , as illustrated in
part (c) of Figure 12.14. This addition must create a cycle C , since the connected
network T certainly contains a multi-edge path linking the endpoints of sm+1 . The
cycle C must contain an edge t 6= sm+1 that links X to R , since as we move once
around the closed path C we must enter the set X exactly as many times as we
leave it. See part (d) of Figure 12.14. Prim’s algorithm guarantees that the weight
of sm+1 is less than or equal to the weight of t . Therefore, the new spanning tree U
(see part (e) of Figure 12.14), obtained from T by deleting t and adding sm+1 , has
a weight sum no greater than that of T . We deduce that U must also be a minimal
spanning tree of G , but U contains the sequence of edges s1, s2, . . . , sm, sm+1 . This
completes our induction.end of proof

12.7 GRAPHS AS DATA STRUCTURES
In this chapter, we have studied a few applications of graphs, but we have hardly
begun to scratch the surface of the broad and deep subject of graph algorithms. In
many of these algorithms, graphs appear, as they have in this chapter, as mathe-
matical structures capturing the essential description of a problem rather than as
computational tools for its solution. Note that in this chapter we have spoken ofmathematical

structures and data
structures

graphs as mathematical structures, and not as data structures, for we have used
graphs to formulate mathematical problems, and, to write algorithms, we have
then implemented the graphs within data structures like tables and lists. Graphs,
however, can certainly be regarded as data structures themselves, data structures
that embody relationships among the data more complicated than those describing
a list or a tree. Because of their generality and flexibility, graphs are powerful data
structures that prove valuable in more advanced applications such as the designflexibility and power
of data base management systems. Such powerful tools are meant to be used, of
course, whenever necessary, but they must always be used with care so that their
power is not turned to confusion. Perhaps the best safeguard in the use of powerful
tools is to insist on regularity; that is, to use the powerful tools only in carefully
defined and well-understood ways. Because of the generality of graphs, it is not
always easy to impose this discipline on their use. In this world, nonetheless, ir-irregularity
regularities will always creep in, no matter how hard we try to avoid them. It is the
bane of the systems analyst and programmer to accommodate these irregularities
while trying to maintain the integrity of the underlying system design. Irregularity
even occurs in the very systems that we use as models for the data structures we
devise, models such as the family trees whose terminology we have always used.
An excellent illustration of what can happen is the following classic story, quoted
by N. WIRTH1 from a Zurich newspaper of July 1922.

I married a widow who had a grown-up daughter. My father, who visited us quite

480

often, fell in love with my step-daughter and married her. Hence, my father became

1 Algorithms + Data Structures = Programs, Prentice Hall, Englewood Cliffs, N. J., 1976, page 170.

Section 12.7 • Graphs as Data Structures 595

my son-in-law, and my step-daughter became my mother. Some months later, my
wife gave birth to a son, who became the brother-in-law of my father as well as my
uncle. The wife of my father, that is my step-daughter, also had a son. Thereby, I
got a brother and at the same time a grandson. My wife is my grandmother, since
she is my mother’s mother. Hence, I am my wife’s husband and at the same time
her step-grandson; in other words, I am my own grandfather.

Exercises
12.7

E1. (a) Find all the cycles in each of the following graphs. (b) Which of these graphs
are connected? (c) Which of these graphs are free trees?

1 2
(3)

3 4

1 2
(4)

3 4

1 2
(2)

3 4

1 2
(1)

3

E2. For each of the graphs shown in Exercise E1, give the implementation of the
graph as (a) an adjacency table, (b) a linked vertex list with linked adjacency
lists, (c) a contiguous vertex list of contiguous adjacency lists.

E3. A graph is regular if every vertex has the same valence (that is, if it is adjacent to
the same number of other vertices). For a regular graph, a good implementation
is to keep the vertices in a linked list and the adjacency lists contiguous. The
length of all the adjacency lists is called the degree of the graph. Write a C++
class specification for this implementation of regular graphs.

E4. The topological sorting functions as presented in the text are deficient in error
checking. Modify the (a) depth-first and (b) breadth-first functions so that they
will detect any (directed) cycles in the graph and indicate what vertices cannot
be placed in any topological order because they lie on a cycle.

E5. How can we determine a maximal spanning tree in a network?

E6. Kruskal’s algorithm to compute a minimal spanning tree in a network works
by considering all edges in increasing order of weight. We select edges for a
spanning tree, by adding edges to an initially empty set. An edge is selected
if together with the previously selected edges it creates no cycle. Prove that
the edges chosen by Kruskal’s algorithm do form a minimal spanning tree of
a connected network.

E7. Dijkstra’s algorithm to compute a minimal spanning tree in a network works
by considering all edges in any convenient order. As in Kruskal’s algorithm,
we select edges for a spanning tree, by adding edges to an initially empty set.
However, each edge is now selected as it is considered, but if it creates a cycle
together with the previously selected edges, the most expensive edge in this
cycle is deselected. Prove that the edges chosen by Dijkstra’s algorithm also
form a minimal spanning tree of a connected network.

596 Chapter 12 • Graphs

Programming
Projects 12.7

P1. Write Digraph methods called read that will read from the terminal the number
of vertices in an undirected graph and lists of adjacent vertices. Be sure to
include error checking. The graph is to be implemented with

(a) an adjacency table;
(b) a linked vertex list with linked adjacency lists;
(c) a contiguous vertex list of linked adjacency lists.

P2. Write Digraph methods called write that will write pertinent information spec-
ifying a graph to the terminal. The graph is to be implemented with

(a) an adjacency table;
(b) a linked vertex list with linked adjacency lists;
(c) a contiguous vertex list of linked adjacency lists.

P3. Use the methods read and write to implement and test the topological sorting
functions developed in this section for

(a) depth-first order and
(b) breadth-first order.

P4. Write Digraph methods called read and write that will perform input and out-
put for the implementation of Section 12.5. Make sure that the method write()
also applies to the derived class Network of Section 12.6.

P5. Implement and test the method for determining shortest distances in directed
graphs with weights.

P6. Implement and test the methods of Prim, Kruskal, and Dijkstra for determining
minimal spanning trees of a connected network.

POINTERS AND PITFALLS

1. Graphs provide an excellent way to describe the essential features of many
481 applications, thereby facilitating specification of the underlying problems and

formulation of algorithms for their solution. Graphs sometimes appear as
data structures but more often as mathematical abstractions useful for problem
solving.

2. Graphs may be implemented in many ways by the use of different kinds of
data structures. Postpone implementation decisions until the applications of
graphs in the problem-solving and algorithm-development phases are well
understood.

3. Many applications require graph traversal. Let the application determine the
traversal method: depth first, breadth first, or some other order. Depth-first
traversal is naturally recursive (or can use a stack). Breadth-first traversal
normally uses a queue.

4. Greedy algorithms represent only a sample of the many paradigms useful in
developing graph algorithms. For further methods and examples, consult the
references.

Chapter 12 • References for Further Study 597

REVIEW QUESTIONS

1. In the sense of this chapter, what is a graph? What are edges and vertices?12.1

2. What is the difference between an undirected and a directed graph?
3. Define the terms adjacent, path, cycle, and connected.
4. What does it mean for a directed graph to be strongly connected? Weakly

connected?
5. Describe three ways to implement graphs in computer memory.12.2

6. Explain the difference between depth-first and breadth-first traversal of a graph.12.3

7. What data structures are needed to keep track of the waiting vertices during
(a) depth-first and (b) breadth-first traversal?

8. For what kind of graphs is topological sorting defined?12.4

9. What is a topological order for such a graph?
10. Why is the algorithm for finding shortest distances called greedy?12.5

11. Explain how Prim’s algorithm for minimal spanning trees differs from Krus-12.6
kal’s algorithm.

REFERENCES FOR FURTHER STUDY

The study of graphs and algorithms for their processing is a large subject and one
that involves both mathematics and computing science. Three books, each of which
contains many interesting algorithms, are

R. E. TARJAN, Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, 1983, 131 pages.

SHIMON EVEN, Graph Algorithms, Computer Science Press, Rockville, Md., 1979, 249
pages.

E. M. REINGOLD, J. NIEVERGELT, N. DEO, Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, Englewood Cliffs, N. J., 1977, 433 pages.

The original reference for the greedy algorithm determining the shortest paths in
a graph is

E. W. DIJKSTRA, “A note on two problems in connexion with graphs,” Numerische
Mathematik 1 (1959), 269–271.

Prim’s algorithm for minimal spanning trees is reported in
R. C. PRIM, “Shortest connection networks and some generalizations,” Bell System
Technical Journal 36 (1957), 1389–1401.

Kruskal’s algorithm is described in
J. B. KRUSKAL, “On the shortest spanning tree of a graph and the traveling salesman
problem,” Proceedings of the American Mathematical Society 7 (1956), 48–50.

The original reference for Dijkstra’s algorithm for minimal spanning trees is
E. W. DIJKSTRA, “Some theorems on spanning subtrees of a graph,” Indagationes
Mathematicæ 28 (1960), 196–199.

Case Study:
The Polish
Notation 13

T
HIS CHAPTER studies the Polish notation for arithmetic or logical expres-
sions, first in terms of problem solving, and then as applied to a program
that interactively accepts an expression, compiles it, and evaluates it. This
chapter illustrates uses of recursion, stacks, tables, and trees, as well as

their interplay in problem solving and algorithm design.

13.1 The Problem 599
13.1.1 The Quadratic Formula 599

13.2 The Idea 601
13.2.1 Expression Trees 601
13.2.2 Polish Notation 603

13.3 Evaluation of Polish Expressions 604
13.3.1 Evaluation of an Expression in Prefix

Form 605
13.3.2 C++ Conventions 606
13.3.3 C++ Function for Prefix

Evaluation 607
13.3.4 Evaluation of Postfix Expressions 608
13.3.5 Proof of the Program:

Counting Stack Entries 609
13.3.6 Recursive Evaluation of Postfix

Expressions 612

13.4 Translation from Infix Form to Polish
Form 617

13.5 An Interactive Expression Evaluator 623
13.5.1 Overall Structure 623
13.5.2 Representation of the Data:

Class Specifications 625
13.5.3 Tokens 629
13.5.4 The Lexicon 631
13.5.5 Expressions: Token Lists 634
13.5.6 Auxiliary Evaluation Functions 639
13.5.7 Graphing the Expression:

The Class Plot 640
13.5.8 A Graphics-Enhanced Plot Class 643

References for Further Study 645

598

13.1 THE PROBLEM

One of the most important accomplishments of the early designers of computer
languages was allowing a programmer to write arithmetic expressions in some-
thing close to their usual mathematical form. It was a real triumph to design a
compiler that understood expressions such as

(x + y) * exp(x − z) − 4.0
a * b + c/d − c * (x + y)
!(p && q) || (x <= 7.0)

and produced machine-language output. In fact, the name FORTRAN stands foretymology: FORTRAN

FORmula TRANslator

in recognition of this very accomplishment. It often takes only one simple idea that,
when fully understood, will provide the key to an elegant solution of a difficult
problem, in this case the translation of expressions into sequences of machine-
language instructions.

The triumph of the method to be developed in this chapter is that, in contrast
to the first approach a person might take, it is not necessary to make repeated
scans through the expression to decipher it, and, after a preliminary translation,
neither parentheses nor priorities of operators need be taken into account, so that
evaluation of the expression can be achieved with great efficiency.

13.1.1 The Quadratic Formula

Before we discuss this idea, let us briefly imagine the problems an early compiler
483 designer might have faced when confronted with a fairly complicated expression.

Even the quadratic formula produces problems:

x = (−b + (b ↑ 2 − (4 × a)×c)↑ 1
2)/(2 × a)

Here, and throughout this chapter, we denote exponentiation by ‘↑.’ Of course,notation
this operator does not exist in C++, but in this chapter we shall design our own
system of expressions, and we are free to set our own conventions in any way we
wish. When we take square roots, with ↑ 1

2 , we limit our attention to only the
non-negative root.

Which operations must be done before others? What are the effects of parenthe-
ses? When can they be omitted? As you answer these questions for this example,
you will probably look back and forth through the expression several times.

In considering how to translate such expressions, the compiler designers soon
settled on the conventions that are familiar now: Operations are ordinarily done left
to right, subject to the priorities assigned to operators, with exponentiation highest,
then multiplication and division, then addition and subtraction. This order can be
altered by parentheses. For the quadratic formula the order of operations is

599

600 Chapter 13 • Case Study: The Polish Notation

483

x = (−b + (b ↑ 2 − (4 × a) × c) ↑ 1
2) / (2 × a)

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
10 1 7 2 5 3 4 6 9 8

Note that assignment = really is an operator that takes the value of its right operand
and assigns it to the left operand. The priority of = will be the lowest of any
operator, since it cannot be done until the expression is fully evaluated.

1. Unary Operators and Priorities

With one exception, all the operators in the quadratic equation are binary, that is,
they have two operands. The one exception is the leading minus sign in −b . This
is a unary operator, and unary operators provide a slight complication in deter-
mining priorities. Normally we interpret −22 as −4, which means that negation
is done after exponentiation, but we interpret 2−2 as 1

4 and not as −4, so that here
negation is done first. It is reasonable to assign unary operators the same prior-
ity as exponentiation and, in order to preserve the usual algebraic conventions, to
evaluate operators of this priority from right to left. Doing this, moreover, also
gives the ordinary interpretation of 2 ↑ 3 ↑ 2 as

2(3
2) = 512 and not as (23)2= 64.

There are unary operators other than negation. These include such operations
as taking the factorial of x , denoted x!, the derivative of a function f , denoted f ′ ,
as well as all functions of a single variable, such as the trigonometric, exponential,
and logarithmic functions. In C++, there is also the Boolean operator !, which
negates a Boolean variable. To avoid confusion with the factorial operator, we
shall use ‘not’ to denote Boolean negation in the system of expressions that we
design in this chapter.

Several binary operators also have Boolean results: the operators && and || as
well as the comparison operators == , ! =, <, >, ≤, and ≥. These comparisons are
normally done after the arithmetic operators, but before && , || , and assignment.

We thus obtain the following list of priorities to reflect our usual customs inpriority list
evaluating operators:

Operators Priority
↑, all unary operators 6

× / % 5
+ − (binary) 4

== ! = < > ≤ ≥ 3
not 2

&& || 1
= 0

Section 13.2 • The Idea 601

Note that the priorities shown in this table are not the same as those used in C++.
For example, under the syntax rules of C++, the operator ! has the same priority
as the unary operators. This means that parentheses must often be used in C++
expressions, even though, by assigning ‘not’ a lower priority, the expression reads
unambiguously to a person. For example, the expressionC++ priorities for

operators

not x < 10

will be interpreted with C++ conventions as meaning

(!x) < 10,

which is always true.

13.2 THE IDEA

13.2.1 Expression Trees

Drawing a picture is often an excellent way to gain insight into a problem. For our
current problem, the appropriate picture is the expression tree, as first introduced
in Section 10.1.2. Recall that an expression tree is a binary tree in which the leaves
are the simple operands and the interior vertices are the operators. If an operator
is binary, then it has two nonempty subtrees that are its left and right operands
(either simple operands or subexpressions). If an operator is unary, then only one
of its subtrees is nonempty, the one on the left or right according to whether the
operator is written on the right or left of its operand. You should review Figure 10.3
for several simple expression trees, as well as Figure 10.4 for the expression tree of
the quadratic formula.

Let us determine how to evaluate an expression tree such as, for example, the
one shown in part (a) of Figure 13.1. It is clear that we must begin with one of the
leaves, since it is only the simple operands for which we know the values when
starting. To be consistent, let us start with the leftmost leaf, whose value is 2.9.
Since, in our example, the operator immediately above this leaf is unary negation,
we can apply it immediately and replace both the operator and its operand by
the result, −2.9. This step results in the diamond-shaped node in part (b) of the
diagram.

484 The parent of the diamond-shaped node in part (b) is a binary operator, and
its second operand has not yet been evaluated. We cannot, therefore, apply this
operator yet, but must instead consider the next two leaves, as shown by the colored
path. After moving past these two leaves, the path moves to their parent operator,
which can now be evaluated, and the result is placed in the second diamond-shaped
node, as shown in part (c).

At this stage, both operands of the addition are available, so we can perform it,
obtaining the simplified tree in part (d). And so we continue, until the tree has been

602 Chapter 13 • Case Study: The Polish Notation

(a)

(d)(c)

(g)

×

2.9 2.7 3.0 5.5 2.5

!+

– / –

2.5

–

×

!

×

5.5 2.5

!+

–2.9 0.9 –

–2.0

×

6.0

–12.0

(f)

5.5

–2.0

(e)

–2.0

×

!

3.0

(b)

×

2.7 3.0 5.5 2.5

!+

–2.9 / –

Figure 13.1. Evaluation of an expression tree

reduced to a single node, which is the final result. In summary, we have processed

484

the nodes of the tree in the order

2.9 − 2.7 3.0 / + 5.5 2.5 − ! ×

The general observation is that we should process the subtree rooted at anypostorder traversal
given operator in the order:

Evaluate the left subtree; evaluate the right subtree; perform the operator.

(If the operator is unary, then one of these steps is vacuous.) This order is pre-
cisely a postorder traversal of the expression tree. We have already observed in

Section 13.2 • The Idea 603

Section 10.1.2 that the postorder traversal of an expression tree yields the postfix
form of the expression, in which each operator is written after its operands, instead
of between them.

This simple idea is the key to efficient calculation of expressions by computer.
As a matter of fact, our customary way to write arithmetic or logical expressions

with the operator between its operands is slightly illogical. The instruction

Take the number 12 and multiply by

is incomplete until the second factor is given. In the meantime it is necessary to
remember both a number and an operation. From the viewpoint of establishing
uniform rules, it makes more sense either to write

Take the numbers 12 and 3; then multiply.

or to write
Do a multiplication. The numbers are 12 and 3.

13.2.2 Polish Notation
This method of writing all operators either before their operands or after them is
called Polish notation, in honor of its discoverer, the Polish mathematician JAN

485

ŁUKASIEWICZ. When the operators are written before their operands, it is called the
prefix form. When the operators come after their operands, it is called the postfix
form, or, sometimes, reverse Polish form or suffix form. Finally, in this context,
it is customary to use the coined phrase infix form to denote the usual custom of
writing binary operators between their operands.

The expression a×b becomes × a b in prefix form and a b × in postfix form.
In the expression a + b × c , the multiplication is done first, so we convert it first,
obtaining first a + (b c ×) and then a b c × + in postfix form. The prefix form
of this expression is + a × b c . Note that prefix and postfix forms are not related
by taking mirror images or other such simple transformation. Note also that all
parentheses have been omitted in the Polish forms. We shall justify this omission
later.

As a more complicated example, we can write down the prefix and postfix
forms of the quadratic formula, starting from its expression tree, as shown in
Figure 10.4.

preorder traversal First, let us traverse the tree in preorder. The operator in the root is the as-
signment ‘=,’ after which we move to the left subtree, which consists only of the
operand x . The right subtree begins with the division ‘/’ and then moves leftward
to ‘+’ and to the unary negation ‘−.’

We now have an ambiguity that will haunt us later if we do not correct it.
The first ‘−’ (minus) in the expression is unary negation, and the second is binary
subtraction. In Polish form it is not obvious which is which. When we go to
evaluate the prefix string we will not know whether to take one operand for ‘−’ or
two, and the results will be quite different. To avoid this ambiguity we shall, in this

604 Chapter 13 • Case Study: The Polish Notation

chapter, often reserve ‘−’ to denote binary subtraction and use a special symbolspecial symbol ∼
‘∼’ for unary negation. (This notation is certainly not standard. There are other
ways to resolve the problem.)

The preorder traversal of Figure 10.4 up to this point has yielded

= x / + ∼ b

and the next step is to traverse the right subtree of the operator ‘+.’ The result is
the sequence

↑ − ↑ b 2 × × 4 a c 1
2

Finally, we traverse the right subtree of the division ‘/,’ obtaining

× 2 a.

Hence the complete prefix form for the quadratic formula is

= x / + ∼ b ↑ − ↑ b 2 × × 4 a c 1
2 × 2 a.

You should verify yourself that the postfix form is

x b ∼ b 2 ↑ 4 a × c × − 1
2 ↑ + 2 a × / = .

Exercises
13.2

(a) Draw the expression tree for each of the following expressions. Using the
tree, convert the expression into (b) prefix and (c) postfix form. Use the table
of priorities developed in this section, not those in C++.

E1. a+ b < c
E2. a < b + c
E3. a− b < c − d || e < f

E4. n! / (k!× (n− k)!) (formula for binomial coefficients)

E5. s = (n/2)×(2 × a + (n − 1)×d) (This is the sum of the first n terms of an
arithmetic progression.)

E6. g = a× (1− rn)/(1− r) (sum of first n terms of a geometric progression)

E7. a == 1 || b × c == 2 || (a > 1 && not b < 3)

13.3 EVALUATION OF POLISH EXPRESSIONS

We first introduced the postfix form as a natural order of traversing an expression
tree in order to evaluate the corresponding expression. Later in this section we
shall formulate an algorithm for evaluating an expression directly from the postfix
form, but first (since it is even simpler) we consider the prefix form.

Section 13.3 • Evaluation of Polish Expressions 605

13.3.1 Evaluation of an Expression in Prefix Form

Preorder traversal of a binary tree works from the top down. The root is visited
first, and the remainder of the traversal is then divided into two parts. The natural
way to organize the process is as a recursive, divide-and-conquer algorithm. The
same situation holds for an expression in prefix form. The first symbol (if there
is more than one) is an operator (the one that will actually be done last), and the
remainder of the expression comprises the operand(s) of this operator (one for a
unary operator, two for a binary operator). Our function for evaluating the prefix
form should hence begin with this first symbol. If it is a unary operator, then the
function should invoke itself recursively to determine the value of the operand.
If the first symbol is a binary operator, then it should make two recursive calls
for its two operands. The recursion terminates in the remaining case: When the
first symbol is a simple operand, it is its own prefix form and the function should
only return its value. Of course, if there is no first symbol, we must generate an
Error_code.

The following outline thus summarizes the evaluation of an expression in prefix
form:486

Error_code Expression :: evaluate_prefix(Value &result)
/* Outline of a method to perform prefix evaluation of an Expression. The de-

tails depend on further decisions about the implementation of expressions and
values. */

outline {
if (the Expression is empty) return fail;
else {

remove the first symbol from the Expression, and
store the value of the symbol as t;

if (t is a unary operation) {
Value the_argument;
if (evaluate_prefix(the_argument) == fail) return fail;
else result = the value of operation t applied to the_argument;

}

else if (t is a binary operation) {
Value first_argument, second_argument;
if (evaluate_prefix(first_argument) == fail) return fail;
if (evaluate_prefix(second_argument) == fail) return fail;
result = the value of operation t

applied to first_argument and second_argument;
}

else // t is a numerical operand.
result = the value of t;

}

return success;

}

606 Chapter 13 • Case Study: The Polish Notation

13.3.2 C++ Conventions

To tie down the details in this outline, let us establish some conventions and rewrite
the algorithm in C++. Expressions will be represented by a fleshed-out version of
the following class:

487

class Expression {
public:

Error_code evaluate_prefix(Value &result);
Error_code get_token(Token &result);
// Add other methods.

private:
// Add data members to store an expression.

};

The operators and operands in our expression may well have names that are more
than one character long; hence we do not scan the expression one character at a time.
Instead we define a token to be a single operator or operand from the expression.
In our programs, we shall represent tokens as objects of a struct Token.

To emphasize that evaluation methods scan through an expression only once,
we shall employ another method

Token Expression :: get_token();

that will move through an expression removing and returning one token at a time.
We shall need to know whether the token is an operand, a unary operator, or a
binary operator, so we assume the existence of a Token method kind() that will
return one of the values of the following enumerated type:

enum Token_type {
operand, unaryop, binaryop // Add any other legitimate token types.

};

For simplicity we shall assume that all the operands and the results of evaluating
the operators are of the same type, which for now we leave unspecified and call
Value. In many applications, this type would be one of int, double, or bool.

Finally, we must assume the existence of three auxiliary functions that return
a result of type Value. The first two,

Value do_unary(const Token &operation, const Value &the_argument);
Value do_binary(const Token &operation,

const Value &first_argument, const Value &second_argument);

Section 13.3 • Evaluation of Polish Expressions 607

actually perform the given operation on their operand(s). They need to recognize
the symbols used for the operation and the arguments and invoke the necessary
machine-language instructions. Similarly,

Value get_value(const Token &operand);

returns the actual value of a numerical operand, and might need, for example, to
convert a constant from decimal to binary form or look up the value of a variable.
The actual form of these functions will depend very much on the application. We
cannot settle all these questions here, but want only to concentrate on designing
one important part of a compiler or expression evaluator.

13.3.3 C++ Function for Prefix Evaluation

With these preliminaries we can now specify more details in our outline, translating
it into a C++ method to evaluate prefix expressions.488

Error_code Expression :: evaluate_prefix(Value &result)
/* Post: If the Expression does not begin with a legal prefix expression, a code of

fail is returned. Otherwise a code of success is returned, and the Expression
is evaluated, giving the Value result. The initial tokens that are evaluated
are removed from the Expression. */

{
Token t;
Value the_argument, first_argument, second_argument;
if (get_token(t) == fail) return fail;

switch (t.kind()) {
case unaryop:

if (evaluate_prefix(the_argument) == fail) return fail;
else result = do_unary(t, the_argument);
break;

case binaryop:
if (evaluate_prefix(first_argument) == fail) return fail;
if (evaluate_prefix(second_argument) == fail) return fail;
else result = do_binary(t, first_argument, second_argument);
break;

case operand:
result = get_value(t);
break;

}
return success;

}

608 Chapter 13 • Case Study: The Polish Notation

13.3.4 Evaluation of Postfix Expressions

It is almost inevitable that the prefix form should naturally call for a recursive
function for its evaluation, since the prefix form is really a “top-down” formulation
of the algebraic expression: The outer, overall actions are specified first, then later
in the expression the component parts are spelled out. On the other hand, in thecomparison with

prefix evaluation postfix form the operands appear first, and the whole expression is slowly built
up from its simple operands and the inner operators in a “bottom-up” fashion.
Therefore, iterative programs using stacks appear more natural for the postfix form.
(It is, of course, possible to write either recursive or nonrecursive programs for
either form. We are here discussing only the motivation, or what first appears
more natural.)

To evaluate an expression in postfix form, it is necessary to remember the
operands until their operator is eventually found some time later. The natural way
to remember them is to put them on a stack. Then when the first operator to bestacks
applied is encountered, it will find its operands on the top of the stack. If it puts its
result back on the stack, then its result will be in the right place to be an operand
for a later operator. When the evaluation is complete, the final result will be the
only value on the stack. In this way, we obtain a function to evaluate a postfix
expression.

At this time we should note a significant difference between postfix and prefix
expressions. There was no need, in the prefix function, to check explicitly that the
end of the expression had been reached, since the entire expression automatically
constituted the operand(s) for the first operator. Reading a postfix expression from
left to right, however, we can encounter sub-expressions that are, by themselves,
legitimate postfix expressions. For example, if we stop reading

b 2 ↑ 4 a × c × −

after the ‘↑,’ we find that it is a legal postfix expression. To remedy this problem we
shall assume that a special token such as ‘;’ marks the end of a postfix expression. Of
course, this new token does not belong to any of the previous categories allowed by
Token_type. Therefore, we shall augment the enumerated Token_type to include a
new value end_expression. The other C++ classes and auxiliary functions are the
same as for the prefix evaluation method.

489

typedef Value Stack_entry; // Set the type of entry to use in stacks.

Error_code Expression :: evaluate_postfix(Value &result)
/* Post: The tokens in Expression up to the first end_expression symbol are re-

moved. If these tokens do not represent a legal postfix expression, a code
of fail is returned. Otherwise a code of success is returned, and the re-
moved sequence of tokens is evaluated to give Value result. */

{
Token t; // Current operator or operand
Stack operands; // Holds values until operators are seen
Value the_argument, first_argument, second_argument;

Section 13.3 • Evaluation of Polish Expressions 609

do {
if (get_token(t) == fail) return fail; // No end_expression token
switch (t.kind()) {
case unaryop:

if (operands.empty()) return fail;
operands.top(the_argument);
operands.pop();
operands.push(do_unary(t, the_argument));
break;

case binaryop:
if (operands.empty()) return fail;
operands.top(second_argument);
operands.pop();
if (operands.empty()) return fail;
operands.top(first_argument);
operands.pop();
operands.push(do_binary(t, first_argument, second_argument));
break;

case operand:
operands.push(get_value(t));
break;

case end_expression:
break;

}
} while (t.kind() != end_expression);

if (operands.empty()) return fail;
operands.top(result);
operands.pop();
if (!operands.empty()) return fail; // surplus operands detected
return success;

}

13.3.5 Proof of the Program: Counting Stack Entries

So far we have given only an informal motivation for the preceding program, and
it may not be clear that it will produce the correct result in every case. Fortunately
it is not difficult to give a formal justification of the program and, at the same time,
to discover a useful criterion as to whether an expression is properly written in
postfix form or not.

The method we shall use is to keep track of the number of entries in the stack.
When each operand is obtained, it is immediately pushed onto the stack. A unary
operator first pops, then pushes the stack, and thus makes no change in the number
of entries. A binary operator pops the stack twice and pushes it once, giving a net
decrease of one entry in the stack. More formally, we have the following:

610 Chapter 13 • Case Study: The Polish Notation

For a sequence E of operands, unary operators, and binary operators, form a runningrunning-sum
condition sum by starting with 0 at the left end of E and counting +1 for each operand, 0 for

each unary operator, and −1 for each binary operator. E satisfies the running-sum
condition provided that this running sum never falls below 1 and is exactly 1 at the

491

right-hand end of E .

The sequence of running sums for the postfix form of an expression is illustrated
in Figure 13.2.

a = 2
b = –7
c = 3

1
2b b 2 4 a c – 2 a

–7 –7 49 49 49 49 49 49 25 25 5 2 2 4

2 4 4 8 8 24 2

2 3
1
2

1 1 2 3 2 3 4 3 4 3 2 3 2 1 2 3 2 1

–7 7 7 7 7 7 7 7 7 7 7 7 7 12 12 12 12 3

× × ×~

Figure 13.2. Stack frames and running sums, quadratic formula

We shall prove the next two theorems at the same time.

Theorem 13.1 If E is a properly formed expression in postfix form, then E must satisfy the running
sum condition.

Theorem 13.2 A properly formed expression in postfix form will be correctly evaluated by the method
evaluate_postfix.

Proof We shall prove the theorems together by using mathematical induction on the
length of the expression E being evaluated.

The starting point for the induction is the case that E is a single operand alone,induction proof
with length 1. This operand contributes +1, and the running-sum condition is
satisfied. The method, when applied to a simple operand alone, gets its value,
pushes it on the stack (which was previously empty) and at the end pops it as the
final value of the method, thereby evaluating it correctly.

For the induction hypothesis we now assume that E is a properly formed postfixinduction hypothesis
expression of length more than 1, that the program correctly evaluates all postfix
expressions of length less than that of E , and that all such shorter expressions satisfy
the running-sum condition. Since the length of E is more than 1, E is constructed at
its last step either as F op , where op is a unary operator and F a postfix expression,
or as F G op , where op is a binary operator and F and G are postfix expressions.

In either case the lengths of F and G are less than that of E , so by induction
hypothesis both of them satisfy the running-sum condition, and the method would
evaluate either of them separately and would obtain the correct result.

Section 13.3 • Evaluation of Polish Expressions 611

unary operator First, take the case when op is a unary operator. Since F satisfies the running-
sum condition, the sum at its end is exactly +1. As a unary operator, op contributes
0 to the sum, so the full expression E satisfies the running-sum condition. When
the method reaches the end of F , similarly, it will, by induction hypothesis, have
evaluated F correctly and left its value as the unique stack entry. The unary operator
op is then finally applied to this value, which is popped as the final result.

binary operator Finally, take the case when op is binary, so E has the form F G op when F and
G are postfix expressions. When the method reaches the last token of F , then the
value of F will be the unique entry on the stack. Similarly, the running sum will be
1. At the next token the program starts to evaluate G . By the induction hypothesis
the evaluation of G will also be correct and its running sum alone never falls below
1, and ends at exactly 1. Since the running sum at the end of F is 1, the combined
running sum never falls below 2, and ends at exactly 2 at the end of G . Thus the
evaluation of G will proceed and never disturb the single entry on the bottom of
the stack, which is the result of F . When the evaluation reaches the final binary
operator op , the running sum is correctly reduced from 2 to 1, and the operator
finds precisely its two operands on the stack, where after evaluation it leaves its
unique result. This completes the proof of Theorems 13.1 and 13.2.end of proof

Theorem 13.1 allows us to verify that a sequence of tokens is in fact a properly
formed postfix expression by keeping a running count of the number of entries on

491

the stack. This error checking is especially useful because its converse is also true:

Theorem 13.3 If E is any sequence of operands and operators that satisfies the running-sum condi-
tion, then E is a properly formed expression in postfix form.

Proof We shall again use mathematical induction to prove Theorem 13.3. The starting
point is an expression containing only one token. Since the running sum (same
as final sum) for a sequence of length 1 will be 1, this one token must be a simple
operand. One simple operand alone is indeed a syntactically correct expression.

Now for the inductive step, suppose that the theorem has been verified for allinduction proof
expressions strictly shorter than E , and E has length greater than 1. If the last token
of E were an operand, then it would contribute +1 to the sum, and since the final
sum is 1, the running sum would have been 0 one step before the end, contrary tocase: operand
the assumption that the running-sum condition is satisfied. Thus the final token of
E must be an operator.

If the operator is unary, then it can be omitted and the remaining sequence stillcase: unary operator
satisfies the condition on running sums. Therefore, by induction hypothesis, it is a
syntactically correct expression, and all of E then also is.

Finally suppose that the last token is a binary operator op . To show that E iscase: binary operator
syntactically correct, we must find where in the sequence the first operand of op
ends and the second one starts, by using the running sum. Since the operator op
contributes −1 to the sum, it was 2 one step before the end. This 2 means that
there were two items on the stack, the first and second operands of op . As we step
backward through the sequence E , eventually we will reach a place where there
is only one entry on the stack (running sum 1), and this one entry will be the first
operand of op . Thus the place to break the sequence is at the last position before

612 Chapter 13 • Case Study: The Polish Notation

the end where the running sum is exactly 1. Such a position must exist, since at
the far left end of E (if not before) we will find a running sum of 1. When we
break E at its last 1, then it takes the form F G op . The subsequence F satisfies the
condition on running sums, and ends with a sum of 1, so by induction hypothesis
it is a correctly formed postfix expression. Since the running sums during G of F G
op never again fall to 1, and end at 2 just before op , we may subtract 1 from each of
them and conclude that the running sums for G alone satisfy the condition. Thus
by induction hypothesis G is also a correctly formed postfix expression. Thus both
F and G are correct expressions and can be combined by the binary operator op
into a correct expression E . Thus the proof of the theorem is complete.end of proof

We can take the proof one more step, to show that the last position where a sum
of 1 occurs is the only place where the sequence E can be split into syntactically
correct subsequences F and G . For suppose it was split elsewhere. If at the end
of F the running sum is not 1, then F is not a syntactically correct expression. If
the running sum is 1 at the end of F , but reaches 1 again during the G part of
F G op , then the sums for G alone would reach 0 at that point, so G is not correct.
We have now shown that there is only one way to recover the two operands of
a binary operator. Clearly there is only one way to recover the single operand
for a unary operator. Hence we can recover the infix form of an expression from
its postfix form, together with the order in which the operations are done, which
we can denote by bracketing the result of every operation in the infix form with
another pair of parentheses.

We have therefore proved the following:

491

Theorem 13.4 An expression in postfix form that satisfies the running-sum condition corresponds to
exactly one fully bracketed expression in infix form. Hence no parentheses are needed
to achieve the unique representation of an expression in postfix form.

Similar theorems hold for the prefix form; their proofs are left as exercises. The
preceding theorems provide both a theoretical justification of the use of Polish
notation and a convenient way to check an expression for correct syntax.

13.3.6 Recursive Evaluation of Postfix Expressions

Most people find that the recursive function for evaluating prefix expressions is
easier to understand than the stack-based, nonrecursive function for evaluating
postfix expressions. In this (optional) section we show how the stack can be elimi-
nated in favor of recursion for postfix evaluation.

First, however, let us see why the natural approach leads to a recursive function
for prefix evaluation but not for postfix. We can describe both prefix and postfix
expressions by the syntax diagrams of Figure 13.3. In both cases there are three
possibilities: The expression consists of only a single operand, or the outermost
operator is unary, or it is binary.

Section 13.3 • Evaluation of Polish Expressions 613

Prefix
expression

Operand

Unary
operator

Prefix
expression

Binary
operator

Prefix
expression

Prefix
expression

Postfix
expression

Operand

Unary
operator

Postfix
expression

Postfix
expression

Postfix
expression

Binary
operator

Figure 13.3. Syntax diagrams of Polish expressions

prefix evaluation

492

In tracing through the diagram for prefix form, the first token we encounter
in the expression determines which of the three branches we take, and there are
then no further choices to make (except within recursive calls, which need not
be considered just now). Hence the structure of the recursive function for prefix
evaluation closely resembles the syntax diagram.

postfix evaluation With the postfix diagram, however, there is no way to tell from the first token
(which will always be an operand) which of the three branches to take. It is only
when the last token is encountered that the branch is determined. This fact does,
however, lead to one easy recursive solution: Read the expression from right to
left, reverse all the arrows on the syntax diagram, and use the essentially the same
function as for prefix evaluation! (Of course, in the new function we have to reverse
the order of arguments of operators such as − and /.)

If we wish, however, to read the expression in the usual way from left to right,
then we must work harder. Let us consider separately each of the three kinds
of tokens in a postfix form. We have already observed that the first token in the
expression must be an operand; this follows directly from the fact that the running
sum after the first token is (at least) 1. Since unary operators do not change the
running sum, unary operators can be inserted anywhere after the initial operand.
It is the third case, binary operators, whose study leads to the solution.

running sum Consider the sequence of running sums and the place(s) in the sequence where
the sum drops from 2 to 1. Since binary operators contribute −1 to the sum, such
places must exist if the postfix expression contains any binary operators, and they
must correspond to the places in the expression where the two operands of the

614 Chapter 13 • Case Study: The Polish Notation

binary operator constitute the whole expression to the left. Such situations are
illustrated in the stack frames of Figure 13.2. The entry on the bottom of the stack
is the first operand; a sequence of positions where the height is at least 2, starting
and ending at exactly 2, make up the calculation of the second operand. Taken in
isolation, this sequence is itself a properly formed postfix expression. A drop in
height from 2 to 1 marks one of the binary operators in which we are interested.

After the binary operator, more unary operators may appear, and then the
process may repeat itself (if the running sums again increase) with more sequences
that are self-contained postfix expressions followed by binary and unary operators.
In summary, we have shown that postfix expressions are described by the syntax
diagram of Figure 13.4, which translates easily into the recursive function that
follows. The C++ conventions are the same as in the previous functions.492

Postfix
expression

Operand

Unary
operator

Binary
operator

Postfix
expression

Figure 13.4. Alternative syntax diagram, postfix expression

left recursion The situation appearing in the postfix diagram of Figure 13.3 is called left
recursion, and the steps we have taken in the transition to the diagram in Figure
13.4 are typical of those needed to remove left recursion.

First is a function that initiates the recursion.

493

Error_code Expression :: evaluate_postfix(Value &result)
/* Post: The tokens in Expression up to the first end_expression symbol are re-

moved. If these tokens do not represent a legal postfix expression, a code
of fail is returned. Otherwise a code of success is returned, and the re-
moved sequence of tokens is evaluated to give Value result. */

{
Token first_token, final_token;
Error_code outcome;
if (get_token(first_token) == fail || first_token.kind() != operand)

outcome = fail;
else {

outcome = recursive_evaluate(first_token, result, final_token);
if (outcome == success && final_token.kind() != end_expression)

outcome = fail;
}
return outcome;

}

Section 13.3 • Evaluation of Polish Expressions 615

The actual recursion uses the value of the first token separately from the remainder
of the expression.494

Error_code Expression :: recursive_evaluate(const Token &first_token,
Value &result, Token &final_token)

/* Pre: Token first_token is an operand.
Post: If the first_token can be combined with initial tokens of the Expression

to yield a legal postfix expression followed by either an end_expression
symbol or a binary operator, a code of success is returned, the legal postfix
subexpression is evaluated, recorded in result, and the terminating Token
is recorded as final_token. Otherwise a code of fail is returned. The initial
tokens of Expression are removed.

Uses: Methods of classes Token and Expression, including recursive_evaluate
and functions do_unary, do_binary, and get_value. */

{
Value first_segment = get_value(first_token),

next_segment;
Error_code outcome;
Token current_token;
Token_type current_type;
do {

outcome = get_token(current_token);
if (outcome != fail) {

switch (current_type = current_token.kind()) {
case binaryop: // Binary operations terminate subexpressions.
case end_expression: // Treat subexpression terminators together.

result = first_segment;
final_token = current_token;
break;

case unaryop:
first_segment = do_unary(current_token, first_segment);
break;

case operand:
outcome = recursive_evaluate(current_token,

next_segment, final_token);
if (outcome == success && final_token.kind() != binaryop)

outcome = fail;
else

first_segment = do_binary(final_token, first_segment,
next_segment);

break;
}

}
} while (outcome == success && current_type != end_expression &&

current_type != binaryop);
return outcome;

}

616 Chapter 13 • Case Study: The Polish Notation

Exercises
13.3

E1. Trace the action on each of the following expressions by the function evalu-
ate_postfix in (1) nonrecursive and (2) recursive versions. For the recursive
function, draw the tree of recursive calls, indicating at each node which tokens
are being processed. For the nonrecursive function, draw a sequence of stack
frames showing which tokens are processed at each stage.

(a) a b + c ×
(b) a b c + ×
(c) a ! b ! / c d − a ! − ×
(d) a b < ! c d × < e ||

E2. Trace the action of the function evaluate_prefix on each of the following expres-
sions by drawing a tree of recursive calls showing which tokens are processed
at each stage.

(a) / + x y ! n

(b) / + ! x y n

(c) && < x y || ! = + x y z > x 0

E3. Which of the following are syntactically correct postfix expressions? Show the
error in each incorrect expression. Translate each correct expression into infix
form, using parentheses as necessary to avoid ambiguities.

(a) a b c + × a / c b + d / −
(b) a b + c a × b c / d −
(c) a b + c a × − c × + b c −
(d) a ∼ b ×
(e) a × b ∼
(f) a b × ∼
(g) a b ∼ ×

E4. Translate each of the following expressions from prefix form into postfix form.

(a) / + x y ! n

(b) / + ! x y n

(c) && < x y || ! = + x y z > x 0

E5. Translate each of the following expressions from postfix form into prefix form.

(a) a b + c ∗
(b) a b c + ×
(c) a ! b ! / c d − a ! − ×
(d) a b < ! c d × < e ||

E6. Formulate and prove theorems analogous to Theorems (a) 13.1, (b) 13.3, and
(c) 13.4 for the prefix form of expressions.

Section 13.4 • Translation from Infix Form to Polish Form 617

13.4 TRANSLATION FROM INFIX FORM TO POLISH FORM

Few programmers habitually write algebraic or logical expressions in Polish form,
even though doing so might be more consistent and logical than the customary
infix form. To make convenient use of the algorithms we have developed for
evaluating Polish expressions, we must therefore develop an efficient method to
translate arbitrary expressions from infix form into Polish notation.

As a first simplification, we shall consider only an algorithm for translating infix
expressions into postfix form. Second, we shall not consider unary operators that
are placed to the right of their operands. Such operators would cause no conceptual
difficulty in the development of the algorithm, but they make the resulting function
appear a little more complicated.

One method that we might consider for developing our algorithm would be,
first, to build the expression tree from the infix form, and then to traverse the tree
to obtain the postfix form. It turns out, however, that building the tree from the
infix form is actually more complicated than constructing the postfix form directly.

Since, in postfix form, all operators come after their operands, the task of trans-
lation from infix to postfix form amounts to moving operators so that they come
after their operands instead of before or between them. In other words,

Delay each operator until its right-hand operand has been translated. Pass each simpledelaying operators
operand through to the output without delay.

This action is illustrated in Figure 13.5.496

Infix form:

Postfix form:

Infix form:

Postfix form:

1
2

1
2

x

x y + x ~ x y z × +

a /

x b ~ b 2 4 a × c × − + 2 a × / =

~+ y x

x

y × z

= (~ b + b(2 − 4 ×

x

c)×) (2 × a)

+

Figure 13.5. Delaying operators in postfix form

The major problem we must resolve is to find what token will terminate the
right-hand operand of a given operator and thereby mark the place at which that
operator should be placed. To do this, we must take both parentheses and priorities
of operators into account.

618 Chapter 13 • Case Study: The Polish Notation

The first problem is easy. If a left parenthesis is in the operand, then everything
up to and including the matching right parenthesis must also be in the operand.
For the second problem, that of taking account of the priorities of operators, we
shall consider binary operators separately from operators of priority 6—namely,
unary operators and exponentiation. The reason for this is that operators of priority
6 are evaluated from right to left, whereas binary operators of lower priority are
evaluated from left to right.

finding the end of the
right operand

Let op1 be a binary operator of a priority evaluated from left to right, and let
op2 be the first nonbracketed operator to the right of op1 . If the priority of op2 is
less than or equal to that of op1 , then op2 will not be part of the right operand of
op1 , and its appearance will terminate the right operand of op1 . If the priority of
op2 is greater than that of op1 , then op2 is part of the right operand of op1 , and
we can continue through the expression until we find an operator of priority less
than or equal to that of op1 ; this operator will then terminate the right operand of
op1 .

right-to-left
evaluation

Next, suppose that op1 has priority 6 (it is unary or exponentiation), and recall
that operators of this priority are to be evaluated from right to left. If the first
operand op2 to the right of op1 has equal priority, it therefore will be part of the
right operand of op1 , and the right operand is terminated only by an operator of
strictly smaller priority.

There are two more ways in which the right-hand operand of a given operator
can terminate: The expression can end, or the given operator may itself be within
a bracketed subexpression, in which case its right operand will end when an un-
matched right parenthesis ‘)’ is encountered. In summary, we have the following
rules:

497

If op is an operator in an infix expression, then its right-hand operand contains all
tokens on its right until one of the following is encountered:

1. the end of the expression;

2. an unmatched right parenthesis ‘)’;

3. an operator of priority less than or equal to that of op , and not within a bracketed
sub-expression, if op has priority less than 6; or

4. an operator of priority strictly less than that of op , and not within a bracketed
subexpression, if op has priority 6.

From these rules, we can see that the appropriate way to remember the operatorsstack of operators
being delayed is to keep them on a stack. If operator op2 comes on the right of
operator op1 but has higher priority, then op2 will be output before op1 is. Thus
the operators are output in the order last in, first out.

The key to writing an algorithm for the translation is to make a slight change
in our point of view by asking, as each token appears in the input, which of the
operators previously delayed (that is, on the stack) now have their right operands

Section 13.4 • Translation from Infix Form to Polish Form 619

terminated because of the new token, so that it is time to move them into the output.
The preceding conditions then become the following:497

1. At the end of the expression, all operators are output.popping the stack

2. A right parenthesis causes all operators found since the corresponding left paren-
thesis to be output.

3. An operator of priority not 6 causes all other operators of greater or equal priority
to be output.

4. An operator of priority 6 causes no operators to be output.

To implement the second rule, we shall put each left parenthesis on the stack when
it is encountered. Then, when the matching right parenthesis appears and the
operators have been popped from the stack, the pair can both be discarded.

We can now incorporate these rules into a function. To do so, we shall use
the same auxiliary types and functions as in the last section, except that now the
method Token_type Token :: kind() can return two additional results:

leftparen rightparen

that denote, respectively, left and right parentheses. The stack will now contain
tokens (operators) rather than values.

In addition to the method Expression :: get_token() that obtains the next token
from the input (infix expression), we use another method

void Expression :: put_token(const Token &t)

that puts the given token onto the end of a (postfix) expression. Thus these two
methods might read and write with files or might only refer to lists already set up,
depending on the desired application.

Finally, we shall use a new function

priority(const Token &operation)

that will return the priority of any Token that represents an operator.
With these conventions we can write a method that translates an expression

from infix to postfix form. In this implementation, we have avoided the problem
of checking whether the original expression is legal. Thus, we are forced to add
this assumption as a precondition for the method.

498

Expression Expression :: infix_to_postfix()
/* Pre: The Expression stores a valid infix expression.

Post: A postfix expression that translates the infix expression is returned. */

620 Chapter 13 • Case Study: The Polish Notation

{
Expression answer;
Token current, prior;
Stack delayed_operations;
while (get_token(current) != fail) {

switch (current.kind()) {
case operand:

answer.put_token(current);
break;

case leftparen:
delayed_operations.push(current);
break;

case rightparen:
delayed_operations.top(prior);
while (prior.kind() != leftparen) {

answer.put_token(prior);
delayed_operations.pop();
delayed_operations.top(prior);

}
delayed_operations.pop();
break;

case unaryop:
case binaryop: // Treat all operators together.

bool end_right = false; // End of right operand reached?
do {

if (delayed_operations.empty()) end_right = true;
else {

delayed_operations.top(prior);
if (prior.kind() == leftparen) end_right = true;
else if (prior.priority() < current.priority()) end_right = true;
else if (current.priority() == 6) end_right = true;
else answer.put_token(prior);
if (!end_right) delayed_operations.pop();

}
} while (!end_right);
delayed_operations.push(current);
break;

}
}
while (!delayed_operations.empty()) {

delayed_operations.top(prior);
answer.put_token(prior);
delayed_operations.pop();

}
answer.put_token(";");
return answer;

}

Section 13.4 • Translation from Infix Form to Polish Form 621

Figure 13.6 shows the steps performed to translate the quadratic formulaexample

x = (∼ b + (b2 − 4 × a × c) 1
2)/(2 × a)

into postfix form, as an illustration of this algorithm. (Recall that we are using ‘∼’
to denote unary negation.)500

Input Contents of Stack Output
Token (rightmost token is on top) Token(s)

x x
= =
(= (
∼ = (∼
b = (∼ b
+ = (+ ∼
(= (+ (
b = (+ (b
↑ = (+ (↑
2 = (+ (↑ 2
− = (+ (− ↑
4 = (+ (− 4
× = (+ (− ×
a = (+ (− × a
× = (+ (− × ×
c = (+ (− × c
) = (+ × −
↑ = (+ ↑
1
2 = (+ ↑ 1

2

) = ↑ +
/ = /
(= / (
2 = / (2
× = / (×
a = / (× a
) = / ×

end of expression / =

Figure 13.6. Translation of the quadratic formula into postfix form

622 Chapter 13 • Case Study: The Polish Notation

This completes the discussion of translation into postfix form. There will clearly
be similarities in describing the translation into prefix form, but some difficulties
arise because of the seemingly irrelevant fact that, in European languages, we read
from left to right. If we were to translate an expression into prefix form work-
ing from left to right, then not only would the operators need to be rearranged but
operands would need to be delayed until after their operators were output. But the
relative order of operands is not changed in the translation, so the appropriate data
structure to keep the operands would not be a stack (it would in fact be a queue).
Since stacks would not do the job, neither would recursive programs with no ex-
plicit auxiliary storage, since these two kinds of programs can do equivalent tasks.
Thus a left-to-right translation into prefix form would need a different approach.
The trick is to translate into prefix form by working from right to left through the
expression, using methods quite similar to the left-to-right postfix translation that
we have developed. The details are left as an exercise.

Exercises
13.4

E1. Devise a method to translate an expression from prefix form into postfix form.
Use the C++ conventions of this chapter.

E2. Write a method to translate an expression from postfix form into prefix form.
Use the C++ conventions of this chapter.

E3. A fully bracketed expression is one of the following forms:

i. a simple operand;

ii. (op E) where op is a unary operator and E is a fully bracketed expression;

iii. (E op F) where op is a binary operator and E and F are fully bracketed
expressions.

Hence, in a fully bracketed expression, the results of every operation are en-
closed in parentheses. Examples of fully bracketed expressions are ((a+b)−c),
(−a), (a+b), (a+(b+c)). Write methods that will translate expressions from
(a) prefix and (b) postfix form into fully bracketed form.

E4. Rewrite the method infix_to_postfix as a recursive function that uses no stack
or other array.

Programming
Project 13.4

P1. Construct a menu-driven demonstration program for Polish expressions. The
input to the program should be an expression in any of infix, prefix, or postfix
form. The program should then, at the user’s request, translate the expression
into any of fully bracketed infix, prefix, or postfix, and print the result. The
operands should be single letters or digits only. The operators allowed are:

binary: + − ∗ / % ∧ : < > & | =
left unary: # ∼
right unary: ! ′ "

Section 13.5 • An Interactive Expression Evaluator 623

Use the priorities given in the table on page 600, not those of C++. In addition,
the program should allow parentheses ‘(’ and ‘)’ in infix expressions only. The
meanings of some of the special symbols used in this project are:

& Boolean and (same as && in C++) | Boolean or (same as || in C++)
: Assign (same as = in C++) % Modulus (binary operator)
∧ Exponentiation (same as ↑) ! Factorial (on right)
′ Derivative (on right) " Second derivative (on right)
∼ Unary negation # Boolean not (same as ! in C++)

13.5 AN INTERACTIVE EXPRESSION EVALUATOR

There are many applications for a program that can evaluate a function that is typed
in interactively while the program is running. One such application is a program
that will draw the graph of a mathematical function. Suppose that you are writing
such a program to be used to help first-year calculus students graph functions.
Most of these students will not know how to write or compile programs, so you
wish to include in your program some way that the user can put in an expression
for a function such as

x * log(x) − x ^ 1.25

while the program is running, which the program can then graph for appropriate
values of x.

goal The goal of this section is to describe such a program. We pay particular atten-
tion to two subprograms that help solve this problem. The first subprogram will
take as input an expression involving constants, variable(s), arithmetic operators,
and standard functions, with bracketing allowed, as typed in from the terminal. It
will then translate the expression into postfix form and keep it in a list of tokens.

501

The second subprogram will evaluate this postfix expression for values of the vari-
able(s) given as its calling parameter(s) and return the answer, which can then be
graphed.

purpose We undertake this project for several reasons. It shows how to take the ideas
already developed for working with Polish notation and build these ideas into a
complete, concrete, and functioning program. In this way, the project illustrates a
problem-solving approach to program design, in which we begin with solutions to
the key questions and complete the structure with auxiliary functions as needed.
Finally, since this project is intended for use by people with little computer experi-robustness
ence, it provides opportunity to test robustness; that is, the ability of the program
to withstand unexpected or incorrect input without catastrophic failure.

13.5.1 Overall Structure

To allow the user flexibility in changing the graphing, let us make the program
menu driven, so that the action of the main program has the following familiar
form:

624 Chapter 13 • Case Study: The Polish Notation

501
int main()
/* Pre: None

Post: Acts as a menu-driven graphing program.
Uses: Classes Expression and Plot, and functions introduction, get_command,

and do_command. */

{
introduction();
Expression infix; // Infix expression from user
Expression postfix; // Postfix translation
Plot graph;

char ch;
while ((ch = get_command()) != ′q′)

do_command(ch, infix, postfix, graph);
}

In the main program, we use a pair of Expression objects to hold a user’s infix
expression and its postfix translation. We also make use of a class Plot to control all
graphing activities. The division of work among various methods and functions
is the task of do_command:502

void do_command(char c, Expression &infix, Expression &postfix, Plot &graph)
/* Pre: None

Post: Performs the user command represented by char c on the Expression infix,
the Expression postfix, and the Plot graph.

Uses: Classes Token, Expression and Plot. */

{
switch (c) {
case ′r′: // Read an infix expression from the user.

infix.clear();
infix.read();
if (infix.valid_infix() == success) postfix = infix.infix_to_postfix();
else cout << "Warning: Bad expression ignored. " << endl;
break;

case ′w′: // Write the current expression.
infix.write();
postfix.write();
break;

case ′g′: // Graph the current postfix expression.
if (postfix.size() <= 0)

cout << "Enter a valid expression before graphing!" << endl;
else {

graph.clear();
graph.find_points(postfix);
graph.draw();

}
break;

Section 13.5 • An Interactive Expression Evaluator 625

case ′l′: // Set the graph limits.
if (graph.set_limits() != success)

cout << "Warning: Invalid limits" << endl;
break;

case ′p′: // Print the graph parameters.
Token :: print_parameters();
break;

case ′n′: // Set new graph parameters.
Token :: set_parameters();
break;

case ′h′: // Give help to user.
help();
break;

}
}

In response to the user command ‘r’, the program requests an expression and splits
it apart into tokens. The method valid_infix() will determine whether the expres-
sion is syntactically correct. If so, it is converted into postfix form by the method
infix_to_postfix() that we have already studied.

To graph an expression, in response to a user’s command ‘g’, the postfix form
is evaluated for many different values of the coordinate x, each value differing from
the last by a small x_increment, and each result is plotted in turn as a single point
on the screen.

The user can apply the command ‘l’ to select the domain of x values over which
the graph will be plotted, the increment to use, and the range for showing the results
of the expression evaluation. These values are kept within Plot graph and are reset
with a method Plot :: set_limits().

In addition to the (independent) variable x used for plotting, an expressionexpression parameters
may contain further variables that we call parameters for the graph. For example,
in the expression

a * cos(x) + b * sin(x),

a and b are parameters. The parameters will all retain fixed values while one
graph is drawn, but these values can be changed, with the user command ‘n’,
from one graph to the next without making any other change in the expression.
The parameters will be stored as tokens, so we provide a static Token method
set_parameters to reset values for all the parameters that appear in an expression.

Our program must also establish the definitions of the predefined tokens (such
as the operators +, −, and *, amongst others, the operand x that will be used to
represent a coordinate in the graphing, and perhaps some constants). However,
before we can determine the details of these initializations, we must decide on data
structures for tokens and expressions.

13.5.2 Representation of the Data: Class Specifications
Our first data-structure decisions concern how to store and retrieve the tokens used
in Polish expressions. For each different token we must remember:

626 Chapter 13 • Case Study: The Polish Notation

➥ Its name (as a String), so that we can recognize it in an input expression;
503

➥ Its kind, one of operand, unary operator, binary operator, and right unary
operator (like factorial ‘!’), left parenthesis, or right parenthesis;

➥ For operators, a priority;

➥ For operands, a value.

It is reasonable to think of representing each token as a record containing this
information. One small difficulty arises: The same token may appear several times
in an expression. If it is an operand, then we must be certain that it is given the
same value each time. If we put the records themselves into the expressions, then
when a value is assigned to an operand we must be sure that it is updated in all
the records corresponding to that operand.

We can avoid having to keep chains of references to a given variable by asso-
ciating an integer code with each token and placing this code in the expression,
rather than the full record. We shall thus set up a lexicon for the tokens, which willlexicon
include an array indexed by the integer codes; this array will hold the full records
for the tokens. In this way, if k is the code for a variable, then every appearance
of the variable in an expression will cause us to look in position k of the lexicon
for the corresponding value, and we are automatically assured of getting the same
value each time.

504

(s + x) * (– t) –

1 24 17 22 2 19 1 3 25 2 18 23

7

24 22 17 25 3 19 23 18

24 25

Name Kind
Priority
or value

1

2

3

17

18

19

22

23

24

25

(

)

~

–

–

6

+

–

*

x

7

s

t

4

4

5

0.0

7.0

0.0

0.0

leftparen

rightparen

unaryop

binaryop

binaryop

binaryop

operand

operand

operand

operand

input expression (instring):

infix:

exprlength

postfix:

parameter:

Lexicon

Figure 13.7. Data structures for tokens and expressions

Section 13.5 • An Interactive Expression Evaluator 627

We now introduce a structure to hold the token records that are stored as lexicon
entries:505

struct Token_record {
String name;
double value;
int priority;
Token_type kind;

};

In this structure, the member name that identifies a token is implemented with our
String class of Section 6.3. Recall that String objects can be safely copied, passed
across assignment operators, and compared by using the usual operators.

The lexicon must contain an array of Token_record objects; moreover, it must
provide methods to locate a particular record, either from its integer code or from
its name. We shall solve this information-retrieval problem by including a hash
table called index_code as a member of the lexicon. In the hash table we shall storehash table
only codes and use these to look in the array of records to locate all the information
about the token with a given name.

In a user’s expression there will usually be no more than a few dozen tokens,
and it is quite arguable that the best way to retrieve the code is by sequential search
through the lexicon. Sequential search would be easy to program, would require
no further data structures, and the cost in time over more sophisticated methods
would be negligible.

One of the objects of this project, however, is to illustrate larger applications,
where the expense of sequential search may no longer be negligible. In a compiler,
for example, there may be many hundreds of distinct symbols that must be recog-symbol table
nized, and more sophisticated symbol tables must be used. A good choice is to use
a hash table to make token names into integer codes.

We have now arrived at the following structure to represent the lexicon:

struct Lexicon {
Lexicon();
int hash(const String &x) const;
void set_standard_tokens(); // Set up the predefined tokens.
int count; // Number of records in the Lexicon
int index_code[hash_size]; // Declare the hash table.
Token_record token_data[hash_size];

};

We can now return to the representation of tokens that we shall store in expres-
sions. Every token should contain an integer code, representing the index of its
Token_record in the array token_data of the Lexicon. This means that every Token
needs access to the Lexicon, so that it can retrieve its associated record. We would,
however, like to protect the Lexicon and its records from other access, to ensure
their integrity. We can accomplish both goals by declaring the Lexicon as a staticstatic data member
data member of the Token class. Recall that a static data member is created and
stored just once, but it can be accessed as a member of any object of the class.

We can now formulate the following outline of the class Token:

628 Chapter 13 • Case Study: The Polish Notation

505
class Token {
public:

// Add methods here.
private:

int code;
static Lexicon symbol_table;
static List<int> parameters;

};

List<int> Token :: parameters; // Allocate storage for static Token members.
Lexicon Token :: symbol_table;

This class outline includes a second static data member, parameters, which holds a
list of integer codes for those tokens that represent parameters. As an input expres-parameters
sion is decoded, the program may find constants and new variables (parameters),
which it will then add to the lexicon. These will all be classed as operands, but
recall that, in the case of parameters, the user will be asked to give values before an
expression is evaluated. To be able to prompt the user for these values, it is neces-
sary to keep a list of those token codes that correspond to parameters. Because we
shall need to have access to the parameter list from Token objects, it is convenient
to declare parameters as another static data member of the Token class.

The two static members do not occupy storage within any Token object; there-
fore, storage must be allocated for them outside the class specification. Accordingly,storage allocation for

static members we follow the class specification with appropriate definitions to reserve storage for
the members parameters and symbol_table. These definitions will be processed
at run time, before the main function starts to operate. This will ensure that the
List and Lexicon constructors have carried out any required initializations before
we ever start to use the objects parameters and symbol_table. Of course, when
we create the Lexicon symbol_table we might add operands to the List parameters.
Therefore, we must make sure to declare the List parameters before we declare the
Lexicon symbol_table; in this way we ensure that the list is properly initialized
before we start adding to it.

Placing tokens containing integer codes rather than records into expressions
has the advantage of saving some space, but space for tokens is unlikely to be a
critical restraint for this project. The time required to evaluate the postfix expression
at many different values of the argument x is more likely to prove expensive.

We shall continue to use our earlier implementations of expressions as lists of
tokens so that we can make use of our earlier efficient methods for translation and
evaluation of expressions.

class Expression {
public:
// Add method prototypes.
private:

List<Token> terms;
int current_term;

// Add auxiliary function prototypes.
};

Section 13.5 • An Interactive Expression Evaluator 629

All these data structures are illustrated in Figure 13.7, along with some of the
data structures used in the principal functions. A number of constants, auxiliary
type specifications, and type identifications are needed along with these structures.
Specifically, we need to create the enumerated type Token_type, declare and ini-
tialize the const int hash_size, and define the type identifier Value as a synonym
for double. We must also include our earlier implementations of the classes String,
List, and Stack. The classes String and List have already appeared in our specifi-
cations of tokens and expressions. Just as in Section 13.4, we shall need to use a
Stack in translating expressions from infix to postfix form. Finally, our program
uses a class Plot and other auxiliary graphing structures, which we shall discuss
and implement later. We now consider the class implementations that we need for
our program.

13.5.3 Tokens

For consistency with the functions developed earlier in this chapter, we shall equip
our class Token with a method kind() that reports the kind of a Token. For conve-Token methods
nience, we shall use similar Token methods, priority(), name(), and value(), that
report other token information. Moreover, a method code_number() will return a
token’s code.

We shall frequently need to produce a new Token object from its identification
String: In other words, we shall need to recast the String as a Token. We canToken constructors
conveniently implement this cast operation as a Token constructor that takes a
String argument. We also need to supply a second Token constructor with no
arguments, which will be invoked when we declare but do not initialize a token.
Finally, we shall need Token methods to set and examine the values of tokens
representing parameters, and a method to assign a value to the coordinate x : These
methods merely access or modify static data members and so have a modifier of
static themselves. We have now settled on the following class:506

class Token {
public:

Token() {}
Token (const String &x);
Token_type kind() const;
int priority() const;
double value() const;
String name() const;
int code_number() const;
static void set_parameters();
static void print_parameters();
static void set_x(double x_val);

private:
int code;
static Lexicon symbol_table;
static List<int> parameters;

};

630 Chapter 13 • Case Study: The Polish Notation

1. Accessing Token information
The methods that provide information about a token simply look in the Lexicon.
For example, the method kind() is implemented as follows:

Token_type Token :: kind() const
{

return symbol_table.token_data[code].kind;
}

2. Token Constructors and Initialization
The default constructor with no parameters does not assign an initial data code to
a Token and so it is implemented with an empty code body. The other constructor
takes a String argument and must assign an appropriate Token code. The String
is first run through the method Lexicon :: hash, this hashing incorporates collision
resolution and returns a location in the array Lexicon :: index_code. The resulting
entry index_code[location] is either a previously assigned code for the String or
the special code −1 indicating that the String has not been seen. In either case,
the constructor can determine a correct initializing code to use as data in the new
token.507

Token :: Token(const String &identifier)
/* Post: A Token corresponding to String identifier is constructed. It shares its code

with any other Token object with this identifier.
Uses: The class Lexicon. */

{
int location = symbol_table.hash(identifier);
if (symbol_table.index_code[location] == −1) { // Create a new record.

code = symbol_table.count++;
symbol_table.index_code[location] = code;
symbol_table.token_data[code] = attributes(identifier);
if (is_parameter(symbol_table.token_data[code]))

parameters.insert(0, code);
}
else code = symbol_table.index_code[location]; // Code of an old record

}

The auxiliary function attributes examines the name of a token and sets up anfunction attributes
appropriate Token_record according to our conventions. For example, if the pa-
rameter String identifier is "*", the function attributes returns a record including
the data values: kind = binaryop and priority = 5. The implementation of attributes
consists only of a series of assignment statements, which we omit. We should note
that the function attributes merely provides a static initialization for each token,
whereas the lexicon gives us dynamically changing information about tokens. For
example, attributes will always assign a default value of 0.0 to a parameter, but
the lexicon will record whatever value the user last entered.

The other auxiliary function is_parameter determines whether a Token is afunction
is_parameter parameter by examining its identifier.

Section 13.5 • An Interactive Expression Evaluator 631

3. Parameter Values
Before evaluating an expression, we shall need to establish values for the parame-
ters, if any. The function Token :: set_parameters that carries out this task traversesfunction

set_parameters the list of parameters, printing information about each entry and requesting up-
dated information from the user.

508 void Token :: set_parameters()
/* Post: All parameter values are printed for the user, and any changes specified

by the user are made to these values.
Uses: Classes List, Token_record, and String, and function read_num. */

{
int n = parameters.size();
int index_code;
double x;
for (int i = 0; i < n; i++) {

parameters.retrieve(i, index_code);
Token_record &r = symbol_table.token_data[index_code];
cout << "Give a new value for parameter " << (r.name).c_str()

<< " with value " << r.value << endl;
cout << "Enter a value or a new line to keep the old value: " << flush;
if (read_num(x) == success) r.value = x;

}
}

13.5.4 The Lexicon
The constructor of a Lexicon must set up the member hash table index_code[] as
empty and then apply an auxiliary method Lexicon :: set_standard_tokens to enter
information about all the predefined tokens. Thus the constructor takes the form

509

Lexicon :: Lexicon()
/* Post: The Lexicon is initialized with the standard tokens.

Uses: set_standard_tokens */
{

count = 0;
for (int i = 0; i < hash_size; i++)

index_code[i] = −1; // code for an empty hash slot
set_standard_tokens();

}

The complete list of predefined tokens to be entered by set_standard_tokens is
shown in Figure 13.8. Note that we include operations that are not a standardfunction

set_standard_tokens part of a computer language (such as the base 2 logarithm lg) and constants such
as e and π . The expressions in which we are interested in this section always
have real numbers as their results. Hence we do not include any Boolean valued
operations.

632 Chapter 13 • Case Study: The Polish Notation

Token Name Kind Priority/Value

0 ; end_expression

1 (leftparen
2) rightparen
3 ∼ unaryop 6 negation
4 abs unaryop 6
5 sqr unaryop 6
6 sqrt unaryop 6
7 exp unaryop 6
8 ln unaryop 6 natural logarithm
9 lg unaryop 6 base 2 logarithm

10 sin unaryop 6
11 cos unaryop 6
12 arctan unaryop 6
13 round unaryop 6
14 trunc unaryop 6
15 ! right unary 6 factorial
16 % right unary 6 percentage
17 + binaryop 4
18 − binaryop 4
19 ∗ binaryop 5
20 / binaryop 5
21 ^ binaryop 6
22 x operand 0.00000
23 pi operand 3.14159
24 e operand 2.71828

Figure 13.8. Predefined tokens for expression evaluation

In the following implementation, of Lexicon :: set_standard_tokens, we initial-

510

ize a String to contain a list of all standard tokens, separated by spaces. We apply
a function

get_word(const String &s, int n, String &t);

that finds the nth word in the String s and writes it to the String t. Here a word isword: definition
defined to be any sequence of characters that does not contain a blank. The token
named by this word is automatically added to the lexicon by use of the Token
constructor. Of course, the token constructor calls the function attributes to look
up the initial data record for the new token.

Section 13.5 • An Interactive Expression Evaluator 633

void Lexicon :: set_standard_tokens()
{

int i = 0;
String symbols = (String)

"; () ˜ abs sqr sqrt exp ln lg sin cos arctan round trunc ! % + − * / îx pi e";
String word;
while (get_word(symbols, i++, word) != fail) {

Token t = word;
}
token_data[23].value = 3.14159;
token_data[24].value = 2.71828;

}

1. Hash Table Processing
We need to devise the hash function used for indexing. Recall that, while the
array Lexicon :: token_data takes an index and returns a token name and informa-
tion about the token, the hash table Lexicon :: index_code takes a token name and
returns an index.

It is often the case that the performance of a hash function can be enhanced
by taking into account the application for which it will be used. In our graphing
program many of the tokens are single characters (some letters and some one-
character operators). The hash function that we develop therefore gives special
emphasis to this fact.511

int Lexicon :: hash(const String &identifier) const
/* Post: Returns the location in table Lexicon :: index_code that corresponds to the

String identifier. If the hash table is full and does not contain a record for
identifier, the exit function is called to terminate the program.

Uses: The class String, the function exit. */
{

int location;
const char *convert = identifier.c_str();
char first = convert[0], second; // First two characters of identifier
if (strlen(convert) >= 2) second = convert[1];
else second = first;
location = first % hash_size;
int probes = 0;
while (index_code[location] >= 0 &&

identifier != token_data[index_code[location]].name) {
if (++probes >= hash_size) {

cout << "Fatal Error: Hash Table overflow. Increase table size\n";
exit(1);

}
location += second;
location %= hash_size;

}
return location;

}

634 Chapter 13 • Case Study: The Polish Notation

In this function we have responded to a hash table overflow by calling the system
function exit from <cstdlib> to terminate the whole program, after printing a
diagnostic message. Our program does not include any way for a user to discard
data from the lexicon, and therefore once overflow occurs, there are no useful
recovery options available. If we wished to upgrade the program to allow for
deletion from the lexicon, the most convenient way to respond to overflow in the
hash function would be to throw an exception.1

13.5.5 Expressions: Token Lists

We have already decided to represent expressions (both infix and postfix) with lists
of token codes. Hence we may utilize the standard list operations. Our expressionsrequired methods
must admit the methods get_token, put_token, infix_to_postfix, evaluate_postfix
and recursive_evaluate that we used and developed earlier in the chapter. In addi-
tion, we shall certainly need methods to read, write, clear, and count the number
of tokens in an expression.

In order to deal effectively with user errors, it is necessary to add a methoderror checking
valid_infix() to check whether an infix expression is syntactically valid. Finally, be-
cause the method get_token moves progressively forward through an expression,
we shall need a method rewind to move back to the beginning of an expression.
This method will need to be called when a user wants to graph the same function
twice, with different graph limits or parameters. Hence, the specification for class
Expression takes the form:

512

class Expression {
public:

Expression();
Expression(const Expression &original);
Error_code get_token(Token &next);
void put_token(const Token &next);
Expression infix_to_postfix();
Error_code evaluate_postfix(Value &result);
void read();
void clear();
void write();
Error_code valid_infix();
int size();
void rewind();

private:
List<Token> terms;
int current_term;
Error_code recursive_evaluate(const Token &first_token,

Value &result, Token &final_token);
};

1 We have not used exceptions in this book, but they are explained in advanced C++ textbooks.

Section 13.5 • An Interactive Expression Evaluator 635

1. Manipulating the Token List

The method get_token retrieves tokens from an Expression as it proceeds. In or-
der to move forward through the Expression, it increments the data member cur-
rent_term.512

Error_code Expression :: get_token(Token &next)
/* Post: The Token next records the current_term of the Expression, current_term

is incremented, and an error code of success is returned, or if there is no
such term a code of fail is returned.

Uses: Class List. */

{
if (terms.retrieve(current_term, next) != success) return fail;
current_term++;
return success;

}

Similarly, the method put_token needs only to insert a token at the end of the
expression’s list, and the method rewind resets current_term to 0.

2. Reading an Expression

The method Expression :: read is used to read an expression in ordinary (infix) form,
split it apart into tokens, and place their codes into the Expression.

input format We must now establish conventions regarding the input format. Let us assume
that an input expression is typed as one line, so that when we reach the end of the
line, we have also reached the end of the input string. Let us use the conventions of
C++ concerning spaces: Blanks are ignored between tokens, but the occurrence of
a blank terminates a token. If a token is a word, then it begins with a letter, which
can be followed by letters or digits.

Thus to read an expression we read a line of text with the String function
read_in that we developed in Section 6.3. We apply a function add_spaces that
inserts spaces on either side of every operator and separator in the input String:
This ensures that the tokens appear as words of the String. Therefore, we can split
the text apart with the String function get_word. We can finish by casting the
individual words into tokens with our Token constructor. With this strategy, we
obtain the following function:

513

void Expression :: read()
/* Post: A line of text, entered by the user, is split up into tokens and stored in the

Expression.
Uses: Classes String, Token, and List. */

636 Chapter 13 • Case Study: The Polish Notation

{
String input, word;
int term_count = 0;
int x;
input = read_in(cin, x);
add_spaces(input); // Tokens are now words of input.
bool leading = true;
for (int i = 0; get_word(input, i, word) != fail; i++) { // Process next token

if (leading)
if (word == "+") continue; // unary +
else if (word == "−") word = "˜"; // unary −

Token current = word;
// Cast word to Token.

terms.insert(term_count++, current);
Token_type type = current.kind();
if (type == leftparen || type == unaryop || type == binaryop)

leading = true;
else

leading = false;
}

}

The method read contains a section of code that needs further explanation. This
concerns the two symbols ‘+’ and ‘−,’ which can be either unary or binary operators.
We introduce the Boolean variable leading to tell us which case occurs.

The value of leading detects whether an operator has a left argument. Weleading position
shall show that if leading is true, then the current token can have no left argument
and therefore cannot legally be a binary operator. In this way, our method is able
to distinguish between unary and binary versions of the operators + and −. We
shall take no action for a unary ‘+,’ since it has no effect, and we replace a unary
‘−’ by our private notation ‘∼.’ Note, however, that this change is local to our
program. The user is not required—or even allowed—to use the symbol ‘∼’ for
unary negation.

3. Leading and Non-Leading Positions
To motivate the inclusion of the variable leading, let us first consider a special case.
Suppose that an expression is made up only from simple operands and binary
operators, with no parentheses or unary operators. Then the only syntactically
correct expressions are of the form

operand binaryop operand binaryop . . . operand

where the first and last tokens are operands, and the two kinds of tokens alternate. It
is illegal for two operands to be adjacent or for two binary operators to be adjacent.
In the leading position there must be an operand, as there must be after each
operator, so we can consider these positions also as “leading,” since the preceding
operator must lead to an operand.leading positions

Section 13.5 • An Interactive Expression Evaluator 637

Now suppose that unary operators are to be inserted into the preceding ex-
pression. Any number of left unary operators can be placed before any operand,
but it is illegal to place a left unary operator immediately before a binary operator.
That is, unary operators that go on the left can appear exactly where operands are
allowed, in leading positions but only there. On the other hand, the appearance
of a left unary operator leaves the position still as a “leading” position, since an
operand must still appear before a binary operator becomes legal.514

Previous token Legal tokens
any one of: any one of:

Leading position:
start of expression operand
binary operator unary operator
unary operator left parenthesis
left parenthesis

Nonleading position:
operand binary operator
right unary operator right unary operator
right parenthesis right parenthesis

end of expression

Figure 13.9. Tokens legal in leading and nonleading positions

Right unary operators, similarly, can be placed in any non-leading position
(that is, after operands or other right-unary operators), and the appearance of a
right unary operator leaves the position as non-leading, since a binary operator
must appear before another operand becomes legal.

Let us now, finally, also allow parentheses in the expression. A bracketed
sub-expression is treated as an operand and, therefore, can appear exactly where
operands are legal. Hence left parentheses can appear exactly in leading posi-
tions and leave the position as leading, and right parentheses can appear only in
nonleading positions and leave the position as nonleading.

All the possibilities are summarized in Figure 13.9.

4. Error Checking for Correct Syntax

error checking It is in reading the input string that the greatest amount of error checking is needed
to make sure that the syntax of the input expression is correct, and to make our
program as robust as possible. This error checking will be done in a subsidiary
method valid_infix, which checks for proper kinds of tokens in leading and non-
leading positions. The following function also checks that parentheses are properly
balanced:

638 Chapter 13 • Case Study: The Polish Notation

515
Error_code Expression :: valid_infix()
/* Post: A code of success or fail is returned according to whether the Expression

is a valid or invalid infix sequence.
Uses: Class Token. */

{
Token current;
bool leading = true;
int paren_count = 0;

while (get_token(current) != fail) {
Token_type type = current.kind();
if (type == rightparen || type == binaryop || type == rightunaryop) {

if (leading) return fail;
}
else if (!leading) return fail;

if (type == leftparen) paren_count++;
else if (type == rightparen) {

paren_count−−;
if (paren_count < 0) return fail;

}

if (type == binaryop || type == unaryop || type == leftparen)
leading = true;

else leading = false;
}

if (leading) return fail; // An expected final operand is missing.
if (paren_count > 0) return fail; // Right parentheses are missing.
rewind();
return success;

}

5. Translation into Postfix Form

At the conclusion of the method read(), the input expression has been converted
into an infix sequence of tokens, in the form needed by function infix_to_postfix as
derived in Section 13.4. In fact, we now arrive at the key step of our algorithm and
can apply the previous work with just the minor change needed to allow for right
unary operators.

When the method infix_to_postfix has finished, the output expression is a se-
quence of tokens in postfix form, and it can be evaluated efficiently in the next
stage. This efficiency, in fact, is important so that a graph can be drawn without
undue delay, even though it requires evaluation of the expression for a great many
different values.

6. Postfix Evaluation

To evaluate a postfix expression, we again use a method developed in the first part
of this chapter. Either the recursive or the nonrecursive version of the method

Section 13.5 • An Interactive Expression Evaluator 639

evaluate_postfix can be used, again with no significant change. Of course, evalu-
ate_postfix requires subsidiary functions get_value, do_unary, and do_binary, to
which we next turn.

13.5.6 Auxiliary Evaluation Functions
In evaluating postfix expressions, we need auxiliary functions to evaluate operands
and apply tokens that represent operators.

1. Evaluation of Operands
The function get_value need only call Token :: value():

516

Value get_value(const Token ¤t)
/* Pre: Token current is an operand.

Post: The Value of current is returned.
Uses: Methods of class Token. */

{
return current.value();

}

2. Operators
Since we have integer codes for all the tokens, the application of operators can
be done within a simple but long switch statement. We leave the one for unary
operators as an exercise. For binary operators, we have the following function:

Value do_binary(const Token &operation,
const Value &first_argument, const Value &second_argument)

/* Pre: Token operation is a binary operator.
Post: The Value of operation applied to the pair of Value parameters is returned.
Uses: Methods of class Token. */

{
switch (operation.code_number()) {
case 17:

return first_argument + second_argument;
case 18:

return first_argument − second_argument;
case 19:

return first_argument * second_argument;
case 20:

return first_argument/second_argument;
case 21:

return exp(first_argument, second_argument);
}

}

The exponentiation function, exp(double), is supplied by one of the standard li-exponentiation
braries <math.h> and <cmath>.

640 Chapter 13 • Case Study: The Polish Notation

13.5.7 Graphing the Expression: The Class Plot
Now we come, finally, to the purpose of the entire program, graphing the expression
on the computer screen. Graphics libraries in C++ are entirely system dependent,
so what works on one machine may not necessarily work on another. We therefore
begin with a system-independent approach that uses ordinary characters to draw
crude graphs. The resulting class Plot can easily be replaced by more sophisticated
implementations that make use of system graphics capabilities. Later, we shall
illustrate an implementation of such an augmented class Plot that is appropriate
for use with the Borland C++2 compiler.

1. The Class Plot
The data members in a Plot object are used to store the graph limits and the
data points to be plotted. The limits can simply be stored as floating-point data
members x_low, x_high, y_low, and y_high. Another floating-point data member,
x_increment, sets the gap between the x coordinates of successive data points.

When we come to draw a graph, we shall need to sort the points being plotted.
We shall therefore store these points in a Sortable_list. Hence, the class Plot is
specified as follows:517

class Plot {
public:

Plot();
Error_code set_limits();
void find_points(Expression &postfix);
void draw();
void clear();
int get_print_row(double y_value);
int get_print_col(double x_value);

private:
Sortable_list<Point> points; // records of points to be plotted
double x_low, x_high; // x limits
double y_low, y_high; // y limits
double x_increment; // increment for plotting
int max_row, max_col; // screen size

};

The method find_points creates the Sortable_list of points to plot from its parameter
Expression postfix.

The other significant class method, draw, plots a graph, from the point data
stored in the Sortable_list, onto the user’s screen.

The class Plot also has a constructor, a method to clear stored data, and methods
to locate the row and column of the user’s screen that will be used in plotting a
particular point. We shall consider the output screen to be rectangular, with a
size determined by the Plot data members max_row and max_col. We specify these

2 Borland C++ is a trademark of Borland International, Inc.

Section 13.5 • An Interactive Expression Evaluator 641

data members in the Plot constructor. We would, for example, give them the values
19 and 79 to obtain a 20 × 80 text screen, or perhaps 780 and 1024 for a graphics
screen. A position on the screen is specified by giving its integer row and column
coordinates, from the ranges 0 ≤ row ≤ max_row and 0 ≤ col ≤ max_col. The
method get_print_row uses the y-coordinate of a point of our graph to calculate a
corresponding row of the screen.517

int Plot :: get_print_row(double y_value)
/* Post: Returns the row of the screen at which a point with y-coordinate y_value

should be plotted, or returns −1 if the point would fall off the edge of
the screen. */

{
double interp_y =

((double) max_row) * (y_high − y_value)/(y_high − y_low) + 0.5;
int answer = (int) interp_y;
if (answer < 0 || answer > max_row) answer = −1;
return answer;

}

The function returns a value of −1 to signify an input coordinate from outside the
limits of the graph.

2. Points
The Sortable_list in a Plot stores objects of the class Point. Since these objects repre-
sent data points to be plotted, each Point must include two integer data members,
row and col, that determine a location on the user’s screen. These data members
completely determine the ordering of points. We can therefore simply view a Point
as its own sorting key. In our program, this decision is implemented with the
definition

typedef Point Key;

To ensure compatibility with our earlier sorting methods, each Point must have
overloaded comparison operators. The Point structure that we now define also
includes two constructors. The constructors create either a Point with no useable
data, or a Point storing the given row and col parameter values.518

struct Point {
int row;
int col;
Point();
Point(int a, int b);
bool operator == (const Point &p);
bool operator != (const Point &p);
bool operator >= (const Point &p);
bool operator <= (const Point &p);
bool operator > (const Point &p);
bool operator < (const Point &p);

};

642 Chapter 13 • Case Study: The Polish Notation

Eventually, when we plot data to the screen, we will first have to plot those data
points that belong at the top of the screen and then plot lower points. Similarly, if
two data points occupy the same row of the screen, we will plot the leftward one
first. Let us therefore design Point comparison operators so that points that must
be plotted earlier are considered smaller than points that must be plotted later. In
this way, we can simply sort the points, to arrange them in the order that they
must be plotted to the user’s screen. For example, the Point :: operator < has the
following implementation:

518

bool Point :: operator < (const Point &p)
{

return (row < p.row) || (col < p.col && row == p.row);
}

3. Creating the Point Data

The method Plot :: find_points produces the list of points to be plotted. It must
repeatedly evaluate its postscript expression parameter and insert the resulting
point into the Sortable_list Plot :: points.

void Plot :: find_points(Expression &postfix)
/* Post: The Expression postfix is evaluated for values of x that range from x_low

to x_high in steps of x_increment. For each evaluation we add a Point to
the Sortable_list points.

Uses: Classes Token, Expression, Point, and List. */
{

double x_val = x_low;
double y_val;
while (x_val <= x_high) {

Token :: set_x(x_val);
postfix.evaluate_postfix(y_val);
postfix.rewind();
Point p(get_print_row(y_val), get_print_col(x_val));
points.insert(0, p);
x_val += x_increment;

}
}

4. Drawing the Graph

As soon as we have generated a Sortable_list of points, we are ready to draw a
graph. We simply sort the points, in our implementation with a mergesort, and
then traverse through the sorted list, placing a symbol at each indicated screen
location. Our care in first sorting the list of points to be plotted ensures that they
are already arranged from top to bottom and, at any given height, from left to right
in the output graph.

Section 13.5 • An Interactive Expression Evaluator 643

519
void Plot :: draw()
/* Post: All screen locations represented in points have been marked with the char-

acter ′#′ to produce a picture of the stored graph.
Uses: Classes Point and Sortable_list and its method merge_sort. */

{
points.merge_sort();
int at_row = 0, at_col = 0; // cursor coordinates on screen
for (int i = 0; i < points.size(); i++) {

Point q;
points.retrieve(i, q);
if (q.row < 0 || q.col < 0) continue; // off the scale of the graph
if (q.row < at_row || (q.row == at_row && q.col < at_col)) continue;

if (q.row > at_row) { // Move cursor down the screen.
at_col = 0;
while (q.row > at_row) {

cout << endl;
at_row++;

}
}

if (q.col > at_col) // Advance cursor horizontally.
while (q.col > at_col) {

cout << " ";
at_col++;

}
cout << "#";
at_col++;

}
while (at_row++ <= max_row) cout << endl;

}

13.5.8 A Graphics-Enhanced Plot Class

Although there is no graphics support in the standard library of C++, such support
is often provided by particular systems. For example, the Borland C++ compiler
includes a library of graphics routines in the header file <graphics.h>. This library
includes functions to initialize the screen for graphics, to detect the number of pixels
on the screen, to mark individual pixels, and to restore the screen.

We can incorporate these routines into our class Plot by changing the im-
plementations of just four methods that have some interaction with the output
screen. These methods are the constructor and the operations draw, find_points,
and get_print_col.

In a very minor modification to the constructor, we should remove the prede-
fined limits on max_row and max_col since these are now to be calculated by library
functions. A similarly minor modification is required in the method get_print_col
to reflect the numbering of pixel rows upwards from the bottom of the screen rather
than downwards from the top of the screen.

644 Chapter 13 • Case Study: The Polish Notation

In the method find_points, we begin by using Borland graphics functions to
initialize the screen and record its dimensions. The output data points are then
listed just as in our earlier implementation.

520

void Plot :: find_points(Expression &postfix)
/* Post: The Expression postfix is evaluated for values of x that range from x_low

to x_high in steps of x_increment. For each evaluation we add a Point of
the corresponding data point to the Sortable_list points.

Uses: Classes Token, Expression, Point, and List and the library <graphics.h>. */

{
int graphicdriver = DETECT, graphicmode;
initgraph(&graphicdriver, &graphicmode, ""); // screen detection and
graphresult(); // initialization
max_col = getmaxx(); // with graphics.h library
max_row = getmaxy();
double x_val = x_low;
double y_val;
while (x_val <= x_high) {

Token :: set_x(x_val);
postfix.evaluate_postfix(y_val);
postfix.rewind();
Point p(get_print_row(y_val), get_print_col(x_val));
points.insert(0, p);
x_val += x_increment;

}
}

Finally, the method draw has no need to sort the points, since pixels can be plotted
in any order. The method simply lists points and marks corresponding pixels.521

void Plot :: draw()
/* Post: All pixels represented in points have been marked to produce a picture of

the stored graph.
Uses: Classes Point and Sortable_list and the library <graphics.h> */

{
for (int i = 0; i < points.size(); i++) {

Point q;
points.retrieve(i, q);
if (q.row < 0 || q.col < 0) continue; // off the scale of the graph
if (q.row > max_row || q.col > max_col) continue;
putpixel(q.col, q.row, 3); // graphics.h library function

}

cout "Enter a character to clear screen and continue: " << flush;
char wait_for;
cin >> wait_for;
restorecrtmode(); // graphics.h library function

}

Chapter 13 • References for Further Study 645

At this point, we have surveyed the entire project. There remain several functions
and methods that do not appear in the text, but these are all sufficiently straight-
forward that they can be left as exercises.

Exercises
13.5

E1. State precisely what changes in the program are needed to add the base 10
logarithm function log() as an additional unary operator.

E2. Naïve users of this program might (if graphing a function involving money)
write a dollar sign ‘$’ within the expression. What will the present program
do if this happens? What changes are needed so that the program will ignore
a ‘$’?

E3. C++ programmers might accidentally type a semicolon ‘;’ at the end of the
expression. What changes are needed so that a semicolon will be ignored at
the end of the expression but will be an error elsewhere?

E4. Explain what changes are needed to allow the program to accept either square
brackets [. . .] or curly brackets {. . . } as well as round brackets (. . .). The
nesting must be done with the same kind of brackets; that is, an expression
of the form (. . . [. . .). . .] is illegal, but forms like [. . . (. . .). . . {. . . } . . .] are
permissible.

Programming
Project 13.5

P1. Provide the missing functions and methods and implement the graphing pro-
gram on your computer.

REFERENCES FOR FURTHER STUDY

The Polish notation is so natural and useful that one might expect its dis-
covery to be hundreds of years ago. It may be surprising to note that it
is a discovery of this century: JAN ŁUKASIEWICZ, Elementy Logiki Matematyczny,
Warsaw, 1929; English translation: Elements of Mathematical Logic, Pergamon Press,
1963.

The development of iterative algorithms to form and evaluate Polish expressions
(usually postfix form) can be found in several data structures books, as well as
more advanced books on compiler theory. The iterative algorithm for translat-
ing an expression from infix to postfix form appears to be due independently to
E. W. DIJKSTRA and to C. L. HAMBLIN and appears in

E. W. DIJKSTRA, “Making a translator for ALGOL 60,” Automatic Programming Infor-
mation number 7 (May 1961); reprinted in Annual Revue of Automatic Programming
3 (1963), 347–356.

C. L. HAMBLIN, “Translation to and from Polish notation,” Computer Journal 5 (1962),
210–213.

The recursive algorithm for evaluation of postfix expressions is derived, albeit from
a rather different point of view, and for binary operators only, in

EDWARD M. REINGOLD, “A comment on the evaluation of Polish postfix expressions,”
Computer Journal 24 (1981), 288.

Mathematical
Methods A

T HE FIRST PART of this appendix supplies several mathematical results used
in algorithm analysis. The final two sections of the appendix, Fibonacci
numbers and Catalan numbers, are optional topics intended for the mathe-
matically inclined reader.

A.1 SUMS OF POWERS OF INTEGERS

The following two formulas are useful in counting the steps executed by an algo-523
rithm.

Theorem A.1

1 + 2 + · · · + n = n(n + 1)
2

.

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

.

Proof The first identity has a simple and elegant proof. We let S equal the sum on the left
side, write it down twice (once in each direction), and add vertically:

1
n

n + 1

+
+
+

2
n − 1

n + 1

+
+
+

3
n − 2

n + 1

+
+
+

· · ·
· · ·
· · ·

+
+
+

n − 1
2

n + 1

+
+
+

n
1

n + 1

=
=
=

S
S

2S

There are n columns on the left; hence n(n+1)= 2S and the formula follows.end of proof

647

648 Appendix A • Mathematical Methods

1

2

3

4

5

n – 1

n

n – 1

n – 2

n – 3

n – 4

n

 n +1

n

2

1

Figure A.1. Geometrical proof for sum of integers

The first identity also has the proof without words shown in Figure A.1.

523

We shall use the method of mathematical induction to prove the second iden-proof by induction
tity. This method requires that we start by establishing an initial case, called the
induction base, which for our formula is the case n = 1. In this case the formula
becomes

12 = 1(1 + 1)(2 + 1)
6

,

which is true, so the induction base is established. Next, using the formula for the
case n− 1, we must establish it for case n. For case n− 1 we thus shall assume

12 + 22 + · · · + (n − 1)2= (n − 1)n
(
2(n − 1)+1

)
6

It follows that

12 + 22 + · · · + (n − 1)2+n2 = (n − 1)n
(
2(n − 1)+1

)
6

+ n2

= 2n3 − 3n2 + n + 6n2

6

= n(n + 1)(2n + 1)
6

,

which is the desired result, and the proof by induction is complete.
A convenient shorthand for a sum of the sort appearing in these identities is to

use the capital Greek letter sigma ∑
summation notation

Section A.1 • Sums of Powers of Integers 649

in front of the typical summand, with the initial value of the index controlling the
summation written below the sign, and the final value above. Thus the preceding
identities can be written

n∑
k=1
k = n(n + 1)

2

and
n∑
k=1
k2 = n(n + 1)(2n + 1)

6
.

Two other formulas are also useful, particularly in working with trees.

Theorem A.2
1 + 2 + 4 + · · · + 2m−1 = 2m − 1.

1 × 1 + 2 × 2 + 3 × 4 + · · · + m × 2m−1 = (m − 1)×2m + 1.

In summation notation these equations are524

m−1∑
k=0

2k = 2m − 1.

m∑
k=1
k × 2k−1 = (m − 1)×2m + 1.

Proof The first formula will be proved in a more general form. We start with the following
identity, which, for any value of x 6= 1, can be verified simply by multiplying both
sides by x − 1:

xm − 1
x − 1

= 1 + x + x2 + · · · + xm−1

for any x 6= 1. With x = 2 this expression becomes the first formula.
To establish the second formula we take the same expression in the case of

m+ 1 instead of m :

xm+1 − 1
x − 1

= 1 + x + x2 + · · · + xm

for any x 6= 1, and differentiate with respect to x :

(x − 1)(m + 1)xm − (xm+1 − 1)
(x − 1)2

= 1 + 2x + 3x2 + · · · + mxm−1

for any x 6= 1. Setting x = 2 now gives the second formula.end of proofend of proof

650 Appendix A • Mathematical Methods

Suppose that |x| < 1 in the preceding formulas. Asm becomes large, it follows
that xm becomes small, that is

524

lim
m→∞x

m = 0.

Taking the limit as m →∞ in the preceding equations gives

Theorem A.3 If |x| < 1 then
∞∑
k=0
xk = 1

1 − x .
infinite series

∞∑
k=1
kxk−1 = 1

(1 − x)2 .

A.2 LOGARITHMS

The primary reason for using logarithms is to turn multiplication and division
into addition and subtraction, and exponentiation into multiplication. Before the
advent of pocket calculators, logarithms were an indispensable tool for hand cal-
culation: Witness the large tables of logarithms and the once ubiquitous slide rule.
Even though we now have other methods for numerical calculation, the fundamen-
tal properties of logarithms give them importance that extends far beyond their use
as computational tools.

The behavior of many phenomena, first of all, reflects an intrinsically logarith-
mic structure; that is, by using logarithms we find important relationships that are
not otherwise obvious. Measuring the loudness of sound, for example, is logarith-physical

measurements mic: if one sound is 10 dB (decibels) louder than another, then the actual acoustic
energy is 10 times as much. If the sound level in one room is 40 dB and it is 60 dB in
another, then the human perception may be that the second room is half again as
noisy as the first, but there is actually 100 times more sound energy in the second
room. This phenomenon is why a single violin soloist can be heard above a full
orchestra (when playing a different line), and yet the orchestra requires so many
violins to maintain a proper balance of sound.

Earthquake intensity is also measured logarithmically: An increase of 1 on the
RICHTER scale represents a ten-fold increase in energy released.

large numbers Logarithms, secondly, provide a convenient way to handle very large numbers.
The scientific notation, where a number is written as a small real number (often in
the range from 1 to 10) times a power of 10, is really based on logarithms, since
the power of 10 is essentially the logarithm of the number. Scientists who need
to use very large numbers (like astronomers, nuclear physicists, and geologists)
frequently speak of orders of magnitude and thereby concentrate on the logarithm
of the number.

A logarithmic graph, thirdly, is a very useful device for displaying the proper-
ties of a function over a much broader range than a linear graph. With a logarithmic

Section A.2 • Logarithms 651

graph, we can arrange to display detailed information on the function for small
values of the argument and at the same time give an overall view for much larger
values. Logarithmic graphs are especially appropriate when we wish to show
percentage changes in a function.

A.2.1 Definition of Logarithms

Logarithms are defined in terms of a real number a > 1, which is called the base of
the logarithms. (It is also possible to define logarithms with base a in the range 0 <base
a < 1, but doing so would introduce needless complications into our discussion.)
For any number x > 0, we define loga x = y , where y is the real number such

525

that ay = x . The logarithm of a negative number, and the logarithm of 0, are not
defined.

A.2.2 Simple Properties

From the definition and from the properties of exponents we obtain

loga 1 = 0,
loga a = 1,
loga x < 0 for all x such that 0 < x < 1.

0 < loga x < 1 for all x such that 1 < x < a.
loga x > 1 for all x such that a < x.

The logarithm function has a graph like the one in Figure A.2.527

1

1/a

1 a a2 a3
0

–1

–2

–3

2

3

Figure A.2. Graph of the logarithm function

652 Appendix A • Mathematical Methods

We also obtain the identitiesidentities

loga(xy) = (loga x)+(loga y)
loga(x/y) = (loga x)−(loga y)

loga x
z = z loga x

loga a
z = z

aloga x = x

that hold for any positive real numbers x and y and for any real number z .
From the graph in Figure A.2 you will observe that the logarithm grows more

and more slowly as x increases. The graphs of positive powers of x less than 1,
such as the square root of x or the cube root of x , also grow progressively more
slowly, but never become as flat as the graph of the logarithm. In fact,

525

As x grows large, logx grows more slowly than xc , for any c > 0.

A.2.3 Choice of Base

Any real number a > 1 can be chosen as the base of logarithms, but certain special
choices appear much more frequently than others. For computation and for graph-
ing, the base a = 10 is often used, and logarithms with base 10 are called common
logarithms. In studying computer algorithms, however, base 10 appears infre-common logarithm
quently, and we do not often use common logarithms. Instead, logarithms with
base 2 appear the most frequently, and we therefore reserve the special symbol526

lgx

to denote a logarithm with base 2.

A.2.4 Natural Logarithms

In studying mathematical properties of logarithms, and in many problems where
logarithms appear as part of the answer, the number that appears as the base is

e = 2.718281828459

Logarithms with base e are called natural logarithms. In this book we alwaysnatural logarithm
denote the natural logarithm of x by

lnx.

In many mathematics books, however, other bases than e are rarely used, in which
case the unqualified symbol logx usually denotes a natural logarithm. Figure A.3
shows the graph of logarithms with respect to the three bases 2, e, and 10.

Section A.2 • Logarithms 653

527

4 Base 2

Base e

Base 10

2 4 6 8 10 12 16 18 20e 14

3

2

1

–1

–4

–3

–2

Figure A.3. Logarithms with three bases

The properties of logarithms that make e the natural choice for the base are
thoroughly developed as part of the calculus, but we can mention two of these
properties without proof. First, the graph of lnx has the property that its slope at
each point x is 1/x ; that is, the derivative of lnx is 1/x for all real numbers x > 0.
Second, the natural logarithm satisfies the infinite series

ln(x + 1)= x − x
2

2
+ x

3

3
− x

4

4
+ · · ·

for −1 < x < 1, but this series requires many terms to give a good approximation
and therefore, is not useful directly for computation. It is much better to consider
instead the exponential function that “undoes” the logarithm and that satisfies theexponential function
series

ex = 1 + x + x
2

2!
+ x

3

3!
+ · · ·

for all real numbers x . This exponential function ex also has the important property
that it is its own derivative.

A.2.5 Notation

The notation just used for logarithms with different bases will be our standard. We
thus summarize:

654 Appendix A • Mathematical Methods

526
Conventions

Unless stated otherwise, all logarithms will be taken with base 2.
The symbol lg denotes a logarithm with base 2,
and the symbol ln denotes a natural logarithm.

If the base for logarithms is not specified or makes no difference,
then the symbol log will be used.

A.2.6 Change of Base
Logarithms with respect to one base are closely related to logarithms with respect
to any other base. To find this relation, we start with the following relation that is
essentially the definition

x = aloga x

for any x > 0. Then

logb x = logb a
loga x = (loga x)(logb a).

The factor logb a does not depend on x , but only on the two bases. Therefore:

To convert logarithms from one base to another, multiply by a constant factor, the
logarithm of the first base with respect to the second.

The most useful numbers for us in this connection areconversion factors

lg e ≈ 1.442695041,
ln 2 ≈ 0.693147181,

ln 10 ≈ 2.302585093,
lg 1000 ≈ 10.0

The last value is a consequence of the important approximation 210 = 1024 ≈ 103 =
1000.

A.2.7 Logarithmic Graphs
In a logarithmic scale the numbers are arranged as on a slide rule, with larger
numbers closer together than smaller numbers. In this way, equal distances along
the scale represent equal ratios rather than the equal differences represented on an
ordinary linear scale. A logarithmic scale should be used when percentage change
is important to measure, or when perception is logarithmic. Human perception of
time, for example, sometimes seems to be nearly linear in the short term—what
happened two days ago is twice as distant as what happened yesterday—but often
seems more nearly logarithmic in the long term: We draw less distinction between
one million years ago and two million years ago than we do between ten years ago
and one hundred years ago.

Section A.2 • Logarithms 655

Graphs in which both the vertical and horizontal scales are logarithmic arelog-log graphs
called log-log graphs. In addition to phenomena where the perception is naturally
logarithmic in both scales, log-log graphs are useful to display the behavior of a
function over a very wide range. For small values, the graph records a detailed
view of the function, and for large values a broad view of the function appears
on the same graph. For searching and sorting algorithms, we wish to compare
methods both for small problems and large problems; hence log-log graphs are
appropriate. (See Figure A.4.)528

108

107

106

105

104

103

102

50

10
5

1 2 3 5 10 20 50 100 200 500 1000

Insertion
sort

Merge
sort

Comparisons of keys,
average

1
2000 10,0005000

Figure A.4. Log-log graph, comparisons, insertion and merge sorts

One observation is worth noting: Any power of x graphs as a straight line with
a log-log scale. To prove this, we start with an arbitrary power function y = xn
and take logarithms on both sides, obtaining

logy = n logx.

A log-log graph in x and y becomes a linear graph in u = logx and v = logy ,
and the equation becomes v = nu in terms of u and v , which indeed graphs as a
straight line.

656 Appendix A • Mathematical Methods

A.2.8 Harmonic Numbers
As a final application of logarithms, we obtain an approximation to a sum that
appears frequently in the analysis of algorithms, especially that of sorting methods.
The nth harmonic number is defined to be the sum

529

Hn = 1 + 1
2
+ 1

3
+ · · · + 1

n
of the reciprocals of the integers from 1 to n.

To evaluate Hn , we consider the function 1/x , and the relationship shown in
Figure A.5. The area under the step function is clearly Hn , since the width of each
step is 1, and the height of step k is 1/k, for each integer k from 1 to n. This area
is approximated by the area under the curve 1/x from 1

2 to n+ 1
2 . The area under

the curve is ∫ n+ 1
2

1
2

1
x
dx = ln(n + 1

2)− ln 1
2 ≈ lnn + 0.7.

When n is large, the fractional term 0.7 is insignificant, and we obtain lnn as a
good approximation to Hn .

1

0 1 2 3 4 5 6 7 8 9 10

1/x

1/x

n = 10

1
2

Figure A.5. Approximation of
∫ n+ 1

2
1
2

1
x dx

By refining this method of approximation by an integral, it is possible to obtain
a very much closer approximation to Hn , if such is desired. Specifically,

Theorem A.4 The harmonic number Hn , n ≥ 1, satisfies

Hn = lnn + γ + 1
2n

− 1
12n2 +

1
120n4 − ε,

where 0 < ε < 1/(252n6), and γ ≈ 0.577215665 is known as Euler’s constant.

Section A.3 • Permutations, Combinations, Factorials 657

A.3 PERMUTATIONS, COMBINATIONS, FACTORIALS

A.3.1 Permutations
A permutation of objects is an ordering or arrangement of the objects in a row.
If we begin with n different objects, then we can choose any of the n objects to
be the first one in the arrangement. There are then n − 1 choices for the second
object, and since these choices can be combined in all possible ways, the number

530

of choices multiplies. Hence the first two objects may be chosen in n(n− 1) ways.
There remain n − 2 objects, any one of which may be chosen as the third in the
arrangement. Continuing in this way, we see that the number of permutations of
n distinct objects is

n! = n × (n − 1)×(n − 2)× . . . × 2 × 1.count of permutations

Objects to permute: a b c d

Choose a first: a b c d a b d c a c b d a c d b a d b c a d c b
Choose b first: b a c d b a d c b c a d b c d a b d a c b d c a
Choose c first: c a b d c a d b c b a d c b d a c d a b c d b a
Choose d first: d a b c d a c b d b a c d b c a d c a b d c b a

Figure A.6. Constructing permutations

Note that we have assumed that the objects are all distinct, that is, that we
can tell each object from every other one. It is often easier to count configurations
of distinct objects than when some are indistinguishable. The latter problem can
sometimes be solved by temporarily labeling the objects so they are all distinct,
then counting the configurations, and finally dividing by the number of ways in
which the labeling could have been done. The special case in the next section is
especially important.

A.3.2 Combinations
A combination of n objects taken k at a time is a choice of k objects out of the
n, without regard for the order of selection. The number of such combinations is
denoted either by

C(n, k) or by
(
n
k

)
.

We can calculate C(n, k) by starting with the n! permutations of n objects and form
a combination simply by selecting the first k objects in the permutation. The order,
however, in which these k objects appear is ignored in determining a combination,

658 Appendix A • Mathematical Methods

so we must divide by the number k! of ways to order the k objects chosen. The530
order of the n − k objects not chosen is also ignored, so we must also divide by
(n− k)!. Hence:

C(n, k)= n!
k!(n − k)!count of combinations

Objects from which to choose: a b c d e f

a b c a c d a d f b c f c d e
a b d a c e a e f b d e c d f
a b e a c f b c d b d f c e f
a b f a d e b c e b e f d e f

Figure A.7. Combinations of 6 objects, taken 3 at a time

The number of combinations C(n, k) is called a binomial coefficient, since
it appears as the coefficient of xkyn−k in the expansion of (x + y)n . There arebinomial coefficients
hundreds of different relationships and identities about various sums and products
of binomial coefficients. The most important of these can be found in textbooks on
elementary algebra and on combinatorics.

A.3.3 Factorials
We frequently use permutations and combinations in analyzing algorithms, and
for these applications we must estimate the size of n! for various values of n. An531
excellent approximation to n! was obtained by JAMES STIRLING in the eighteenth
century:

Theorem A.5

n! ≈
√

2πn
(
n
e

)n [
1 + 1

12n
+ O

(1
n2

)]
.

We usually use this approximation in logarithmic form instead:Stirling’s
approximation

Corollary A.6

lnn! ≈ (n + 1
2)lnn − n + 1

2 ln(2π)+ 1
12n

+ O
(1
n2

)
.

Note that, as n increases, the approximation to the logarithm becomes more and
more accurate; that is, the difference approaches 0. The difference between the
approximation directly to the factorial and n! itself will not necessarily become
small (that is, the difference need not go to 0), but the percentage error becomes
arbitrarily small (the ratio goes to 1). KNUTH (Volume 1, page 111) gives refinements
of Stirling’s approximation that are even closer.

Section A.4 • Fibonacci Numbers 659

Proof The complete proof of Stirling’s approximation requires techniques from advanced
calculus that would take us too far afield here. We can, however, use a bit of
elementary calculus to illustrate the first step of the approximation. First, we take
the natural logarithm of a factorial, noting that the logarithm of a product is the
sum of the logarithms:

lnn! = ln
(
n × (n − 1)×· · · × 1

)
= lnn + ln(n − 1)+· · · + ln 1

=
n∑
x=1

lnx.

Next, we approximate the sum by an integral, as shown in Figure A.8.531

ln x

ln x
n = 20

2 4 6 8 10 12 14 16 18 20

3

2

1

–1

–2

Figure A.8. Approximation of lnn! by
∫ n+ 1

2
1
2

lnxdx

It is clear from the diagram that the area under the step function, which is
exactly lnn!, is approximately the same as the area under the curve, which is

∫ n+ 1
2

1
2

lnxdx = (x lnx − x)
∣∣∣∣
n+ 1

2
1
2

= (
n + 1

2
)

ln
(
n + 1

2
) − n + 1

2 ln 2.

For large values of n, the difference between lnn and ln(n + 1
2) is insignificant,

and hence this approximation differs from Stirling’s only by the constant difference
between 1

2 ln 2 (about 0.35) and 1
2 ln(2π) (about 0.919).end of proof

A.4 FIBONACCI NUMBERS

The Fibonacci numbers originated as an exercise in arithmetic proposed by LEO-
NARDO FIBONACCI in 1202:

660 Appendix A • Mathematical Methods

How many pairs of rabbits can be produced from a single pair in a year? We startrabbits
with a single newly born pair; it takes one month for a pair to mature, after which
they produce a new pair each month, and the rabbits never die.

532

In month 1, we have only one pair. In month 2, we still have only one pair, but they
are now mature. In month 3, they have reproduced, so we now have two pairs.
And so it goes. The number Fn of pairs of rabbits that we have in month n satisfies

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.recurrence relation

This same sequence of numbers, called the Fibonacci sequence, appears in
many other problems. In Section 10.4, for example, Fn appears as the minimum
number of nodes in an AVL tree of height n. Our object in this section is to find a
formula for Fn .

generating function We shall use the method of generating functions, which is important for many
other applications. The generating function is a formal infinite series in a symbol
x , with the Fibonacci numbers as coefficients:

F(x)= F0 + F1x + F2x2 + · · · + Fnxn + · · · .

We do not worry about whether this series converges, or what the value of x might
be, since we are not going to set x to any particular value. Instead, we shall only
perform formal algebraic manipulations on the generating function.

Next, we multiply by powers of x :

F(x) = F0+
xF(x) =
x2F(x) =

F1x + F2x2 + · · · + Fn
F0x + F1x2 + · · · + Fn−1

F0x2 + · · · + Fn−2

xn + · · ·
xn + · · ·
xn + · · ·

and subtract the second two equations from the first:

(1 − x − x2)F(x)= F0 + (F1 − F0)x = x,

since F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2. We therefore obtain

F(x)= x
1 − x − x2 .

The roots of 1− x − x2 are 1
2(−1±√5). By the method of partial fractions we can

thus rearrange the formula for F(x) as

F(x)= 1√
5

(
1

1 − φx − 1
1 − ψx

)
closed form

where
φ = 1

2(1 +
√

5) and ψ = 1 − φ = 1
2(1 −

√
5).

[Check this equation for F(x) by putting the two fractions on the right over a
common denominator.]

Section A.5 • Catalan Numbers 661

The next step is to expand the fractions on the right side by dividing their
denominators into 1:

F(x)= 1√
5
(1 + φx + φ2x2 + · · · − 1 − ψx − ψ2x2 − · · ·).

The final step is to recall that the coefficients of F(x) are the Fibonacci numbers,
and therefore to equate the coefficients of each power of x on both sides of this
equation. We thus obtain

532

Fn = 1√
5
(φn − ψn).solution

Approximate values for φ and ψ are

φ ≈ 1.618034 and ψ ≈ −0.618034.

This surprisingly simple answer to the values of the Fibonacci numbers is
interesting in several ways. It is, first, not even immediately obvious why the right
side should always be an integer. Second, ψ is a negative number of sufficiently
small absolute value that we always have Fn = φn/

√
5 rounded to the nearest

integer. Third, the number φ is itself interesting. It has been studied since thegolden mean
times of the ancient Greeks—it is often called the golden mean—and the ratio of
φ to 1 is said to give the most pleasing shape of a rectangle. The Parthenon and
many other ancient Greek buildings have sides with this ratio.

A.5 CATALAN NUMBERS

The purpose of this section is to count the binary trees with n vertices. We shall
accomplish this result via a slightly circuitous route, discovering along the way
several other problems that have the same answer. The resulting numbers, called

533

the Catalan numbers, are of considerable interest in that they appear in the answers
to many apparently unrelated problems.

A.5.1 The Main Result

Definition For n ≥ 0, the nth Catalan number is defined to be

Cat(n)= C(2n,n)
n + 1

= (2n)!
(n + 1)!n!

.

Theorem A.7 The number of distinct binary trees with n vertices, n ≥ 0, is the nth Catalan number
Cat(n).

662 Appendix A • Mathematical Methods

A.5.2 The Proof by One-to-One Correspondences

1. Orchards
Let us first recall the one-to-one correspondence from Theorem 11.1 (page 526)
between the binary trees with n vertices and the orchards with n vertices. Hence
to count binary trees, we may just as well count orchards.

2. Well-Formed Sequences of Parentheses
Second, let us consider the set of all well-formed sequences of n left parentheses ‘(’
and n right parentheses ‘).’ A sequence is well formed means that, when scanned
from left to right, the number of right parentheses encountered never exceeds the
number of left parentheses. Thus ‘((()))’ and ‘() () ()’ are well formed, but

533

‘()) (()’ is not, nor is ‘((),’ since the total numbers of left and right parentheses in
the expression must be equal.

Lemma A.8 There is a one-to-one correspondence between the orchards with n vertices and the
well-formed sequences of n left parentheses and n right parentheses, n ≥ 0.

To define this correspondence, we first recall that an orchard is either empty or is an
ordered sequence of ordered trees. We define the bracketed form of an orchard tobracketed form
be the sequence of bracketed forms of its trees, written one after the next in the same
order as the trees in the orchard. The bracketed form of the empty orchard is empty.
We recall also that an ordered tree is defined to consist of its root vertex, together
with an orchard of subtrees. We thus define the bracketed form of an ordered tree
to consist of a left parenthesis ‘(’ followed by the (name of the) root, followed by
the bracketed form of the orchard of subtrees, and finally a right parenthesis ‘).’

The bracketed forms of several ordered trees and orchards appear in Figure
A.9. It should be clear that the mutually recursive definitions we have given pro-
duce a unique bracketed form for any orchard and that the resulting sequence of
parentheses is well formed. If, on the other hand, we begin with a well-formed
sequence of parentheses, then the outermost pair(s) of parentheses correspond to
the tree(s) of an orchard, and within such a pair of parentheses is the description of
the corresponding tree in terms of its root and its orchard of subtrees. In this way,
we have now obtained a one-to-one correspondence between the orchards with n
vertices and the well-formed sequences of n left and n right parentheses.534

a ba

b

a

b

a

b

c d

e

f

(a) (a(b)) (a)(b) (a(b)(c)(d)) (a(b(c)(d)))(e(f))

dc

a

Figure A.9. Bracketed form of orchards

Section A.5 • Catalan Numbers 663

In counting orchards we are not concerned with the labels attached to the ver-
tices, and hence we shall omit the labels and, with the correspondence we have
outlined, we shall now count well-formed sequences of n left and n right paren-
theses with nothing else inside the parentheses.

3. Stack Permutations

Let us note that, by replacing each left parenthesis by +1 and each right parenthesis
by −1, the well-formed sequences of parentheses correspond to sequences of +1
and −1 such that the partial sums from the left are always nonnegative, and the
total sum is 0. If we think of each +1 as pushing an item onto a stack, and −1 as
popping the stack, then the partial sums count the items on the stack at a given time.
From this it can be shown that the number of stack permutations of n objects (see
Exercise E4 of Section 2.1, on page 56) is yet another problem for which the Catalan
numbers provide the answer. Even more, if we start with an orchard and perform
a complete traversal (walking around each branch and vertex in the orchard as
though it were a decorative wall), counting +1 each time we go down a branch
and −1 each time we go up a branch (with +1 − 1 for each leaf), then we thereby
essentially obtain the correspondence with well-formed sequences over again.

4. Arbitrary Sequences of Parentheses

Our final step is to count well-formed sequences of parentheses, but to do this we
shall instead count the sequences that are not well formed and subtract from the
number of all possible sequences. We need a final one-to-one correspondence:

533

Lemma A.9 The sequences of n left and n right parentheses that are not well formed correspond
exactly to all sequences of n− 1 left parentheses and n+ 1 right parentheses (in all
possible orders).

To prove this correspondence, let us start with a sequence of n left and n right
parentheses that is not well formed. Let k be the first position in which the sequence
goes wrong, so the entry at position k is a right parenthesis, and there is one more
right parenthesis than left up through this position. Hence strictly to the right
of position k there is one fewer right parenthesis than left. Strictly to the right of
position k, then, let us replace all left parentheses by right and all right parentheses
by left. The resulting sequence will have n − 1 left parentheses and n + 1 right
parentheses altogether.

Conversely, let us start with a sequence of n−1 left parentheses and n+1 right
parentheses, and let k be the first position where the number of right parentheses
exceeds the number of left (such a position must exist, since there are more right
than left parentheses altogether). Again let us exchange left for right and right for
left parentheses in the remainder of the sequence (positions after k). We thereby
obtain a sequence of n left and n right parentheses that is not well formed, and
we have constructed the one-to-one correspondence as desired.

664 Appendix A • Mathematical Methods

5. End of the Proof
With all these preliminary correspondences, our counting problem reduces to sim-
ple combinations. The number of sequences of n−1 left and n+1 right parentheses
is the number of ways to choose the n − 1 positions occupied by left parentheses
from the 2n positions in the sequence; that is, the number is C(2n,n − 1). By
Lemma A.9, this number is also the number of sequences of n left and n right
parentheses that are not well formed. The number of all sequences of n left and n
right parentheses is similarly C(2n,n), so the number of well-formed sequences is

C(2n,n)−C(2n,n − 1)

which is precisely the nth Catalan number.
Because of all the one-to-one correspondences, we also have:

533

Corollary A.10 The number of well-formed sequences of n left and n right parentheses, the number
of permutations of n objects obtainable by a stack, the number of orchards with n
vertices, and the number of binary trees with n vertices are all equal to the nth

Catalan number Cat(n).

A.5.3 History
Surprisingly, it was not for any of the preceding questions that Catalan numbers
were first discovered, but rather for questions in geometry. Specifically, Cat(n)
provides the number of ways to divide a convex polygon with n + 2 sides into
triangles by drawing n − 1 nonintersecting diagonals. (See Figure A.10.) This
problem seems to have been proposed by L. EULER and solved by J. A. V. SEGNER in
1759. It was then solved again by E. CATALAN in 1838. Sometimes, therefore, the
resulting numbers are called the Segner numbers, but more often they are called
Catalan numbers.534

Figure A.10. Triangulations of a hexagon by diagonals

Appendix A • References for Further Study 665

n Cat(n) n Cat(n)

0 1 10 16,796
1 1 11 58,786
2 2 12 208,012
3 5 13 742,900
4 14 14 2,674,440
5 42 15 9,694,845
6 132 16 35,357,670
7 429 17 129,644,790
8 1,430 18 477,638,700
9 4,862 19 1,767,263,190

Figure A.11. The first 20 Catalan numbers

A.5.4 Numerical Results
We conclude this section with some indications of the sizes of Catalan numbers.
The first 20 values are given in Figure A.11.

For larger values of n, we can obtain an estimate on the size of the Catalan
numbers by using Stirling’s approximation. When it is applied to each of the three
factorials, and the result is simplified, we obtain

535

Cat(n)≈ 4n

(n + 1)
√
πn

.

When compared with the exact values in Figure A.11, this estimate gives a good
idea of the accuracy of Stirling’s approximation. When n = 10, for example, the
estimated value for the Catalan number is 17,007, compared to the exact value of
16,796.

REFERENCES FOR FURTHER STUDY

More extensive discussions of proof by induction, the summation nota-
tion, sums of powers of integers, and logarithms appear in many algebra
textbooks. These books will also provide examples and exercises on these
topics. An excellent discussion of the importance of logarithms and of
the subtle art of approximate calculation is N. DAVID MERMIN, “Logarithms!,”logarithms
American Mathematical Monthly 87 (1980), 1–7.

Several interesting examples of estimating large numbers and thinking of them
logarithmically are discussed in

DOUGLAS R. HOFSTADTER, “Metamagical themas,” Scientific American 246, no. 5 (May
1982), 20–34.

666 Appendix A • Mathematical Methods

Several surprising and amusing applications of harmonic numbers are given in theharmonic numbers
nontechnical article

RALPH BOAS, “Snowfalls and elephants, pop bottles and π ,” Two-Year College Math-
ematics Journal 11 (1980), 82–89.

The detailed estimates for both harmonic numbers and factorials (Stirling’s approx-
imation) are quoted from KNUTH, Volume 1, pp. 108–111, where detailed proofs may
be found. KNUTH, Volume 1, is also an excellent source for further information re-
garding permutations, combinations, and related topics.

The original reference for Stirling’s approximation is

JAMES STIRLING, Methodus Differentialis (1730), p. 137.factorials

The branch of mathematics concerned with the enumeration of various sets or
classes of objects is called combinatorics. This science of counting can be intro-combinatorics
duced on a very simple level or studied with great sophistication. Two elementary
textbooks containing many further developments of the ideas introduced here are

GERALD BERMAN and K. D. FRYER, Introduction to Combinatorics, Academic Press, 1972.

ALAN TUCKER, Applied Combinatorics, John Wiley, New York, 1980.

Fibonacci numbers The derivation of the Fibonacci numbers will appear in almost any book on combi-
natorics, as well as in KNUTH, Volume 1, pp. 78–86, who includes some interesting
history as well as many related exercises. The appearance of Fibonacci numbers in
nature is illustrated in

PETER STEVENS, Patterns in Nature, Little, Brown, Boston, 1974.

Many hundreds of other properties of Fibonacci numbers have been and continue
to be found; these are often published in the research journal Fibonacci Quarterly.

Catalan numbers A derivation of the Catalan numbers (applied to triangulations of convex poly-
gons) appears in the first of the cited books on combinatorics (BERMAN and FRYER,
pp. 230–232). KNUTH, Volume 1, pp. 385–406, enumerates several classes of trees,
including the Catalan numbers applied to binary trees. A list of 46 references
providing both history and applications of the Catalan numbers appears in

W. G. BROWN, “Historical note on a recurrent combinatorial problem,” American
Mathematical Monthly 72 (1965), 973–977.

The following article expounds many other applications of Catalan numbers:

MARTIN GARDNER, “Mathematical games” (regular column), Scientific American 234,
no. 6 (June, 1976), 120–125.

The original references for the derivation of the Catalan numbers are:

J. A. v. SEGNER, “Enumeratio modorum, quibus figuræ planæ rectilinæ per diago-
nales dividuntur in triangula,” Novi Commentarii Academiæ Scientiarum Imperialis
Petropolitanæ 7 (1758–1759), 203–209.

E. CATALAN, “Solution nouvelle de cette question: un polygone étant donné, de
combien de manieres peut-on le partager en triangles au moyen de diagonales?,”
Journal de Mathématiques Pures et Appliquées 4 (1839), 91–94.

Random Numbers B

R ANDOM NUMBERS are a valuable tool for making computer programs display
many outcomes. This appendix briefly treats the generation of random
numbers, distinguishing several different kinds. These are then imple-
mented as methods of a C++ class Random.

B.1 INTRODUCTION

Variety is the spice of life. Computers, on the other hand, tend to be entirely
predictable and hence rather dull. Random numbers provide a way to inject un-537

predictability into computer programs and therefore, sometimes, to make them
better imitate external events. When used as part of computer games, graphics
displays, or simulations, random numbers can add a great deal of interest, and,
when the program is run repeatedly, it may show a range of behavior not unlike
that of the natural system it is imitating.

system
random-number

generator

The header files <cstdlib> and <stdlib.h> provide random number gen-
eration routines in C++ systems. These routines can be used in place of the ones
developed here. But system random-number generators are sometimes not very
good, so it is worthwhile to see how better ones can be constructed.

In any case, we should regard the random-number generator and all the sub-
programs in this section as a package for producing random numbers. Once we
have developed the package, we should be able to use it in our simulation pro-
gram or any other application we wish, but we should not need to look inside it to
see how it functions. Hence all the details in this section (which are rather mathe-
matical) should be considered part of the implementation with which we need not
be concerned when we use random numbers in an application.

We shall implement these goals by designing a class Random whose methods
generate and return random numbers of various kinds.

667

668 Appendix B • Random Numbers

B.2 STRATEGY

The idea we shall use to generate random numbers is to start with one number
and apply a series of arithmetic operations that will produce another number with
no obvious connection to the first. Hence the numbers we produce are not truly
random at all, as each one depends in a definite way on its predecessor, and we
should more properly speak of pseudorandom numbers. The number we use (andseed for pseudorandom

numbers simultaneously change) is called the seed.
If the seed begins with the same value each time the program is run, then the538

whole sequence of pseudorandom numbers will be exactly the same, and we can
reproduce any experimental results that we obtain. However, in case a client wishes
to use random numbers that are not just unpredictable, but are also unreproducible,unreproducible

behavior we shall include an option to initialize the seed according to the exact time measured
in seconds. Since this time will most likely be different each time the program is run,
this initialization should lead to different behavior every time the client program
is run. Such unreproducible behavior is appropriate for implementing computer
games, for example.

We shall implement the two possible initialization operations by creating a
constructor for the class Random that uses a parameter bool pseudo. When pseudoparameter: pseudo
has the value true, we shall generate random numbers starting from a predefined
seed, whereas when pseudo is false we shall generate unreproducible random
numbers. In this way, the desired initialization is performed automatically each
time the client program starts, and the client need make no special effort to initialize
the seed.

The seed is used and changed by the random-number generator, but it should
not be used by or, if possible, even accessible to the application program. Thatseed private
is, the user of the random-number package ought not necessarily be aware of the
existence of a seed variable. Hence the seed should not be a parameter for the
random-number generator. Nor is it reasonable that it should be declared as a
global variable in the user’s program, much less initialized by the user.

We shall therefore declare the seed as a private data member of the class Ran-
dom. In this way, the seed will be accessible to all the methods and auxiliary
functions in the class, but it cannot be accessed at all from outside the class.

We have now settled on the following outline of the class Random:

539

class Random {
public:

Random(bool pseudo = true);
// Declare random-number generation methods here.
private:

int reseed(); // Re-randomize the seed.
int seed,

multiplier, add_on; // constants for use in arithmetic operations
};

Section B.3 • Program Development 669

B.3 PROGRAM DEVELOPMENT

The heart of our class Random is the auxiliary function reseed that updates the seed.
It is called upon to provide the randomized behavior of all of the other methods.
The function operates as follows:539

int Random :: reseed()
/* Post: The seed is replaced by a pseudorandom successor. */
{

seed = seed * multiplier + add_on;
return seed;

}

In this function we perform a multiplication and an addition and then throw away
the most significant part of the result, keeping only the less significant but more
random digits.

The constants multiplier and add_on can be stored as data members in a Ran-
dom object. They should not be chosen at random, but should be carefully chosen
to make sure that the results pass various tests for randomness. For example, the
values assigned by the following Random object constructor seem to work fairly
well on 16-bit computers, but other choices should be made for other machines.

Random :: Random(bool pseudo)
/* Post: The values of seed, add_on, and multiplier are initialized. The seed is

initialized randomly only if pseudo == false. */
{

if (pseudo) seed = 1;
else seed = time(NULL) % max_int;
multiplier = 2743;
add_on = 5923;

}

The function time() that we use to generate an unpredictable seed comes from the
header file time.h; it measures the number of seconds of elapsed time since the
start of the year 1970.

1. Real Values
We shall not allow client code to use the function reseed directly; instead we convert
its results into one of three forms more directly useful.

The first of these imitates the random-number generators of most computer
systems by returning as its result a real number uniformly distributed between 0uniform distribution
and 1. By uniformly distributed we mean that, if we take two intervals of the same
length within the range of the method, then it is equally likely that the result will
be in one interval as in the other. Since the range of our method is from 0 to 1,

540

this definition means that the probability that the result is in any subinterval must
equal the length of that subinterval.

670 Appendix B • Random Numbers

One more restriction is usually placed on the range of the result: 0 may appear
as a result but 1 may not. In mathematical terms, the range is the half-open interval
[0, 1).

Here is the resulting method of the class Random. It simply converts the result
from reseed into the desired range. To carry out the conversion, we must first set
the value of max_int to record the largest integer value that can be stored, this is
obtained from one of the header files <limits>, <climits>, or <limits.h>.540

double Random :: random_real()
/* Post: A random real number between 0 and 1 is returned. */
{

double max = max_int + 1.0;
double temp = reseed();
if (temp < 0) temp = temp + max;
return temp/max;

}

2. Integer Values
The second common form for random numbers is integers. We cannot, however,
speak meaningfully about random integers since the number of integers is infinite
but the number representable on a computer is finite. Hence the probability that a
truly random integer is one of those representable on a computer is 0. We instead
consider only the integers in a range between two integers low and high, inclusive.
To calculate such an integer we start with a random real number in [0, 1), multiply it
by high − low + 1 since that is the number of integers in the desired range, truncate
the result to an integer, and add low to put the result into the desired range of
integers. Again, we implement this operation as a method of the class Random.

int Random :: random_integer(int low, int high)
/* Post: A random integer between low and high (inclusive) is returned. */
{

if (low > high) return random_integer(high, low);
else return ((int) ((high − low + 1) * random_real())) + low;

}

3. Poisson Values
A third, more sophisticated, form of random numbers is needed for the airport

542

simulation of Section 3.5. This is called a Poisson distribution of random integers.
We start with a positive real number called the expected value v of the randomexpected value
numbers. If a sequence of nonnegative integers satisfies a Poisson distribution
with expected value v , then, over long subsequences, the mean (average) value of
the integers in the sequence approaches v .

If, for example, we start with an expected value of 1.5, then we might have aexample
sequence reading 1, 0, 2, 2, 1, 1, 3, 0, 1, 2, 0, 0, 2, 1, 3, 4, 2, 3, 1, 1, If you calculate
the average value for subsequences of this sequence, you will find that sometimes
the average is less than 1.5 and sometimes it is more, but slowly it becomes more
likely to be close to 1.5.

Section B.3 • Program Development 671

The following function generates pseudorandom integers according to a Pois-
son distribution. The derivation of this method and the proof that it works correctly
require techniques from calculus and advanced mathematical statistics that are far
outside the scope of this book, but that does not mean that we cannot apply the
theory to calculate the numbers that we want. The result is a third method of the
class Random:

int Random :: poisson(double mean)
/* Post: A random integer, reflecting a Poisson distribution with parameter mean,

is returned. */
{

double limit = exp(−mean);
double product = random_real();
int count = 0;
while (product > limit) {

count++;
product *= random_real();

}
return count;

}

Here, the function exp(double x) is the exponential function, and its implementation
comes from one of the libraries <math.h> or <cmath>.

Programming
Projects B.3

P1. Write a driver program that will test the three random number functions de-
veloped in this appendix. For each function, calculate the average value it
returns over a sequence of calls (the number of calls specified by the user). For
random_real, the average should be about 0.5; for random_integer(low, high)
the average should be about (low + high)/2, where low and high are given by
the user; for poisson(expected_value), the average should be approximately
the expected value specified by the user.

P2. One test for uniform distribution of random integers is to see if all possibilities
occur about equally often. Set up an array of integer counters, obtain from the
user the number of positions to use and the number of trials to make, and then
repeatedly generate a random integer in the specified range and increment the
appropriate cell of the array. At the end, the values stored in all cells should
be about the same.

P3. Generalize the test in the previous project to use a rectangular array and two
random integers to determine which cell to increment.

P4. In a certain children’s game, each of two players simultaneously puts out a
hand held in a fashion to denote one of scissors, paper, or rock. The rulesscissors-paper-rock
are that scissors beats paper (since scissors cut paper), paper beats rock (since
paper covers rock), and rock beats scissors (since rock breaks scissors). Write
a program to simulate playing this game with a person who types in S, P, or R
at each turn.

672 Appendix B • Random Numbers

P5. In the game of Hamurabi you are the emperor of a small kingdom. You begin
with 100 people, 100 bushels of grain, and 100 acres of land. You must makeHamurabi
decisions to allocate these resources for each year. You may give the people
as much grain to eat as you wish, you may plant as much as you wish, or
you may buy or sell land for grain. The price of land (in bushels of grain per
acre) is determined randomly (between 6 and 13). Rats will consume a random
percentage of your grain, and there are other events that may occur at random
during the year. These are:

➥ Plague

➥ Bumper Crop

➥ Population Explosion

➥ Flooding

➥ Crop Blight

➥ Neighboring Country Bankrupt! Land Selling for Two Bushels per Acre

➥ Seller’s Market

At the end of each year, if too many (again this is random) people have starved
for lack of grain, they will revolt and dethrone you. Write a program that will
determine the random events and keep track of your kingdom as you make
the decisions for each year.

P6. After leaving a pub, a drunk tries to walk home, as shown in Figure B.1. The
streets between the pub and the home form a rectangular grid. Each time the
drunk reaches a corner, he decides at random what direction to walk next. Herandom walk
never, however, wanders outside the grid.

Home

PUB
SUB

Figure B.1. A random walk

Appendix B • References for Further Study 673

(a) Write a program to simulate this random walk. The number of rows and
columns in the grid should be variable. Your program should calculate,
over many random walks on the same grid, how long it takes the drunk to
get home on average. Investigate how this number depends on the shape
and size of the grid.

(b) To improve his chances, the drunk moves closer to the pub—to a room on
the upper left corner of the grid. Modify the simulation to see how much
faster he can now get home.

(c) Modify the original simulation so that, if the drunk happens to arrive back
at the pub, then he goes in and the walk ends. Find out (depending on the
size and shape of the grid) what percentage of the time the drunk makes
it home successfully.

(d) Modify the original simulation so as to give the drunk some memory to
help him, as follows. Each time he arrives at a corner, if he has been there
before on the current walk, he remembers what streets he has already taken
and tries a new one. If he has already tried all the streets from the corner,
he decides at random which to take now. How much more quickly does
he get home?

P7. Write a program that creates files of integers in forms suitable for testing and
comparing the various searching, sorting, and information retrieval programs.generation of

searching and sorting
data

A suitable approach to testing and comparing these programs is to use the
program to create a small suite of files of varying size and various kinds of
ordering, and then use the CPU timing unit to compare various programs
operating on the same data file.

The program should generate files of any size up to 15,000 positive integers,
arranged in any of several ways. These include:
(a) Random order, allowing duplicate keys
(b) Random order with no duplicates
(c) Increasing order, with duplicates allowed
(d) Increasing order with no duplicates
(e) Decreasing order, with duplicates allowed
(f) Decreasing order with no duplicates
(g) Nearly, but not quite ordered, with duplicates allowed
(h) Nearly, but not quite ordered, with no duplicates
The nearly ordered files can be altered by entering user-specified data. The
program should use pseudorandom numbers to generate the files that are not
ordered.

REFERENCES FOR FURTHER STUDY

KNUTH, volume 2, pages 1–177, provides one of the most comprehensive treatments
of pseudorandom number generators, testing methods, and related topics.

Packages and
Utility Functions C

T HIS APPENDIX describes the classes, definitions, and functions in the utility
package that we have used throughout the book. The appendix also lists the
contents of the other packages developed and used in various parts of this
book. It concludes with a package for timing the execution of programs.

C.1 PACKAGES AND C++ TRANSLATION UNITS

A large C++ program is normally broken up into several different files. The way
that the program is partitioned into files is important, since it helps a human readerpurpose for packages
understand the logically separate parts of a large project. It can even help the
compiler maintain this logical structure. Moreover, as we have seen, key building
blocks of a program can be used over and over again in other programs. In this
way, by dividing up a program wisely, we can facilitate code reuse by creating a
package that can be plugged into other projects. For example, throughout this book
we have been able to call on the package of Stack methods developed in Section 2.2
whenever it was convenient.

Usually, but not always, a package consists of a set of closely related tasks. In
this book, for example, we use one package for calculating and keeping track of CPU
times used in a program and another package (developed in Appendix B) for cal-
culating pseudorandom numbers. Our utility package collects several frequently-
used functions, even though they are not related to each other at all.

Packages are particularly appropriate holders for data structures. Hence, fordata structures
example, a client that requires a Stack structure need only call on a Stack package
to have the data structure. Of course, the client needs to know about the methods
provided by the package, but as we have seen the client need not, and indeed
should not, be concerned with the implementation details of the package.

674

Section C.1 • Packages and C++ Translation Units 675

In general, a package should provide an interface containing details that clientsinterface and
implementation need to know and an implementation that can be hidden from clients. Section 2.2.2,

for example, specifies the operations for a stack but says nothing about implemen-
tation. The interface section of any stack package will contain exactly the same
specifications. The implementation section will then contain full details for each
of the stack methods specified in the interface.

Since the interface section stays exactly the same, a program that uses the stackchange of
implementation package need not know which implementation is used. In fact, if the implemen-

tations are programmed properly, it should be impossible for the program to tell
which implementation is in the package (except, perhaps, by measuring the speed
with which various operations can be done).

Although we often think in terms of building up a program out of reusablefiles for packages
packages, when we come to implement the program we must work with the units
that a C++ compiler accepts, that is, with files. When we consider the work done
by the compiler and the subsequent action of a linker, we shall see that, in imple-
mentations, each package is generally broken up into a pair of files. These files
correspond rather naturally to the concepts that we have already singled out as the
interface and the implementation of the package.

➥ The first file consists of declarations of the elements of the package, includingdeclaration or header
file name and type information for the classes, functions, objects, and templates

in the package. This is called the declaration file or the header file for the
package. The declaration file normally has the extension .h. This declaration
information for a function is called a function prototype.

➥ The second file gives complete definitions of all the elements of the package,definition or code file
including their implementation code. This is called the definition file or the
code file for the package. This file normally has the extension .c (or, on some
systems, one of .C, .cpp, .cxx, or .cc).

The compiler can only process a single program file at any time. The file might
use #include directives to read in other files or other directives to select what parts
of the code to compile. In such cases, these directives are followed before any
compilation takes place. The code resulting from following all the #include and
other directives is known as a translation unit. The compiler operates on thetranslation unit
translation unit and turns it into an object file. It is important that the compiler haveobject file
access to declarations for all of the elements in the translation unit. In particular,
we must #include the .h files corresponding to any packages that we call upon in
the translation unit.

The different object files that make up a program are linked together into ex-linking
ecutable code by a linker. The linker must make sure that a complete definition
appears for every element of a program, and that among all of the different trans-
lation units, there is just one such definition. This means that a .c file should be
included in just one translation unit of a program. We normally guarantee this by
compiling the .c file itself, and we never include a .c file into another program file.

676 Appendix C • Packages and Utility Functions

In addition to aiding in the compilation and linking of large projects, the divi-
sion of our packages into separate .h and .c files effectively enforces the principlesinformation hiding
of information hiding. The .h file provides a package interface and the .c file gives
the implementation.

C.2 PACKAGES IN THE TEXT

Most of the packages developed in this book are for the various data structures that
are studied. These are developed (quite often as exercises and projects) in the vari-
ous sections of the book as the data structures are introduced. Here is a list of most
of the packages that we have developed, with references to sections of the book. For
the packages that represent our principal data structures, we list the methods and
then give references to sections of the book that provide implementations. The last
two packages, to supply general purpose utility code and program timing methods,
have been used throughout the book but are discussed later in this appendix.

Stack package:
Stack();
bool empty() const;
Error_code pop();
Error_code top(Stack_entry &item) const;
Error_code push(const Stack_entry &item);

Contiguous stack Section 2.2
Linked stack Section 4.2

Queue package:
Queue();
bool empty() const;
Error_code serve();
Error_code append(const Queue_entry &item);
Error_code retrieve(Queue_entry &item) const;

Contiguous queue Section 3.2
Linked queue Section 4.4

List package:
List();
int size() const;
bool full() const;
bool empty() const;
void clear();
void traverse(void (*visit)(List_entry &));
Error_code retrieve(int position, List_entry &x) const;
Error_code replace(int position, const List_entry &x);
Error_code remove(int position, List_entry &x);

Section C.2 • Packages in the Text 677

Error_code insert(int position, const List_entry &x);
Contiguous list Section 6.2.2
Linked list Section 6.2.3
Doubly linked list (no head) Section 6.2.5
Simply linked list in array Section 6.5
Doubly linked list in array Exercise E5 of Section 6.5

Tree packages:
Binary_tree();
bool empty() const;
void preorder(void (*visit)(Entry &));
void inorder(void (*visit)(Entry &));
void postorder(void (*visit)(Entry &));
int size() const;
void clear();
int height() const;
void insert(const Entry &);

Binary tree Section 10.1

Error_code remove(const Record &);
Error_code tree_search(Record &) const;

Binary search tree Section 10.2

AVL tree Section 10.4

Red-black tree Section 11.4

Splay tree Section 10.5

B-Tree package:
B_tree();
Error_code search_tree(Record &target);
Error_code insert(const Record &new_node);
Error_code remove(const Record &target);
void print();

B-tree Section 11.3

Deque Exercise E10 of Section 3.3

Character string Section 6.3

Sortable list Chapter 8

Trie Section 11.2

Polynomials Section 4.5

Look-ahead for games Section 5.4

Random numbers Appendix B

Utility package Section C.3

Program-timer package Section C.4

678 Appendix C • Packages and Utility Functions

C.3 THE UTILITY PACKAGE

Some program statements, while not logically related to each other, are used so
frequently that they should be collected as a utility package and made available to
all programs. Almost all programs developed in this book therefore include the
clause

#include "utility.h";

which allows the program to access the contents of this utility package.
One purpose of the utility package is to include system libraries for commonly

used tasks such as input and output. The names of the library files differ accordingsystem dependencies
to whether we use an ANSI version of C++ or an older version. By collecting
these system-dependent features together in a single package, we make sure that
our other programs do not depend on the precise version of C++ on our system.
This practice thereby greatly improves the portability of our programs; that is,
the ease with which we may compile them on different systems with different
compilers.

An ANSI version of the interface file utility.h follows:

using namespace std;

#include <iostream> // standard iostream operations
#include <limits> // numeric limits
#include <cmath> // mathematical functions
#include <cstdlib> // C-string functions
#include <cstddef> // C library language support
#include <fstream> // file input and output
#include <cctype> // character classification
#include <ctime> // date and time functions
bool user_says_yes();

enum Error_code { success, fail, range_error, underflow, overflow, fatal,
not_present, duplicate_error, entry_inserted, entry_found,
internal_error };

In ANSI C++, the standard library is contained in the namespace std; . For thisstandard library
reason, in order that we can use the standard library without appealing to the scope
resolution operator, we place the ANSI C++ instruction

using namespace std;

at the start of our utility package.
The next part of the package consists of instructions to include various system

libraries. The comments that we have appended to the #include directives describe
the purposes of the included files. Finally, we declare the function user_says_yes
and the Error_code type that we use in many of our programs.

A version of the utility interface file for a much older implementation of C++older versions of C++
might need to include a simulation of the Boolean type as well as slightly different
standard header files. For example, the following interface might be appropriate
on some systems with older C++ compilers:

Section C.4 • Timing Methods 679

#include <iostream.h> // standard iostream operations
#include <limits.h> // numeric limits
#include <math.h> // mathematical functions
#include <stdlib.h> // C-string functions
#include <stddef.h> // C library language support
#include <fstream.h> // file input and output
#include <ctype.h> // character classification
#include <time.h> // date and time functions
typedef int bool;
const bool false = 0;
const bool true = 1;
bool user_says_yes();

enum Error_code { success, fail, range_error, underflow, overflow, fatal,
not_present, duplicate_error, entry_inserted, entry_found,
internal_error };

The only code that needs to be in the implementation file for the utility package isuser_says_yes
the definition of the function user_says_yes(), since this is the only utility function
not found in a standard library. The following implementation is suitable for all
C++ compilers:

bool user_says_yes()
{

int c;
bool initial_response = true;
do { // Loop until an appropriate input is received.

if (initial_response)
cout << " (y,n)? " << flush;

else
cout << "Respond with either y or n: " << flush;

do { // Ignore white space.
c = cin.get();

} while (c == ′\n′ || c == ′ ′ || c == ′\t′);
initial_response = false;

} while (c != ′y′ && c != ′Y′ && c != ′n′ && c != ′N′);
return (c == ′y′ || c == ′Y′);

}

C.4 TIMING METHODS

When comparing different algorithms and data structures, it is often useful to keep
track of how much computer time one program, or one phase of a program, uses
in comparison with another. We therefore develop a package that implements a
class Timer for this purpose. A constructor Timer starts the timer going, and in case

680 Appendix C • Packages and Utility Functions

we wish to reset the timer later, we shall supply a method reset(). The methodTimer :: reset
elapsed_time returns the CPU time used since the start of the Timer object or theelapsed_time
last call to reset, whichever is later. Hence elapsed_time is rather similar to the lap
time shown on a stopwatch.

C++ systems provide a header file called <ctime> or <time.h> that contains
a function clock() to tell the time as a value of type clock_t. By dividing a time
interval by the number CLK_TCK of clock ticks in a second, we can compute elapsed
times.

The file timer.h contains the following declaration of the Timer class.

class Timer{
public:

Timer();
double elapsed_time();
void reset();

private:
clock_t start_time;

};

The methods are coded as follows in the file timer.c.

Timer :: Timer()
{

start_time = clock();
}

double Timer :: elapsed_time()
{

clock_t end_time = clock();
return ((double) (end_time − start_time))/((double) CLK_TCK);

}

void Timer :: reset()
{

start_time = clock();
}

Programming
Precepts,
Pointers, and
Pitfalls

D

T HIS APPENDIX collects all the programming precepts, pointers, and pitfalls that
appear in all the chapters of the text. These are arranged according to sub-
ject, beginning with a general survey of the data structures and algorithms
studied in the book, then general criteria for designing data structures and

algorithms, recursion, and then, finally, the construction, testing, and maintenance
of computer programs.

D.1 CHOICE OF DATA STRUCTURES AND ALGORITHMS

D.1.1 Stacks

1. Stacks are among the simplest kind of data structures; use stacks when possible.

2. In any problem that requires a reversal of data, consider using a stack to store
the data.

D.1.2 Lists

3. Don’t confuse contiguous lists with arrays.

4. When working with general lists, first decide exactly what operations are
needed, then choose the implementation that enables those operations to be
done most easily.

5. In choosing between linked and contiguous implementations of lists, considerlinked and contiguous
the necessary operations on the lists. Linked lists are more flexible in regard
to insertions, deletions, and rearrangement; contiguous lists allow random
access.

681

682 Appendix D • Programming Precepts, Pointers, and Pitfalls

6. Contiguous lists usually require less computer memory, computer time, and
programming effort when the items in the list are small and the algorithms are
simple. When the list holds large data entries, linked lists usually save space,
time, and often programming effort.

7. Dynamic memory and pointers allow a program to adapt automatically to
a wide range of application sizes and provide flexibility in space allocation
among different data structures. Static memory (arrays and indices) is some-
times more efficient for applications whose size can be completely specified in
advance.

D.1.3 Searching Methods

8. Sequential search is slow but robust. Use it for short lists or if there is any
doubt that the keys in the list are properly ordered.

9. Be extremely careful if you must reprogram binary search. Verify that your
algorithm is correct and test it on all the extreme cases.

D.1.4 Sorting Methods

10. Many computer systems have a general-purpose sorting utility. If you can
access this utility and it proves adequate for your application, then use it rather
than writing a sorting program from scratch.

11. In choosing a sorting method, take into account the ways in which the keys
will usually be arranged before sorting, the size of the application, the amount
of time available for programming, the need to save computer time and space,
the way in which the data structures are implemented, the cost of moving data,
and the cost of comparing keys.

12. Mergesort, quicksort, and heapsort are powerful sorting methods, more dif-
ficult to program than the simpler methods, but much more efficient when
applied to large lists. Consider the application carefully to determine whether
the extra effort needed to implement one of these sophisticated algorithms will
be justified.

13. Heapsort is like an insurance policy: It is usually slower than quicksort, but it
guarantees that sorting will be completed in O(n logn) comparisons of keys,
as quicksort cannot always do.

priority queues 14. Priority queues are important for many applications, and heaps provide an
excellent implementation of priority queues.

D.1.5 Tables

15. Use the logical structure of the data to decide what kind of table to use: an
ordinary array, a table of some special shape, a system of inverted tables, or a
hash table. Choose the simplest structure that allows the required operations
and that meets the space requirements of the problem. Don’t write complicated
functions to save space that will then remain unused.

Section D.1 • Choice of Data Structures and Algorithms 683

16. Let the structure of the data help you decide whether an index function or anindex function, access
array access array is better for accessing a table of data. Use the features built into

your programming language whenever possible.
hash table 17. In using a hash table, let the nature of the data and the required operations

help you decide between chaining and open addressing. Chaining is generally
preferable if deletions are required, if the records are relatively large, or if
overflow might be a problem. Open addressing is usually preferable when the
individual records are small and there is no danger of overflowing the hash
table.

18. Hash functions usually need to be custom-designed for the kind of keys used for
accessing the hash table. In designing a hash function, keep the computations
as simple and as few as possible while maintaining a relatively even spread of
the keys over the hash table. There is no obligation to use every part of the
key in the calculation. For important applications, experiment by computer
with several variations of your hash function, and look for rapid calculation
and even distribution of the keys.

D.1.6 Binary Trees

19. Consider binary search trees as an alternative to ordered lists (indeed, as a way
of implementing the abstract data type list). At the cost of an extra pointer
member in each node, binary search trees allow random access (with O(logn)
key comparisons) to all nodes while maintaining the flexibility of linked lists
for insertions, removals, and rearrangement.

20. Consider binary search trees as an alternative to tables (indeed, as a way of
implementing the abstract data type table). At the cost of access time that
is O(logn) instead of O(1), binary search trees allow traversal of the data
structure in the order specified by the keys while maintaining the advantage
of random access provided by tables.

21. In choosing your data structures, always carefully consider what operations
will be required. Binary trees are especially appropriate when random access,
traversal in a predetermined order, and flexibility in making insertions and
removals are all required.

unbalanced search tree 22. While choosing data structures and algorithms, remain alert to the possibility
of highly unbalanced binary search trees. If the incoming data are likely to
be in random order, then an ordinary binary search tree should prove entirely
adequate. If the data may come in a sorted or nearly sorted order, then the
algorithms should take appropriate action. If there is only a slight possibility
of serious imbalance, it might be ignored. If, in a large project, there is greater
likelihood of serious imbalance, then there may still be appropriate places in
the software where the trees can be checked for balance and rebuilt if necessary.
For applications in which it is essential to maintain logarithmic access time at
all times, AVL trees provide nearly perfect balance at a slight cost in computer
time and space, but with considerable programming cost. If it is necessary for
the tree to adapt dynamically to changes in the frequency of the data, then a
splay tree may be the best choice.

684 Appendix D • Programming Precepts, Pointers, and Pitfalls

23. Binary trees are defined recursively; algorithms for manipulating binary treesrecursive structure
are usually best written recursively. In programming with binary trees, be
aware of the problems generally associated with recursive algorithms. Be sure
that your algorithm terminates under any condition and that it correctly treats
the trivial case of an empty tree.

24. Although binary trees are usually implemented as linked structures, remain
aware of the possibility of other implementations. In programming with linked
binary trees, keep in mind the pitfalls attendant on all programming with linked
lists.

D.1.7 General Trees

25. Trees are flexible and powerful structures both for modeling problems and for
organizing data. In using trees in problem solving and in algorithm design,
first decide on the kind of tree needed (ordered, rooted, free, or binary) before
considering implementation details.

26. Most trees can be described easily by using recursion; their associated algo-
rithms are often best formulated recursively.

choice of tree structure 27. For problems of information retrieval, consider the size, number, and location
of the records along with the type and structure of the entries while choosing
the data structures to be used. For small records or small numbers of entries,
high-speed internal memory will be used, and binary search trees will likely
prove adequate. For information retrieval from disk files, methods employ-
ing multiway branching, such as tries, B-trees, and hash tables, will usually
be superior. Tries are particularly well suited to applications where the keys
are structured as a sequence of symbols and where the set of keys is relatively
dense in the set of all possible keys. For other applications, methods that treat
the key as a single unit will often prove superior. B-trees, together with vari-
ous generalizations and extensions, can be usefully applied to many problems
concerned with external information retrieval.

D.1.8 Graphs

28. Graphs provide an excellent way to describe the essential features of many
applications, thereby facilitating specification of the underlying problems and
formulation of algorithms for their solution. Graphs sometimes appear as
data structures but more often as mathematical abstractions useful for problem
solving.

29. Graphs may be implemented in many ways by the use of different kinds of
data structures. Postpone implementation decisions until the applications of
graphs in the problem-solving and algorithm-development phases are well
understood.

graph traversal 30. Many applications require graph traversal. Let the application determine the
traversal method: depth first, breadth first, or some other order. Depth-first
traversal is naturally recursive (or can use a stack). Breadth-first traversal
normally uses a queue.

Section D.2 • Recursion 685

31. Greedy algorithms represent only a sample of the many paradigms useful in
developing graph algorithms. For further methods and examples, consult the
references.

D.2 RECURSION

32. Recursion should be used freely in the initial design of algorithms. It is espe-
cially appropriate where the main step toward solution consists of reducing a
problem to one or more smaller cases.

design from examples 33. Study several simple examples to see whether recursion should be used and
how it will work.

34. Attempt to formulate a method that will work more generally. Ask, “How can
this problem be divided into parts?” or “How will the key step in the middle
be done?”

35. Ask whether the remainder of the problem can be done in the same or a similar
way, and modify your method if necessary so that it will be sufficiently general.

36. Find a stopping rule that will indicate that the problem or a suitable part of it
is done.

divide and conquer 37. Divide-and-conquer is one of the most widely applicable and most powerful
methods for designing algorithms. When faced with a programming problem,
see if its solution can be obtained by first solving the problem for two (or more)
problems of the same general form but of a smaller size. If so, you may be
able to formulate an algorithm that uses the divide-and-conquer method and
program it using recursion.

38. Be very careful that your algorithm always terminates and handles trivial cases
correctly.

analysis:
recursion tree

39. The key tool for the analysis of recursive algorithms is the recursion tree. Draw
the recursion tree for one or two simple examples appropriate to your problem.

40. The recursion tree should be studied to see whether the recursion is needlessly
repeating work, or if the tree represents an efficient division of the work into
pieces.

41. A recursive function can accomplish exactly the same tasks as an iterative
function using a stack. Consider carefully whether recursion or iteration with
a stack will lead to a clearer program and give more insight into the problem.

tail recursion 42. Tail recursion may be removed if space considerations are important.
43. Recursion can always be translated into iteration, but the general rules will

often produce a result that greatly obscures the structure of the program. Such
obscurity should be tolerated only when the programming language makes it
unavoidable, and even then it should be well documented.

44. Study your problem to see if it fits one of the standard paradigms for recur-
sive algorithms, such as divide and conquer, backtracking, or tree-structured
algorithms.

45. Let the use of recursion fit the structure of the problem. When the conditions of
the problem are thoroughly understood, the structure of the required algorithm
will be easier to see.

686 Appendix D • Programming Precepts, Pointers, and Pitfalls

D.3 DESIGN OF DATA STRUCTURES

46. Let your data structure your program. Refine your algorithms and data struc-
tures at the same time.

47. Once your data are fully structured, your algorithms should almost write them-
selves.

48. Use data structures to clarify the logic of your programs.
lists and tables 49. Before considering detailed structures, decide what operations on the data

will be required, and use this information to decide whether the data belong
in a list or a table. Traversal of the data structure or access to all the data in
a prespecified order generally implies choosing a list. Access to any entry in
time O(1) generally implies choosing a table.

50. Practice information hiding and encapsulation in implementing data struc-
tures: Use functions to access your data structures, and keep these in classesinformation hiding,

encapsulation separate from your application program.
top-down design 51. Use top-down design for your data structures, just as you do for your algo-

rithms. First determine the logical structure of the data, then slowly specify
more detail, and delay implementation decisions as long as possible.

52. Postpone decisions on the details of implementing your data structures as long
as you can.

53. Avoid tricky ways of storing your data; tricks usually will not generalize to
new situations.

54. Before choosing implementations, be sure that all the data structures and their
associated operations are fully specified on the abstract level.

55. Practice information hiding: Separate the application of data structures from
their implementation.

56. Before choosing implementations, be sure that all the data structures and their
associated operations are fully specified on the abstract level.

implementation 57. In choosing between implementations, consider the necessary operations on
the data structure.

derived class 58. If every object of class A has all the properties of an object of class B, implement
class A as a derived class of B.

59. Consider the requirements of derived classes when declaring the members of
a base class.

is-a and has-a
relationships

60. Implement is-a relationships between classes by using public inheritance.

61. Implement has-a relationships between classes by layering.
inheritance 62. Use private inheritance to model an “is implemented with” relationship be-

tween classes.

63. Always verify that your algorithm works correctly for an empty structure andextreme cases
for a structure with only one node.

Section D.4 • Algorithm Design and Analysis 687

D.4 ALGORITHM DESIGN AND ANALYSIS

64. Include precise preconditions and postconditions with every program, func-pre- and
postconditions tion, and method that you write.

65. Don’t lose sight of the forest for its trees.

66. Be sure you understand your problem completely. If you must change its terms,problem specification
explain exactly what you have done.

67. Design the user interface with the greatest care possible. A program’s successuser interface
depends greatly on its attractiveness and ease of use.

68. Keep your algorithms as simple as you can. When in doubt, choose the simplesimplicity
way.

69. Sometimes postponing problems simplifies their solution.

70. Keep your logic simple.

71. Keep your functions short; rarely should any function be more than a page
long.

72. Choose your data structures as you design your algorithms, and avoid making
premature decisions.

73. Avoid sophistication for sophistication’s sake. If a simple method is adequate
for your application, use it.

74. Don’t reinvent the wheel. If a ready-made class template or function is ade-
quate for your application, consider using it.

algorithm verification 75. Be sure your algorithm is correct before starting to code.

76. Verify the intricate parts of your algorithm.

77. In case of difficulty, formulate statements that will be correct both before and
after each iteration of a loop, and verify that they hold.

78. Be sure you understand your problem before you decide how to solve it.

79. Be sure you understand the algorithmic method before you start to program.

80. In case of difficulty, divide a problem into pieces and think of each part sepa-
rately.

81. Use Poisson random variables to model random event occurrences.Poisson distribution
extreme cases 82. Always be careful of the extreme cases. Be sure that your algorithm terminates

gracefully when it reaches the end of its task.

83. In designing algorithms be very careful of the extreme cases, such as empty
lists, lists with only one item, or full lists (in the contiguous case).

algorithm analysis 84. Drawing trees is an excellent way both to trace the action of an algorithm and
to analyze its behavior.

85. Rely on the big-O analysis of algorithms for large applications but not for small
applications.

hash-table analysis 86. Recall from the analysis of hashing that some collisions will almost inevitably
occur, so don’t worry about the existence of collisions if the keys are spread
nearly uniformly through the table.

688 Appendix D • Programming Precepts, Pointers, and Pitfalls

87. For open addressing, clustering is unlikely to be a problem until the hash table is
more than half full. If the table can be made several times larger than the space
required for the records, then linear probing should be adequate; otherwise
more sophisticated collision resolution may be required. On the other hand, if
the table is many times larger than needed, then initialization of all the unused
space may require excessive time.

D.5 PROGRAMMING

88. Never code until the specifications are precise and complete.

89. Act in haste and repent at leisure. Program in haste and debug forever.

90. Always name your classes, variables and functions with the greatest care, andnames
explain them thoroughly.

91. The nouns that arise in describing a problem suggest useful classes for its
solution; the verbs suggest useful functions.

documentation 92. Include careful documentation (as presented in Section 1.3.2) with each func-
tion as you write it.

93. Be careful to write down precise preconditions and postconditions for every
function.

94. Keep your documentation concise but descriptive.

95. The reading time for programs is much more than the writing time. Make
reading easy to do.

96. Use classes to model the fundamental concepts of the program.classes and functions

97. Each function should do only one task, but do it well.

98. Each class or function should hide something.

99. The public methods for a data structure should be implemented without pre-
conditions. The data members should be kept private.

100. Keep your connections simple. Avoid global variables whenever possible.global variables

101. Never cause side effects if you can avoid it. If you must use global variables
as input, document them thoroughly.

102. Keep your input and output as separate functions, so they can be changedmodular input and
output easily and can be custom tailored to your computing system.

error checking 103. Include error checking at the beginning of functions to check that the precon-
ditions actually hold.

104. Every time a function is used, ask yourself why you know that its preconditions
will be satisfied.

105. Be sure to initialize your data structures.

106. In designing algorithms, always be careful about the extreme cases and handle
them gracefully. Trace through your algorithm to determine what happens in
extreme cases, particularly when a data structure is empty or full.

Section D.6 • Programming with Pointer Objects 689

107. Do as thorough error checking as possible. Be sure that every condition that
a function requires is stated in its preconditions, and, even so, defend your
function from as many violations of its preconditions as conveniently possible.

108. Be sure that all your variables are properly initialized.

109. Double check the termination conditions for your loops, and make sure that
progress toward termination always occurs.

D.6 PROGRAMMING WITH POINTER OBJECTS

110. In choosing between linked and contiguous implementations, consider thechoosing linked or
contiguous necessary operations on the data structure. Linked structures are more flexible

in regard to insertions, deletions, and rearrangement; contiguous structures
are sometimes faster.

111. Contiguous structures usually require less computer memory, computer time,
and programming effort when the items in the structure are small and the al-
gorithms are simple. When the structure holds large records, linked structures
usually save space, time, and often programming effort.

112. Dynamic memory and pointers allow a program to adapt automatically to
a wide range of application sizes and provide flexibility in space allocation
among different data structures. Automatic memory is sometimes more effi-
cient for applications whose size can be completely specified in advance.

113. Uninitialized or random pointer objects should always be reset to NULL. Afterpointer references
deletion, a pointer object should be reset to NULL.

114. Before reassigning a pointer, make sure that the object that it references will
not become garbage.

safeguards 115. Linked data structures should be implemented with destructors, copy con-
structors, and overloaded assignment operators.

designing linked
structures

116. Draw “before” and “after” diagrams of the appropriate part of a linked struc-
ture, showing the relevant pointers and the way in which they should be
changed. If they might help, also draw diagrams showing intermediate stages
of the process.

117. To determine in what order values should be placed in the pointer fields to
carry out the various changes, it is usually better first to assign the values to
previously undefined pointers, then to those with value NULL, and finally to
the remaining pointers. After one pointer variable has been copied to another,
the first is free to be reassigned to its new location.

118. Be sure that no links are left undefined at the conclusion of a method of a linkedundefined links
structure, either as links in new nodes that have never been assigned or links
in old nodes that have become dangling, that is, that point to nodes that no
longer are used. Such links should either be reassigned to nodes still in use or
set to the value NULL.

690 Appendix D • Programming Precepts, Pointers, and Pitfalls

119. Avoid the use of constructions such as (p->next)->next, even though they aremultiple dereferencing
syntactically correct. A single object should involve only a single pointer deref-
erencing. Constructions with repeated dereferencing usually indicate that the
algorithms can be improved by rethinking what pointer variables should be
declared in the algorithm, introducing new ones if necessary.

D.7 DEBUGGING AND TESTING

120. The quality of test data is more important than its quantity.

121. Program testing can be used to show the presence of bugs, but never their
absence.

122. Use stubs and drivers, black-box and glass-box testing to simplify debugging.

123. Use plenty of scaffolding to help localize errors.

124. In programming with arrays, be wary of index values that are off by 1. Always
use extreme-value testing to check programs that use arrays.

125. Keep your programs well formatted as you write them—it will make debug-
ging much easier.

126. Keep your documentation consistent with your code, and when reading a
program make sure that you debug the code and not just the comments.

127. Explain your program to somebody else: Doing so will help you understand
it better yourself.

128. After a client uses a class method, it should decide whether to check the result-
ing error status. Classes should be designed to allow clients to decide how to
respond to errors.

D.8 MAINTENANCE

129. For a large and important program, more than half the work comes in the
maintenance phase, after it has been completely debugged, tested, and put
into use.

130. Do not optimize your code unless it is necessary to do so. Do not start tooptimization
optimize code until it is complete and correct.

131. Most programs spend 90 percent of their time doing 10 percent of their instruc-
tions. Find this 10 percent, and concentrate your efforts for efficiency there.

132. To improve your program, review the logic. Don’t optimize code based on a
poor algorithm.

133. Never optimize a program until it is correct and working.

134. Don’t optimize code unless it is absolutely necessary.

Section D.8 • Maintenance 691

135. Don’t optimize your code until it works perfectly, and then only optimize it if
improvement in efficiency is definitely required. First try a simple implemen-
tation of your data structures. Change to a more sophisticated implementation
only if the simple one proves too inefficient.

136. Always plan to build a prototype and throw it away. You’ll do so whether youprototypes
plan to or not.

137. Starting afresh is often easier than patching an old program.

Index

2-tree, 290, 521
external path length, 298
number of vertices by level, 290
path length theorem, 292–293
relation to binary tree, 470–471

A Abstract data type, 71–76, 152–154, 388–391
binary search tree, 446
binary tree, 430
definition, 74, 153
extended queue, 153
list, 74, 213
ordered list, 446
queue, 153–154
refinement, 74–76
stack, 74, 152
table, 388–391

Access array, 382
jagged table, 386
multiple, 386
rectangular table, 382
triangular table, 385

Access time, 535
Accounting, LIFO and FIFO, 84 (exercise)
Ackermann’s function, 182 (exercise)
activity, airport simulation, 103
ADAM, 10
Addition, polynomial calculator, 148–150
Address operator, C++, 121
ADEL’SON-VEL’SKĬI, G. M., 473, 518

Adjacency, graph, 571
tree, 159

Adjacency list, graph, 574
Adjacency table, graph, 573
ADT (see Abstract data type)
Airport simulation, 96–109

activity, 103
can_depart, 103
can_land, 103
fly, 105
initialization, 102–105
land, 105
main program, 97
Plane class, 100–101
Plane constructor, 104–105
refuse, 105
rules, 99
run_idle, 106
Runway class, 99–100
Runway constructor, 102
sample results, 107–109
shut_down, 106
specifications, 99
started, 106

ALAGIĆ, SUAD, 48
Algorithm:

coding, 20
design, 2–3
refinement, 15–20

Alias, string, 237
Allocation of memory, 113–122

693

694 Index

Alpha-beta pruning (game trees), 208 (project)
Amortized analysis, 491, 505–515

actual and amortized costs, 508
binary counter, 508–509
binary tree traversal, 506–507
cost, 507
credit function, 507–508
definition, 505–506
splay tree, 509–515

Analogy, 72
Analysis:

algorithms, 3
amortized (see also Amortized analysis), 491,

505–515
asymptotic, 302–314
AVL tree, 484, 485–488
backtracking, 194–196
binary search, 287–296
binary search 1, 291–292
binary search 2, 292–294
binary search tree, 453, 463, 469–472
eight-queens problem, 191, 194–196
greedy algorithm, 587, 592
hashing methods, 411–417
heapsort, 368–369
insertion sort, 325–327
key comparisons, 272–274
Life program, 37
mergesort, 348–350
order of magnitude, 302–314
program, 34–39
quicksort, 356–359, 454–455
radix sort, 396
recursion, 171–174, 179–181
red-black tree, 559
search, lower bounds, 297–302
selection sort, 331
sequential search, 272–274
Shell sort, 335
sorting, 319, 336–338
splaying, 509–515
statistical distribution, 273, 373
Towers of Hanoi, 167–168
treesort, 454–455
trie, 534

APL, 390
append:

contiguous queue with counter, 90
linked queue, 138
queue, 80

Apprentice, Sorcerer’s, 167
APT, ALAN, xvii
ARBIB, MICHAEL A., 48

ARGO, G., 519
Arithmetic, modular, 86–87
Arithmetic-geometric mean inequality, 511
Array (see also Table), 50, 380–388

definition, 391
FORTRAN, 381
index, 380
linked list implementation, 251–260
rectangular, 22, 381–382
table distinction, 391

Assignment, overloaded, 132–135
pointers, 121

Asterisk * (C++ pointer), 116
Asymptotics, 302–314

assumptions, 305–306
big-O notation, 310
common orders, 308–310
criteria for ordering functions, 311
definition, 303
dominant term, 311
exponentials, 308
L’Hôpital’s rule, 307
little-o notation, 310
logarithms, 307, 307
O , o notation, 310
omega Ω notation, 310
orders of functions, 304
polynomials, 306
powers, 306
theta Θ notation, 310

Atomic type, 73
attributes, expression evaluator, 630
Automatic object, 116, 121–122
Average time:

searching, 273
sorting, 319

avl_insert, 478
AVL tree, 473–490

analysis, 484, 485–488
avl_insert, 478
balance factor, 473
Binary_node specification, 476
C++ conventions, 474–479
class specification, 476
comparison with red-black tree, 559
definition, 473
demonstration program, 490 (project)
double rotation, 481–482
Fibonacci, 488
get_balance, 475
height, 485–488
information retrieval, 490 (project)
insert, 478

Index 695

AVL tree (continued)
insertion, 477–484
node specification, 475
red-black connection, 566
removal, 484–485
right_balance, 482
rotate_left, 481
rotation, 480–484
set_balance, 475
single rotation, 480–481
sparse, 488

B Backtracking, 183–198
analysis, 194–196
definition, 185

Balance, binary search tree, 469–472
Balanced binary search tree, 473–490
Balance factor, AVL tree, 473
Barber Pole (Life configuration), 33
Base 2 logarithms, 291, 653
Base class, 81–83
Base for logarithms, 651, 654
Base type, 389
BASIC, linked list, 251
BAYER, R., 568
BELL, TIMOTHY C., 428
BENTLEY, JON L., 316, 377,
BERMAN, GERALD, 666
BERRY, VICTOR, xvi
Bibliography, 47–48
Big-O notation, 310
Binary counter, amortized analysis, 508–509
Binary insertion sort, 328 (project)
Binary_node, AVL tree, 476
Binary operator, 435, 600
Binary search, 278–286, 444

binary_search_1, 283
binary_search_2, 285
comparison of variants, 285, 294–296
comparison tree, 287, 288
comparison with trie, 534
forgetful version, 281–283
invariant, 281
optimality, 300
recognizing equality, 284–285
recursive_binary_1, 281
recursive_binary_2, 284
run_recursive_binary_1, 283
run_recursive_binary_2, 284
two-step, 297 (exercise)
verification, 280–285

binary_search_1, 283
analysis, 291–292
optimality, 300

binary_search_2, 285
analysis, 292–294

Binary search tree, 444–519, 556–566
abstract data type, 446
analysis, 453, 469–472
AVL (see also AVL tree), 473–490
balance, 469–472
Buildable_tree class, 465
build_insert, 467
build_tree, 465–466
class specification, 446
comparison with trie, 534
connect_trees, 469
construction, 463–472
Fibonacci, 488
find_root, 468
height-balanced (see also AVL tree), 473–490
information retrieval, 461–462
insert, 451–453,
key comparison count, 472
red-black (see also Red-black tree), 556–566
removal, 455–458
remove, 458
remove_root, 457
search_and_insert, 453
search_for_node, 447–448
self adjusting (see also Splay tree), 490–515
sentinel, 460–461
sorting, 437
splay (see also Splay tree), 490–515
tree_search, 447, 449
treesort, 453–455

Binary tree, 430–519, 521–528
abstract data type, 430
bracketed form, 443 (exercise)
census, 661
class specification, 441
complete, 463
constructor, 438
conversion to 2-tree, 470–471
copy constructor, 442 (exercise)
correspondence with orchard, 526–527
double-order traversal, 443 (exercise)
empty, 438
endorder traversal, 433
enumeration, 661
examples, 431–432
expression, 435–436
extended to 2-tree, 470–471
inorder traversal, 433, 439
level and index, 463
level-by-level traversal, 444 (exercise)
linked implementation, 437–441

696 Index

Binary tree (continued)
postorder traversal, 433
preorder traversal, 433
printing, 443 (exercise)
recursive_inorder, 439–440
recursive_postorder, 440
recursive_preorder, 440
reversal, 443 (exercise)
rotation, 527
search tree (see Binary search tree)
symmetric traversal, 433
traversal, 432–441

amortized analysis, 506–507
traversal sequence, 444 (exercise)
visit node, 439

Binomial coefficients, 658
Pascal’s triangle, 182 (exercise)

BIRD, R. S., 211
Birthday surprise (hashing), 411
Bit string, set implementation, 572
Black-box method, program testing, 30
Block, external file, 535
Board class, 201–202, 204–207
BOAS, RALPH, 666
Bomb, time, 32
BOOCH, GRADY, 47
Borland graphics, 643–645
Boundary conditions, circular queue, 87
Bound for key comparisons:

search, 297–302
sorting, 336–338

Bound pointer type, 116
Bracket-free notation, 612
Bracket matching program, 69–71
Brackets, well-formed sequences, 662
Branch of tree, 159, 286
breadth_first, graph traversal, 578
Breadth-first traversal, graph, 576–578
breadth_sort, graphs, 582–583
BROOKS, FREDERICK P., JR., 48
BROWN, S., 211
BROWN, WILLIAM G., 666
B-tree, 535–556

B*-tree, 556 (exercise)
C++ deletion, 548–555
C++ implementation, 539–555
C++ insertion, 542–547
combine, 554–555
copy_in_predecessor, 552
C++ searching, 541
declarations, 539
definition, 536
deletion, 548–555

insert, 543
insertion, 537–547
move_left, 553–554
move_right, 554–555
push_down, 544
push_in, 545
recursive_remove, 550
recursive_search_tree, 540
remove, 550
remove_data, 551
restore, 552–553
search_node, 541
split_node, 545–547

Bubble sort, 329 (project)
BUDDEN, F. J., 267
Buildable_tree, class specification, 465
build_heap, heapsort, 368
build_insert, binary search tree, 467
build_tree, binary search tree, 465–466
BUSTARD, DAVID, 111

C C++:
address of automatic object, 121–122
address operator, 121
asterisk * (pointer), 116
base class, 81–83
Borland graphics, 643–645
class, 7–8
client program, 7
code file, 675
constructor for class, 57–58
copy constructor, 135–136
C-string, 233–241
declaration file, 675
default constructor, 105
definition file, 675
delete (standard operator), 117
dereferencing operator ->, 122
derived class, 81–83
destructor ∼, 131–132
dynamically allocated arrays, 119–120
dynamic memory allocation, 116–122
empty pointer, 119
exception handling, 59
expression parsing, 601
free store, 117
friend function, 239
function overloading, 101, 124, 238
function prototype, 675
header file, 9, 675
heap, 365
include file, 8, 10
inheritance, 81–83, 146
introduction, 3–4

Index 697

C++ (continued)
library, 52, 678–679
linking files, 675
link types, 116
lvalue, modifiable, 118
member of class, 7
member selection operator, 7
method, 7
modifiable lvalue, 118
multiple constructors, 124
multiple function declarations, 100–101
new (standard operator), 117
NULL pointer, 119
object, 7
object file, 675
overloading of functions, 101, 124, 238
package, 674–677
pointer, function, 216
pointer arithmetic, 120–121
pointer assignment, 121
pointer declaration, 122
pointer types, 116
priorities for operator evaluation, 600
private and public class members, 7
private inheritance, 146
protected visibility, 89, 91
random number generator, 667
reference types, 116
scope resolution, 279
standard library, 55, 678–679

cstdlib, 667
<stdlib.h>, 667

standard template library (STL), 52
star, 117
star * (pointer), 116
static class member, 274, 627–628
stream output, 25
string, 233–241
struct, 123
switch statement, 24
template, 54, 218, 150
template parameter, 55
ternary operator, 87
translation unit, 675
virtual method, 475–476

Cafeteria, stack example, 50
Calculator, reverse Polish, 66–69
Calculus, 307–308, 413, 555 (exercise), 650, 653, 656,

659
Calendar, 44–45
Campanology, 265 (project), 267
can_depart, airport simulation, 103
can_land, airport simulation, 103

Card sorting, 391
Case study:

airport simulation, 96–109
bracket matching, 69–71
desk calculator, 66–69
expression evaluator, 623–645
Life game, 4–45
permutation generator (see also Permutation),

260–265
polynomial calculator, 141–152
text editor, 242–250
tic-tac-toe, 204–207

CATALAN, E., 666
Catalan numbers, 661–665
Ceiling and floor, 291
Cell, Life game, 419
Census (see enumeration), 661
Chaining, hash table, 406–408
CHANG, HSI, 518
change_line, text editor, 250
Change of base, logarithms, 654
Character string (see also String), 233–241
Cheshire Cat (Life configuration), 33
Chessboard problems:

eight-queens (see also Eight-queens problem),
183–198

knight’s tour, 197 (project)
Children in tree, 159, 286
Church, 86
Circular implementation of queue, 86–91
Circular linked list, 140
Class, base, 81–83

C++, 7–8
derived, 81–83
destructor, 131–132
inheritance, 81–83
initialization, 53
layering, 83

clear, extended queue, 83
hash table, 404
list, 214

Client, 7
Clustering, hash table, 401–402, 407
COBOL, 172, 251
Code file, C++, 675
Coding, 20
Codomain of function, 389
Collision, hash table, 398
Collision resolution, 401–408

birthday surprise, 411
chaining, 406–408

Column, rectangular array, 22
Column-major ordering, 381

698 Index

Combination, 657, 662
Combinatorics, 666
combine, B-tree deletion, 554–555
COMER, D., 568
Commands, text editor, 242–243
Common logarithms, 652
Communion, 86
Comparison:

binary search variants, 285, 294–296
binary search with trie, 534
contiguous and linked storage, 230–231
cost of balancing binary search tree, 469–472
hash table methods, 407–408, 413–417
heapsort with quicksort, 369
information retrieval methods, 417
insertion and selection sort, 332
iteration and recursion, 179–181
list and table, 390–391
mergesort and insertion sort, 348–349
mergesort variations, 350
prefix and postfix evaluation, 608
queue implementations, 139
quicksort and heapsort, 369
quicksort and selection sort, 357
quicksort to other sorts, 360
recursion and iteration, 179–181
sorting methods, 372–375
table and list, 390–391
treesort and quicksort, 454–455
trie and binary search, 534

Comparisons of keys, lower bound for search,
300–301

Comparison tree:
binary search, 287, 288
external path length, 298, 337
insertion and selection sort, 336
sequential search, 287
sorting, 336

Compiler design, 185–186
Complete binary tree, 463
Concurrent processes, 171
Connected graph, 571
connect_trees, building binary search tree, 469
Constant time, 308–310
Constructor, binary tree, 438

C++ class, 57–58
default, C++, 105
eight-queens problem, 189, 193
linked list, 221–222
linked Queue, 138
multiple, 100–101
Stack, 58, 62
string, 235–236

text editor, 244
Contiguous implementation, 50, 74, 115

advantages, 230–231
comparison with linked, 230–231
List, 219–221
queue, 84–95, 89–93

CONWAY, J. H., 4, 47, 418
Copy constructor, 135–136

binary tree, 442 (exercise)
linked Stack, 136

copy_in_predecessor, B-tree deletion, 552
CORMEN, THOMAS H., 568
Corollary:

7.7 (optimality of binary_search_1), 300
10.2 (treesort average performance), 454
10.4 (balancing cost, search tree), 472
10.11 (total cost of splaying), 513
A.6 (logarithmic Stirling’s approximation), 658
A.10 (Catalan enumerations), 664

Cost, amortized analysis, 507
Count sort, 333 (exercise)
C (programming language), 435
Creation, 10, 163, 309
Credit function, amortized analysis, 507–508
Credit invariant, splay tree analysis, 510
Criteria (see also Guidelines), 12–13

program design, 34–35
sorting efficiency, 372
syntax of Polish expressions, 610–611

cstdlib, standard library, 667
C-string, 233–241
Cube root, Newton approximation, 19
Cubic time, 308–310
Cycle, graph, 571

D DARLINGTON, JOHN, 377
Data, search testing, 275
Data abstraction, levels, 75–76
Data for program testing, 29–32
Data retrieval (see also Search), 268–316, 379–428
Data storage for functions, 172–174
Data structure, definition, 72–76
Data structures:

design, 3
eight-queens problem, 188, 191–193
expression evaluator, 625–629
graphs, 594–595
hash table, 406–408
information retrieval, 379–428
library, 55
Life game, 419–421
multilinked, 594–595
permutation generation, 261–264
polynomial calculator, 144–147

Index 699

Data structures (continued)
recursion, 173–174
refinement, 74–76
standard library, 55
summary table, 676–677

Data type: definition, 72–76
dB (decibel, abbreviation), 650
Debugging, 3, 20, 27–29
Decision tree (see Comparison tree)
Declaration file, C++, 675
Declarations: expression evaluator, 625–629
Default constructor, C++, 105
Defensive programming, 29
Definition file, C++, 675
degree, Polynomial calculator, 150
delete, C++ operator, 117
delete_node: linked list in array, 256
Deletion:

AVL tree, 484–485
binary search tree, 455–458
B-tree, 548–555
hash table, 405, 407
queue (see serve), 80

Demonstration, do_command, 95
help, 94
queue, 93–95
test_queue, 93

DENENBERG, LARRY, 519
DEO, N., 518, 597
Depth-first traversal, graph, 575–578
Depth of tree vertex, 159
depth_sort, graph, 581
Deque: contiguous, 92 (exercise)
Dequeue (see serve), 80
Dereferencing operator ->, 122
Dereferencing pointers, 117
Derivation of algorithms, 353–355
Derived class, 81–83

polynomial calculator, 146
Descendents in tree, 286
Design:

data structures, 3
functions, 15–17
program, 2–3, 34–45

Desk calculator, do_command, 68
get_command, 67
program calculator, 66

Destructor, 131–132
linked stack, 132

Diagonal matrix, 387 (exercise)
Differentiation, 555 (exercise), 653
Digraph, 570, 586
DIJKSTRA, EDSGER W., 47, 597, 645

Dijkstra’s algorithm, minimal spanning trees, 595
(exercise)

Diminishing-increment sort, 333–336
Directed graph, 570
Directed path, 571
Disconnected graph, 571
Disk, access times, 535
Distance table, 388, 583
Distribution:

expected value, 670
Poisson, 99, 670–671
uniform, 669–670

Distribution of keys, search, 301
Divide and conquer, 163–169, 339–344, 390
divide_from, mergesort, 346
Division algorithm, 181 (exercise)
do_binary, expression evaluator, 639
do_command, desk calculator, 68

expression evaluator, 624
polynomial calculator, 142
queue demonstration, 95

Documentation guidelines, 13–14
Domain of function, 389
Double-ended queue, 92 (exercise)
Double-order traversal, binary tree, 443 (exercise)
Double rotation, AVL tree, 481–482
Doubly linked list, 227–230, 232

insert, 229
draw, expression evaluator, 643, 644
drive_neighbor_count, Life game, 28
Driver, 27–28

random number generator, 671 (project)
Dummy node, 346, 499
DÜRER, ALBRECHT, 43 (project)
Dynamic data structure, 50
Dynamic memory:

allocation, 113–122
array, 119–120
safeguards, 131–137

Dynamic object, 116

E Earthquake measurement, 650
e (base of natural logarithms), 652
Edge:

graph, 570
tree, 286

Editor (see Text editor)
Efficiency criteria, sorting, 372
Eight (game), 198
Eight-queens problem, 183–198, 211

analysis, 191, 194–196
class Queens, 186–187, 192–194
constructor, 189, 193

700 Index

Eight-queens problem (continued)
data structures, 188, 191–193
diagonals, 189–190
insert, 187, 189, 193
is_solved, 187
main program, 186
performance, 191, 194–196
recursion tree, 195
refinement, 191–194
remove, 187
solve_from, 184, 188
unguarded, 187, 189–191, 194

elapsed_time, Timer, 680
ELDER, JOHN, 111
empty, binary tree, 438

List, specification, 214
queue, 80
Stack, 60, 62

Empty pointer, C++, 119
Empty string, 233
Encapsulation, 63
Endorder traversal, binary tree, 433
End recursion (see Tail recursion)
End vertex of tree, 286
Enqueue (see append), 80
Entry assignments, sorting, 319
Enumeration:

binary trees, 661
Catalan numbers, 665
orchards, 661
polygon triangulations, 664
stack permutations, 663
well-formed bracketings, 662

equals_sum, Polynomial calculator, 149
Error processing, 58–59
Euler’s constant, 656
evaluate_postfix:

expression evaluator, 638
nonrecursive, 608–609
recursive, 614

evaluate_prefix, 605, 607
Evaluation, program, 34–39
Evaluation of Polish expression, 604–615
EVEN, SHIMON, 597
Exception handling, C++, 59
Expected time:

searching, 273
sorting, 319

Expected value, 670
Exponential function, 653
Exponentials, order of magnitude, 308
Exponential time, 308–310

Expression:
fully bracketed, 622 (exercise)
Polish forms, 435–436

Expression evaluator, 623–645
attributes, 630
data structures, 625–629
declarations, 625–629
do_binary, 639
do_command, 624
draw, 643, 644
error checking, 636–638
evaluate_postfix, 638
Expression class, 628, 634–639
find_points, 642
get_print_row, 641
get_token, 635
get_value, 639
hash, 633
hash table, 627, 633–634
infix_to_postfix, 638
is_parameter, 630
kind, 630
lexicon, 626–628, 631–634
main program, 624
operand and operator evaluation, 639
parameter, 625, 628
Plot class, 640–645
Point structure, 641
postfix evaluation, 638–639
postfix translation, 638
put_token, 635
read, 635–636
set_parameters, 631
set_standard_tokens, 631–633
Token class, 628, 629–631
token definitions, 631
valid_infix, 638
word, 632

Expression tree, 435–436, 617
evaluation, 601–603
quadratic formula, 436

Extended binary tree (see also 2-tree), 290, 470–471
Extended queue, 81–83, 139–140, 153

abstract data type, 153
clear, 83
definition, 153
do_command, 95
full, 83
help, 94
linked, 139–140
serve_and_retrieve, 83
size, 83, 91, 140
test_queue, 93

Index 701

External and internal path length, 292–293
External path length, 2-tree, 289, 298

comparison tree, 337
External search, 269, 535–536
External sort, 344, 372
External storage, block, 535
External vertex of tree, 159, 286

F Factorial, calculation, 160–162, 176–177
recursion tree, 177
Stirling’s approximation, 337, 658–659

Family tree, 594–595
FELLER, W., 378
FIBONACCI, LEONARDO, 659
Fibonacci numbers, 178–179, 659–661
Fibonacci search, 297
Fibonacci tree, 488
FIFO list (see also Queue), 79–111
File: page or block, 535
find_points, expression evaluator, 642
find_root, building binary search tree, 468
find_string, text editor, 249
Finite sequence, 73
First in first out list (see also Queue), 79–111
FLAJOLET, PHILIPPE, 428, 518
Floor and ceiling, 291
fly, airport simulation, 105
Folding, hash function, 400
Forest, 524–525
Forgetful version, binary search, 281–283
Format, C++ programs, 14
FORTRAN, history, 599

linked list, 251
parsing, 185–186
recursion, 172
table indexing, 381

FREDKIN, EDWARD, 568
Free store, 117
Free tree, 521, 571
Friend function, C++, 239
Front, queue, 79
FRYER, K. D., 666
full, extended queue, 83

List, specification, 214
Fully bracketed expression, 622 (exercise)
Function, 389

codomain, 389
domain, 389
graphing (see also Expression evaluator), 623–645
growth rates, 303–310
hash, 398–401
index, 382
pointer, C++, 216
range, 389

Function calls, tree, 159
Function overloading, 101, 124
Function prototype, C++, 675

G Game:
Eight, 198
Life (see Life game), 4–45
maze, 197 (project)
Nim, 208 (exercise)
queens (see also Eight-queens problem), 183–198
tic-tac-toe, 204–207
Towers of Hanoi (see also Towers of Hanoi),

163–168
Game tree, 198–208

algorithm development, 201–202
alpha-beta pruning, 208 (project)
Board class, 201–202, 204–207
look_ahead, 202–203
minimax evaluation, 199–208
Move class, 201
tic-tac-toe, 204–207

Garbage, memory allocation, 114
GARDNER, MARTIN, 6, 47–48, 666
GAUSS, C. F., 183
Generating function, 660
Generation of permutations (see Permutation),

260–265
Generics, 58
Genesis, 10
get_balance, AVL tree, 475
get_command:

desk calculator, 67
text editor, 245

get_print_row, expression evaluator, 641
get_token, expression evaluator, 635
get_value, expression evaluator, 639
Glass-box method, program testing, 30–32
Glider Gun (Life configuration), 33
Global variables, 17
Golden mean, 660–661
GOTLIEB, C. C. and L. R., 316, 428
Graph, 569–597

adjacency, 571
adjacency list, 574
adjacency table, 573
applications, 570, 579–587
breadth-first traversal, 576–578
breadth_sort, 582–583
connected, 571
cycle, 571
data structures application, 594–595
definition, 570, 573
depth-first traversal, 575–578

702 Index

Graph (continued)
depth_sort, 581
Digraph specification, 586
Dijkstra’s algorithm, 595 (exercise)
directed, 570
distance table, 583
edge, 570
examples, 570, 579–587
free tree, 571
greedy algorithm, 583–587
implementation, 572–575
incidence, 570
Kruskal’s algorithm, 595 (exercise)
minimal_spanning, 590
minimal spanning tree, 587–594
multiple edges, 571
Network specification, 590
path, 571
Prim’s algorithm, 589–594
recursive_depth_sort, 581
regular, 595 (exercise)
representation, 572–575
self-loops, 571
set_distances, 587
set representation, 572–573
shortest paths, 583–587
source, 583
strongly connected digraph, 571
topological order, 579–587
traversal, 575–578
undirected, 570
vertex, 570
weakly connected digraph, 571
weight, 575

Graphing (see also Expression evaluator), 623–645
Graphs, logarithmic, 654–655
Greatest common divisor, 181 (exercise)
Greedy algorithm:

analysis, 587, 592
graph, 583–587
verification, 584–586

GREGOR, JENS, xvi
GRIES, DAVID, 48, 211
Ground symbol, 113, 119
Group discussion, 28–29
Group project, polynomial calculator, 150–152
Growth rates of functions, 303–310
Guidelines:

documentation, 13–14
identifiers, 12–13
linked lists, 154–155
names, 12–13
program design, 40–42

recursion use, 179–181
refinement, 15

H HAMBLIN, C. L., 645
Hamurabi simulation, 672
Hanoi, Towers of (see also Towers of Hanoi),

163–168
Harmonic number, 358, 472, 656
HARRIES, R., 428
HARRIS, FRED, xvi
Harvester (Life configuration), 33
Has-a relationship, 83
hash:

expression evaluator, 633
Life game, 426
simple hash function, 401

Hash function, 398–401
C++ example, 401
Life game, 425–426
perfect, 409 (exercise)

Hash table, 397–417
analysis, 411–417
birthday surprise, 411
C++ example, 404–406, 408
chaining, 406–408
class Hash_table, 404–405, 408
clear, 404
clustering, 401–402, 407
collision, 398
collision resolution, 401–408
comparison of methods, 407–408, 413–417
data structures, 406–408
deletion, 405, 407
division function, 400
expression evaluator, 627, 633–634
folding function, 400
function, 398–401
hash, 401
increment function, 402
insertion, 405
insert_table, 405
introduction, 398
key comparisons, 411–417
key-dependent probing, 403
Life game, 420–421, 424–426
linear probing, 401
minimal perfect hash function, 409 (exercise)
modular arithmetic, 400
open addressing, 401–406
overflow, 407, 409 (exercise)
perfect hash function, 409 (exercise)
probe count, 411–417
quadratic probing, 402–403
random probing, 403

Index 703

Hash table (continued)
rehashing, 402
remove, 408
retrieve, 405
space use, 407
truncation function, 399

Head, queue, 79
Header file, C++, 9, 675
Heap, definition, 364

free store, 117
ternary, 371 (exercise)

Heapsort, 363–371
analysis, 368–369
build_heap, 368
heap_sort, 365
insert_heap, 366

Hedge, Life game, 23
Height:

AVL tree, 485–488
Fibonacci tree, 488
tree, 159, 286

Height-balanced binary search tree (see also AVL
tree), 473–490

help, queue demonstration, 94
HIBBARD, T. N., 316
Hierarchy diagram, 82
HOARE, C. A. R., 48, 339, 360 (exercise), 377
HOFSTADTER, DOUGLAS R., 665
HOROWITZ, E., 211
HORTON, MARCIA, xvii
Hospital records, 490
HUANG, BING-CHAO, 377
HUTT, SUSAN, xvi
Hybrid search, 297 (project)

I Identifiers, guidelines, 12–13
Implementation:

after use, 51–55
contiguous, 50
contiguous List, 219–221
graph, 572–575
linked List, 221–227
linked lists in arrays, 251–260
list, 50
List, 217–233
ordered tree, 522–529
package, 674
polynomial, 144–147
recursion, 171–174
stack, 57–65, 127–137
strings, 234–241
table, 380–388

Incidence, graph, 570

include file, C++, 8, 10
Include file, data structures, 676–677
Increment function, hash table, 402
Index, array and table, 380

linked list in array, 252–253
Index function, 382, 397

triangular matrix, 383–385
Index set, 389
Indirect linked list, 419
Infinite sums, 650
Infix form, 435–436

definition, 603
infix_to_postfix, 619–621
leading position, 636–638
translation into postfix, 617–623

infix_to_postfix:
expression evaluator, 638
Polish form, 619–621

Information hiding, 7, 54–55, 214, 676
Information retrieval (see also Search), 268–316,

379–428
AVL tree, 490 (project)
binary search tree, 461–462
red-black tree, 566 (project)

Inheritance, class, 81–83
private, 146

initialize, airport simulation, 102
Life game, 26

Inorder traversal, binary tree, 433, 439
Inout parameters, 16
Input parameters, 16
insert, AVL tree, 478

binary search tree, 453
B-tree, 543
contiguous List, 220
doubly linked list, 229
eight-queens problem, 187, 189, 193
Life game, 424
linked list in array, 257
List, specification, 215
ordered list, 279–280
red-black tree, 563
specifications, 451
trie, 533

insert_heap, heapsort, 366
Insertion:

AVL tree, 477–484
B-tree, 537–547
hash table, 405
linked list, 223–224
ordered, 320–321
queue (see append), 80

704 Index

Insertion sort, 320–329
analysis, 325–327
binary, 328 (project)
comparisons, 332
comparison tree, 336
contiguous, 321–323
divide-and-conquer, 344 (exercise)
linked, 323–325

insert_line, text editor, 248
insert_table, hash table, 405
instructions, Life game, 25
Integers, sum and sum of squares, 647
Integration, 656, 659

hash-table analysis, 413
Interactive graphing program (see also Expression

evaluator), 623–645
Interactive input: user_says_yes, 27, 679
Interface, package, 675
Internal and external path length, 292–293
Internal path length, tree, 289
Internal search, 269
Internal sorting, 318
Internal vertex of tree, 286
Interpolation search, 301
Interpolation sort, 338 (project)
Invariant, binary search, 281

loop, 354–355
Inverted table, 386
Is-a relationship, 83, 146
is_parameter, expression evaluator, 630
is_solved, eight-queens problem, 187
IYENGAR, S. S., 518

J Jagged table, 385–386

K KERNIGHAN, BRIAN, 47
Key, 269–271
Key comparisons:

count, 272–274
hashing, 411–417
lower bound for search, 297–302
sorting, 319

Key-dependent probing, hash table, 403
Key transformations (see Hash table), 399
kind, expression evaluator, 630
KLAMKIN, M. S., 428
Knight’s tour, 197 (project), 211
KNUTH, DONALD E., xvi, 77, 111, 267, 316, 318, 360

(exercise), 377, 428, 518, 568, 666, 673
KRUSKAL, JOSEPH B., 597
Kruskal’s algorithm, minimal spanning trees, 595

(exercise)

L land, airport simulation, 105
LANDIS, E. M., 473, 518
LANGSTON, MICHAEL A., 377
Large number, 168, 309
Layering classes, 83
Leading position, infix expression, 636–638
Leaf of tree, 159, 286
Least common multiple, 32 (exercise)
LEE, BERNIE, 338 (project)
Left recursion, 614
Left rotation, AVL tree, 480–481
LEISERSON, CHARLES E., 568
Lemma:

7.1 (number of vertices in 2-tree), 290
7.2 (level of vertices in 2-tree), 290
7.5 (minimum external path length), 298
10.5 (actual and amortized costs), 508
10.6 (sum of logarithms), 511
10.7, 8, 9 (cost of splaying step), 511–512
A.8 (orchards and parentheses sequences), 662
A.9 (sequences of parentheses), 663

Length of list, n, 273
LEON, JEFFERY, xvi
LESUISSE, R., 316
Level and index, binary tree, 463
Level-by-level traversal, tree, 444 (exercise)
Level in tree, 286
Level of tree vertex, 159
LEWIS, HARRY R., 519
Lexicographic tree, 530–535
Lexicon, expression evaluator, 626–628, 631–634
lg (logarithm with base 2), 291, 652, 653
L’Hôpital’s rule, 307
Library, C++, 52, 55, 678–679

cstdlib, 667
<limits>, 586
<std>, 573, 678–679
<stdlib.h>, 667

Life cycle, 40
Life game, 4–45, 418–426

analysis, 37
Cell, 419
class Life, 421
configurations, 33
constructor, 425
data structures, 419–421
definition, 4
destructor, 425
drive_neighbor_count, 28
examples, 5–6, 10 (exercise), 33
first algorithm, 7
hash function, 426
hash table, 420–421, 424–426

Index 705

Life game (continued)
header file, 22
hedge, 23
initialize, 26
insert, 424
instructions, 25
main, 8, 418
neighbor_count, 23
one-dimensional, 43–44
print, 26, 424
review, 35–39
rules, 5
second program, 418–426
sentinel, 23
sparse table, 418
testing, 32–33
update, 24, 423
user_says_yes, 27
verification, 36

limits, C++ standard library, 586
Linear implementation, queue, 85
Linear probing, hash table, 401
Linear search (see Sequential search), 271–278
Linear time, 308–310
Line in tree, 286
Line reversal, 51
Line (see also Queue), 79–111
Linked and contiguous storage, comparison,

230–231
Linked binary tree, 437–441
Linked implementation, List, 221–227
Linked insertion sort, 323–325
Linked list, 114–115

advantages, 230–231
array implementation, 251–260, 263
BASIC, 251
circular, 140
COBOL, 251
delete_node, 256
doubly linked, 227–230, 232
dummy node, 346
FORTRAN, 251
index, 252–253
indirect, 419
insert, 223–224, 257
mergesort, 343–352
multiple linkages, 254
new_node, 255
programming guidelines, 154–155
traversal, 257
workspace, 253

Linked queue, 137–141
polynomial application, 141–152

Linked stack, 127–137
destructor, 132

Linked structure, 122–126
node, 123
Node declaration, 123

Linking files, 675
link_right, splay tree, 496–501
Link (see also Pointer), 113, 116–122
List, 50, 212–267

circularly linked, 140
class specification, 226
clear, specification, 214
constructor, 221–222

specification, 214
contiguous implementation, 50, 115, 219–221
definition, 74, 213
doubly linked, 227–230, 232
empty, specification, 214
first in first out (see also Queue), 79–111
full, specification, 214
implementation, 217–233
insert, 220

specification, 215
length n, 273
operations, 214–216
ordered, 320–321
ordered (see also Ordered list), 278–280
position, 215
remove, specification, 215
replace, specification, 216
retrieve, specification, 215
sentinel, 277 (exercise), 323
sequential, 74, 213–233
set_position, 223, 226
simply linked implementation, 221–227
size, 214, 219
Sortable_list, 319–320
specification, 214–216
standard template library, 213
table comparison, 390–391
traverse, 221

specification, 216
Little-o notation, 310
ln (natural logarithm), 291, 652, 653
Local variables, 17
Logarithmic time, 308–310
Logarithms, 650–656

base of, 651
change of base, 654
common, 652
definition, 651
graphing, 654–655
natural, 652

706 Index

Logarithms (continued)
notation, 291, 653
order of magnitude, 307

Log-log graph, 655
Look-ahead in games, 198–208
Loop invariant: quicksort, 354–355
Loops, graph, 571
Lower bound:

search key comparisons, 297–302
sorting by comparisons, 336–338

ŁUKASIEWICZ, JAN, 77, 603, 645
Lvalue, modifiable, 118

M Magic square, 43 (project)
MAILHOT, PAUL, xvii
Main diagonal of matrix, 387 (exercise)
Maintenance of programs, 34–39
Mathematical induction, 292–293, 610–612, 648
Matrix (see also Table), 383

diagonal, 387 (exercise)
transpose, 387 (exercise)
upper triangular, 387 (exercise)

max_key, selection sort, 331
Maze, solution by backtracking, 197 (project)
MCCREIGHT, E., 568
MCKENZIE, B. J., 428
Mean:

golden, 660–661
sequence of numbers, 20 (exercise)

Meansort, 361 (exercise)
Median, search for, 286 (exercise)
Melancolia by DÜRER, 43 (project)
Member, C++ class, 7
Member selection operator, C++, 7
Memory allocation, 113–122

C++, 116–122
Menu-driven demonstration (see also Demonstra-

tion), 93–95
Merge, external, 372
Mergesort, 339–340, 344–352

analysis, 348–350
comparison of data structures, 350
contiguous, 350
data structures, 350
divide_from, 346
example, 340
linked lists, 343–352
merge, 346–347
merge_sort, 345
natural, 351–352
rec_merge_sort, 345

MERMIN, N. DAVID, 665
Method, C++ class, 7

overloaded vs. overridden, 280

MEYERS, SCOTT, 47, 111
MILLER, JONATHAN K., 48
Minimal perfect hash function, 409 (exercise)
Minimal spanning tree, 587–594

definition, 588
Dijkstra’s algorithm, 595 (exercise)
Kruskal’s algorithm, 595 (exercise)
minimal_spanning (Prim’s algorithm), 590
Prim’s algorithm, 589–594

Minimax evaluation of game tree, 199–208
Modifiable lvalue, 118
modify_left, red-black tree, 565
Modular arithmetic, 86–87

hash function, 400
random number generator, 669

Modular testing, 30–32
Molecular weights, recursive calculation,

410 (project)
MOTZKIN, DALIA, 377
move, Towers of Hanoi, 176
Move class, game tree, 201

tic-tac-toe, 204
move_left, B-tree deletion, 553–554
move_right, B-tree deletion, 554–555
Multilinked data structures, 594–595
Multiple constructors, C++, 124
Multiple edges, graph, 571
Multiple function declarations, C++, 100–101
Multitasking, 115
Multiway branch, 530
Multiway search tree (see also B-tree), 535–556

N Names, guidelines for choice, 12–13
Natural logarithms, 652
Natural mergesort, 351–352
Negation, notation for, 603
neighbor_count, Life game, 23
Network, 575
Network specification, 590
new, C++ operator, 117
NEWMAN, D. J., 428
new_node, linked list in array, 255
Newton approximation, cube root, 19
NIEVERGELT, J., 518, 597
Nim (game), 208 (exercise)
n (length of a list), 273
n logn time, 308–310
Node:

dummy, 499
linked structure, 123
tree, 159

Nonattacking queens (see also Eight-queens prob-
lem), 183–198

Index 707

Notation:
floor and ceiling, 291
logarithms, 291, 653
O , o , Θ (Theta), Ω (Omega), 310
searching and sorting, 269–271
Σ (Sigma), summation, 649

Noughts and crosses (see also Game tree), 204–207
NULL pointer, C++, 119

O O , o notation, 310
Object:

automatic, 116
C++ class, 7
dynamic, 116

Object file, C++, 675
Omega Ω notation, 310
One-dimensional Life game, 43–44
Open addressing, hash table, 401–406
Operations:

abstract data type, 74, 213
List, 214–216
queue, 79–83

Operator:
binary and unary, 435, 600
overloaded, 133–135
priority for evaluation, 600

Optimality of binary search, 300
Orchard:

definition, 524, 525
enumeration, 661
rotation, 527
transformation to binary tree, 526–527
traversal, 529

Order:
multiway tree, 535
verification of in list, 326–327

Ordered forest, 525
Ordered insertion, 320–321
Ordered list, 278–280, 320–321

abstract data type, 446
insert, 279–280

Ordered tree, 521
definition, 525
implementation, 522–529

Order of magnitude (see Asymptotics)
Orders of functions, asymptotic, 304
Output parameters, 16
Overflow of storage, 113
Overflow table, hashing, 409 (exercise)
Overloading, function, 101, 124, 280

operator, 133–135
string, 238

Overridden method, 280

P Package, 674–677
data structures, 676–677
interface and implementation, 675
Timer, 679–680
Utility, 678–679

Page, external file, 535
Palindrome, 241 (exercise)
Parallel processing, 171
Parameter, 16

expression evaluator, 625, 628
template, 55

Parentheses, well-formed sequences, 662
Parenthesis-free notation, 612
Parent in tree, 159, 286
Parsing, 185–186
Parthenon, 661
Partial fractions, 660
Partition-exchange sort (see also Quicksort), 339–344
Partition function, quicksort, 353–355, 361–362
Pascal’s triangle, binomial coefficients, 182 (exercise)
Path:

graph, 571
tree, 159

Path length:
2-tree, 289, 471
external, 298, 337
theorem, 292–293

PATTIS, RICHARD E., 280
Percentage graph, logarithmic, 654
Perfect hash function, 409 (exercise)
Permutation, 657

campanological, 265 (project)
generated by a deque, 92 (exercise)
generated by a stack, 56 (exercise)
generation of, 260–265

data structures, 261–264
main, 264
permute, 262, 264
process_permutation, 265
recursion tree, 260

Phases of life cycle, 40
Physical implementation, queue, 85
Pigeonhole principle, 187
Pivot, quicksort, 339–344
Plane class, airport simulation, 100–101, 104–105
Plates, cafeteria stack, 50
PLAUGER, P. J., 47
Plot class, expression evaluator, 640–645
Plotting algorithm, 20 (exercise)
Pointer:

arithmetic, 120–121
assignment statements, 121
C++ implementation, 116

708 Index

Pointer (continued)
declaration, 122
definition, 113
dereferencing, 117
function, C++, 216
restrictions, 120–121, 121
space requirement, 123

Pointers and pitfalls, 681–691
algorithm analysis, 314
binary trees, 515–516
data refinement, 426
data structures, 110, 265–266
graphs, 596
hashing, 426
heaps, 376
information retrieval, 426
linked lists, 154–155
list implementation, 110, 154–155, 266
lists, 265–266
program design, 45–46
recursion, 209
searching, 314
sorting, 375–376
stacks and software engineering, 76
tables, 426
trees, 566–567

Point structure, expression evaluator, 641
poisson, random number generator, 671
Poisson distribution, 99, 670–671
Polish form, 66, 141, 435–436, 598–645

definition, 603
evaluation of, 604–615
expression evaluator (see also Expression evalua-

tor), 623–645
syntax criteria, 610–611
syntax diagrams, 613, 614
token, 606
translation to, 617–623

PÓLYA, GEORGE, 48
Polygon triangulations, 664
Polynomial, definition, 144–147
Polynomial calculator, 141–152

addition, 148–150
data structures, 144–147
degree, 150
derived class, 146
do_command, 142
equals_sum, 149
group project, 150–152
linked queue, 144–147
main, 142
Polynomial class, 146
print, 147

queue, 145–146
read, 147–148
specifications, 144–147
stubs and testing, 144
Term class, 145

Pop, 51–52
contiguous implementation, 61
linked implementation, 130
specifications, 59

position, radix sort, 395
Position in list, 215
Postcondition, 9
Postfix form, 435–436

definition, 603
delaying operators, 617
evaluate_postfix, 608–609, 614
evaluation of, 608–615
expression evaluator (see also Expression evalua-

tor), 623–645
infix_to_postfix, 619–621
operator priorities, 617–619
parentheses, 618
recursive_evaluate, 615
recursive evaluation, 612–615
syntax criteria, 610–611
syntax diagram, 613, 614
translation to, 617–623
verification of evaluate_postfix, 609–611

Postorder traversal, binary tree, 433
Postponing the work, recursion, 183–198
Powers of 2, sum, 649
Precepts, 681–691
Precondition, 9, 63
Prefix form, 435–436

definition, 603
evaluate_prefix, 605, 607
evaluation of, 605–607
syntax diagram, 613

Preorder traversal, binary tree, 433
Prettyprinter, 14
Priest, 86
PRIM, ROBERT C., 597
Prim’s algorithm, minimal spanning trees, 589–594
Prime divisors, 65 (project)
Principles:

function design, 15–17
input and output, 25
pigeonhole, 187

print:
binary tree, 443 (exercise)
Life game, 26, 424
polynomial calculator, 147

Priorities of operators, 600, 617–619

Index 709

Priority queue, 369–370
Private, C++ class member, 7
Private inheritance, 146
Probe (see Hash table)
Probe count (see also Hash table), 411–417
Problem solving, 15–16

recursion, 170
Problem specification, 2–3, 41
process_permutation, 265
Program design, 2–3

criteria, 34–35
guidelines, 40–42

Program maintenance, 34–39
Programming guidelines, linked lists, 154–155
Programming precept, 681–691

abstract data types, 75
classes, 15
coding, 41
data refinement, 75
data structures, 75
debugging and testing, 29–32
documentation, 13
efficiency, 37
error processing, 59
global variables, 17
haste, 41
information hiding, 88
input and output, 25
maintenance, 34
modularity, 15
names, 11
NULL pointers, 119
optimization, 37
patching, 42
postponement, 38
pre- and postconditions, 9, 63
problem specification, 35
prototypes, 42
reading programs, 14
refinement, 15
side effect, 17
simplicity, 38
specification, 9, 17, 41
structured design, 75
test data, 29–32
uninitialized pointers, 119
user interface, 37

Programming style, 10–20
Program testing, 29–32, 93–95
Program tracing, 28–29

recursion, 165–167
protected visibility, C++, 89, 91

Prototype, 42
function, 675

Pruning, alpha-beta (game trees), 208 (project)
Pseudorandom numbers (see also Random number

generator), 99, 667–673
Public, C++ class member, 7
Push, 51–52

contiguous implementation, 61
linked implementation, 129
specifications, 59

push_down, B-tree insertion, 544
push_in, B-tree insertion, 545
put_token, expression evaluator, 635

Q Quadratic formula, 599
expression tree, 436
Polish forms, 600, 603–604
postfix form, 600, 604
translation to postfix form, 621

Quadratic probing, hash table, 402–403
Quadratic time, 308–310
Queens, chessboard (see also Eight-queens problem),

183–198
Queue, 79–111, 137–141, 153–154

abstract data type, 153–154
append, 80, 90, 138
boundary conditions, 87
C++ implementation (contiguous), 89–95
circular array implementation, 86–91
comparison of implementations, 139
constructor, 80, 90, 138
contiguous implementation, 84–95
data abstraction, 153–154
definition, 153
deletion (see serve), 80
dequeue (see serve), 80
empty, 80
enqueue (see append), 80
extended (see also Extended queue), 81–83
front and rear, 79
head and tail, 79
implementation summary, 88
insertion (see append), 80
linear implementation, 85
linked implementation, 137–141
operations, 79–83
physical implementation, 85
polynomial calculator, 145–146
priority, 369–370
refinement levels, 153–154
retrieve, 80
serve, 80, 90, 139
specifications, 79–83

710 Index

Queueing system (see Simulation)
Quicksort, 339–344, 352–363

analysis, 356–359, 454–455
comparisons, 359–360

heapsort, 369
selection sort, 357
treesort, 454–455

contiguous, 352–363
example, 341–342
linked list, 362 (project)
meansort, 361 (exercise)
partition function, 353–355, 361–362
pivot, 339–344, 361
quick_sort, 353
recursion tree, 343
recursive_quick_sort, 353
verification, 354–355

R Rabbits, 660
Radix sort, 391–397

analysis, 396
position, 395
radix_sort, 395
Record, 394
rethread, 396
Sortable_list, 394

Railway switching, 56 (exercise), 92 (exercise)
Random access, 230
Random number generator, 667–673

constructor, 669
poisson, 671
Random class, 668
random_integer, 670
random_real, 670
reseed, 669
seed, 668
test, 671

Random probing, hash table, 403
Random walk, 672–673
Range of function, 389
Ratio, golden, 660–661
RAWLINS, GREGORY J. E., 316
rb_insert, red-black tree, 564
read, expression evaluator, 635–636

polynomial calculator, 147–148
read_file, text editor, 248
read_in, string, 239–240
Rear, queue, 79
rec_merge_sort, 345
Recognizing equality, binary search, 284–285
Record, radix sort, 394
Rectangular table, 22, 381–382
Recurrence relation, 356, 471

Fibonacci numbers, 660

Recursion, 157–211
analysis, 179–181
avoidance, 176–180
data structures, 173–174
end (see Tail recursion)
guidelines for use, 179–181
implementation, 171–174
inappropriate use, 176–180
left, 614
parallel processing, 171
postfix evaluation, 612–615
postponing work, 183–198
principles, 170–211
program tracing, 165–167
space requirements, 160, 172–174
stack implementation, 173–174
storage requirements, 171–174
tail, 174–176, 283, 453, 460 (exercise), 541
time requirements, 174
tracing programs, 165–167

Recursion tree, 160
analysis, 170
definition, 159
eight-queens problem, 195
factorials, 177
Fibonacci numbers, 178
permutation generation, 260
quicksort, 343
Towers of Hanoi, 167

recursive_binary_1 search, 281
recursive_binary_2 search, 284
recursive_depth_sort, graphs, 581
recursive_evaluate, recursive postfix evaluation,

615
recursive_inorder, binary tree, 439–440
recursive_postorder, binary tree, 440
recursive_preorder, binary tree, 440
recursive_quick_sort, 353
recursive_remove, B-tree removal, 550
recursive_search_tree, B-tree, 540
Red-black tree, 556–566

analysis, 559
AVL connection, 566
black condition, 558
comparison with AVL tree, 559
definition, 558
information retrieval, 566 (project)
insert, 563
insertion, 560–565
modify_left, 565
rb_insert, 564
red condition, 558
removal, 565–566

Index 711

Red-black tree (continued)
specification, 559–560

Re-entrant programs, 173
Reference (see Pointer)
Reference semantics, 133
Refinement:

algorithms, 15–20
data types, 74–76

refuse, airport simulation, 105
Regular graph, 595 (exercise)
Rehashing, 402
REINGOLD, E. M., 518, 597, 645
Relation, recurrence (see Recurrence), 356
Relationship, has-a and is-a, 83
Removal:

queue (see serve), 80
red-black tree, 565–566

remove:
binary search tree, 458
B-tree, 550
chained hash table, 408
eight-queens problem, 187
List, specification, 215

remove_data, B-tree deletion, 551
remove_root: binary search tree, 457
replace, List, specification, 216
Requirements specification, 41
reseed, random number generator, 669
reset, Timer, 680
restore, B-tree deletion, 552–553
rethread, radix sort, 396
Retrieval, data (see also Search), 268–316, 379–428
retrieve, hash table, 405

List, specification, 215
Reversal, binary tree, 443 (exercise)
Reversal of input, 51
Reverse Polish calculator, 66–69, 141–152
Reverse Polish notation (see Postfix), 66, 141, 603
Review, program, 34–39
RICHTER, CHARLES R., 650
right_balance, AVL tree, 482
Right rotation, AVL tree, 481
RIVEST, RONALD L., 568
RIVIN, IGOR, 211
ROBERTS, ERIC S., 211
Robustness, 623
Rooted tree, 521, 525
Root of tree, 159, 286
rotate_left, AVL tree, 481
rotate_right, splay tree, 501
Rotation:

AVL tree, 480–484
binary tree and orchard, 527

splay tree, 492
Row, rectangular array, 22
Row-major ordering, 381–383
R Pentomino (Life configuration), 33
RUITENBURG, WIM, xvii
Rules:

airport simulation, 99
AVL tree removal, 484–485
L’Hôpital’s, 307
Life game, 5
pointer use, 120–121

run_command, text editor, 245
run_idle, airport simulation, 106
run_recursive_binary_1 search, 283
run_recursive_binary_2 search, 284
Runway class, airport simulation, 99–100, 102

S Safeguards, dynamic memory, 131–137
SAHNI, S., 211
Scaffolding, 29
Scan sort, 328–329
Scatter storage (see Hash table), 399
Scissors-paper-rock game, 671 (project)
Scope resolution, 279
Search, 268–316

asymptotic analysis, 311
average time, 273
binary (see also Binary search), 278–286
binary tree (see Binary search tree)
comparison with table lookup, 380
distribution of keys, 301
expected time, 273
external, 269, 535–536
Fibonacci, 297
hybrid, 297 (project)
internal, 269
interpolation, 301
introduction, 269–271
key, 269–271
linear (see Sequential search), 271–278
lower bound on key comparisons, 297–302
notation for records and key, 269–271
sentinel for, 277 (exercise)
sequential (see Sequential search), 271–278
success vs. failure time, 296
table lookup, 379–428
target, 271
ternary, 297 (project)
test data, 275
testing, 274–276
tree (see Binary search tree)
trie (see Trie), 530–535

search_and_insert, binary search tree, 453

712 Index

search_for_node, binary search tree, 447–448
search_node, B-tree, 541
Search tree (see Binary search tree and Comparison

tree)
SEDGEWICK, ROBERT, 267, 377, 428, 518
Seed, random-number generator, 668
SEGNER, J. A. V., 666
Segner numbers, 664
Selection sort, 329–333

analysis, 331
comparisons, 332
comparison tree, 336
divide-and-conquer, 344 (exercise)
max_key, 331
swap, 331

Self-adjusting binary search tree (see also Splay tree),
490–515

Self-loops, graph, 571
Semantics, reference, 133

value, 133
Sentinel, 23, 323

binary search tree, 460–461
search, 277 (exercise)

Sequence, 73
binary tree traversal, 444 (exercise)

Sequential list, 74, 213–233
Sequential search, 271–278

analysis, 272–274
comparison tree, 287
ordered keys, 277 (exercise)

serve, contiguous queue with counter, 90
linked Queue, 139
queue, 80

serve_and_retrieve, extended queue, 83
Set:

abstract data type, 73
implementation, 573
index, 389

set_balance, AVL tree, 475
set_distances, graph, 587
set_parameters, expression evaluator, 631
set_position, linked list, 223, 226
Set representation of graph, 572–573
set_standard_tokens, expression evaluator, 631–633
SHELL, D. L., 333, 377
Shell sort, 333–336

analysis, 335
Shortest path, graph, 583–587
shut_down, airport simulation, 106
Siblings in tree, 159
Side effect, 171
Sigma notation, 649
SIMMS, JOHN, xvii

Simulation, airport (see also Airport), 96–109
Hamurabi, 672

Single rotation, AVL tree, 480–481
size, contiguous List, 219

contiguous queue with counter, 91
extended queue, 83
List, specification, 214

SLEATOR, D. D., 519
Snapshot, 28–29
SNOBOL, 390
Software engineering, 39–48

group project, 150–152
solve_from, eight-queens problem, 184, 188
SOMMERVILLE, IAN, 48
Sorcerer’s Apprentice, 167
Sort, 317–378

analysis, 319
average time, 319
bubble, 329 (project)
comparison of methods, 372–375
count, 333 (exercise)
diminishing-increment, 333–336
distribution, linked, 338 (project)
divide-and-conquer, 339–344
efficiency criteria, 372
entry assignments, 319
expected time, 319
external, 344, 372
heapsort (see Heapsort), 363–371
hybrid, 363 (project)
insertion (see also Insertion sort), 320–329
internal and external, 318
interpolation, 338 (project)
key comparisons, 319
lower bounds on comparisons, 336–338
mergesort alsoMergesort, 344–352
mergesort (see also Mergesort), 339–340
notation for records and key, 269–271, 318
partition-exchange (see also Quicksort), 339–344
punched cards, 391
quicksort (see also Quicksort), 339–344
radix, 391–397
scan, 328–329
selection (see also Selection sort), 329–333
Shell, 333–336
stability, 375 (exercise)
standard deviation, 373
testing, 374
testing program guidelines, 328
treesort (see also Treesort), 437, 453–455

Sortable list, 319–320
radix sort, 394

Sound measurement (logarithmic), 650

Index 713

Source, graph, 583
Space requirements:

hash table, 407
pointer, 123
recursion, 160, 172–174

Space-time trade-offs, 350, 372
Sparse table, 397

Life game, 418
Specifications, 7, 41

airport simulation, 99
binary search, 280
function, 15–17
List, 214–216
problem, 2–3, 41
program, 9
queue, 79–83
stack, 57–60
strings, 240
text editor, 242–243

Splay tree, 490–515
amortized analysis, 509–515

actual complexity, 509
conclusion, 513
cost of splay step, 511–512
credit invariant, 510
rank function, 510

class specification, 495
dummy node, 499
link_right, 496–501
rotate_right, 501
rotation, 492
splay (public method), 502–503
three-way invariant, 495–496
zig and zag moves, 491–493

split_node, B-tree insertion, 545–547
Spring-loaded stack, 51
Stable sorting methods, 375 (exercise)
Stack, 49–77, 127–137, 173–174

abstract data type, 74, 152
array implementation, 57–65
bracket matching, 69–71
constructor, 58, 62
contiguous implementation, 57–65
copy constructor, 136
definition, 74, 152
destructor, 132
empty, 60, 62
function storage areas, 158–160
implementation, 57–65, 72, 127–137
linked implementation, 127–137
linked list in array, 253
overloaded assignment, 134
pair, storage scheme, 65 (exercise)

permutations, 56 (exercise)
enumeration, 663

polynomial calculator, 141–144
pop, 59, 61, 130
postfix evaluation, 608
postfix translation, 618–619
push, 59, 61, 128
push and pop operations, 51
recursion, 173–174
specification, 58
specifications, 57–60
spring-loaded, 51
top, 60, 61
use before implementation, 51–55
use in tree traversal, 160, 174

Standard deviation:
sequence of numbers, 20 (exercise)
sorting methods, 373

Standard library, C++, 55, 678–679
cstdlib, 667
<limits>, 586
<std>, 573, 678–679
<stdlib.h>, 667

Standard template library (STL), 52, 55
Standard template library (STL), list, 213
Standard template library (STL), vector, 213
Star (C++ pointer), 117
Star * (C++ pointer), 116
started, airport simulation, 106
Static analyzer, 29
Static class member, C++, 627–628
static class member, C++, 274
Static data structure, 50
Statistics, 99, 373, 670–671

algorithm analysis, 273
std, C++ standard library, 573
<stdlib.h>, standard library, 667
STEELE, LAURA, xvii
STEVENS, PETER, 666
STIRLING, JAMES, 658, 666
Stirling’s approximation, factorials, 337, 349, 368,

658–659, 665
St. Ives (Cornwall, England), 162
STL (see Standard template library)
Stock purchases, 84 (exercise)
Storage for two stacks, 65 (exercise)
strcat, string, 238–239
strcpy, string, 240
Strictly binary tree (see 2-tree), 290
String, 233–241

C++, 233–241
constructor, 235–236
definition, 233

714 Index

String (continued)
empty, 233
implementation, 234–241
operations, 240
overloaded operators, 238
read_in, 239–240
specifications, 240
strcat, 238–239
write, 240

String search, text editor, 249
strncpy, string, 240
Strongly connected digraph, 571
STROUSTRUP, BJARNE, 47, 77, 267
strstr, string, 240
struct, Node implementation, 123
Structured programming, 15–20
Structured type, 73
Structured walkthrough, 28–29
Stub, 21, 110 (project)

polynomial calculator, 144
STUBBS, DANIEL F., 111
Style in programming, 10–20
Subprogram:

data storage, 172–174
drivers, 27–28
storage stack, 158–160
stubs, 21
testing, 29–32
tree of calls, 159–160

Suffix form (see Postfix), 603
Sum, integers, 326, 332, 357, 385, 403, 647–650

notation, 649
powers of 2, 649
telescoping, 508

SUNG, ANDREW, xvi
swap, selection sort, 331
switch statement, C++, 24
Symmetric traversal, binary tree, 433
Syntax, diagrams for Polish form, 613, 614

infix expression, 636–638
Polish form, 610–611

SZYMANSKI, T., 211

T Table, 379–428
abstract data type, 388–391
access (see Access array), 382
array distinction, 391
definition, 389
diagonal, 387 (exercise)
distance, 388
FORTRAN, 381
hash (see Hash table), 397–417
implementation, 380–388, 390–391

indexing, 380–391
inverted, 386
jagged, 385–386
list comparison, 390–391
lookup, 379–428

compared to searching, 380
rectangular, 381–382
retrieval time, 391
sparse, 397
transpose, 387 (exercise)
traversal, 391
triangular, 383–385
tri-diagonal, 387
upper triangular, 387 (exercise)

Tail, queue, 79
Tail recursion, 174–176, 283, 453, 460 (exercise), 541
TANNER, R. MICHAEL, 377
Target, search, 271
TARJAN, ROBERT ENDRE, 519, 597
Telescoping sum, 508, 513
Template, C++, 54, 55, 150, 218
Term class, polynomial calculator, 145
Terminal input: user_says_yes, 27
Ternary heap, 371 (exercise)
Ternary operator, C++, 87
Ternary search, 297 (project)
Test, random number generator, 671
Test data, search, 275
Testing, 3, 20

black-box method, 30
glass-box method, 30–32
menu-driven, 93–95
polynomial calculator, 144
principles, 29–32
searching methods, 274–276
sorting methods, 328, 374
ticking-box method, 32

test_queue, demonstration, 93
Text editor, 242–250

change_line, 250
commands, 242–243
constructor, 244
find_string, 249
get_command, 245
insert_line, 248
main program, 243
read_file, 248
run_command, 245
specifications, 242–243
string search, 249
write_file, 248

Theorem:
5.1 (stacks and trees), 160

Index 715

Theorem (continued)
7.1 (number of vertices in 2-tree), 290
7.2 (level of vertices in 2-tree), 290
7.3 (path length in 2-tree), 292–293
7.4 (search comparisons), 296
7.5 (minimum external path length), 298
7.6 (lower bound, search key comparisons),

300
7.7 (optimality of binary_search_1), 300
7.8 (L’Hôpital’s rule), 307
8.1 (verifying order of list), 326
8.2 (lower bound, sorting key comparisons),

337
10.1 (treesort and quicksort), 454
10.2 (treesort average performance), 454
10.3 (key comparisons, search tree), 472
10.4 (balancing cost, search tree), 472
10.5 (actual and amortized costs), 508
10.6 (sum of logarithms), 511
10.7, 8, 9 (cost of splaying step), 511–512
10.10 (cost of splaying access), 513
10.11 (total cost of splaying), 513
11.1 (orchards and binary trees), 526
11.2 (red-black height), 559
13.1 (syntax of postfix form), 610
13.2 (postfix evaluation), 610
13.3 (syntax of postfix form), 611
13.4 (parenthesis-free form), 612
A.1 (sums of integer powers), 647
A.2 (sum of powers of 2), 649
A.3 (infinite sums), 650
A.4 (harmonic numbers), 656
A.5 (Stirling’s approximation), 658
A.6 (logarithmic Stirling’s approximation), 658
A.7 (binary tree enumeration), 661
A.8 (orchards and parentheses sequences), 662
A.9 (sequences of parentheses), 663
A.10 (Catalan enumerations), 664

Theta Θ notation, 310
Three-way invariant, splay tree, 495–496
Ticking-box method, program testing, 32
Tic-tac-toe (see also Game tree), 204–207
Time bomb, 32
Time requirements, recursion, 174
Timer package, 275, 679–680
Time scale, logarithmic perception, 654
Time sharing, 115
Token:

expression evaluator, 631
Polish expression, 606

Token class, expression evaluator, 628, 629–631
tolower, C library routine, 245
Top-down design, 15

top of stack, 60, 61
Topological order, digraph, 579–587
TOPOR, R. W., 267
Towers of Hanoi:

analysis, 167–168
function move, 176
introduction, 163
recursion tree, 167
rules, 163
second recursive version, 176

Tracing programs, 28–29
recursion, 165–167

Trade-off, space-time, 350, 372
Translation unit, C++, 675
Transpose of matrix, 387 (exercise)
Traversal:

binary tree, 432–441
amortized analysis, 506–507

graph, 575–578
level-by-level, 444 (exercise)
orchard, 529
sequence, 444 (exercise)
table, 391
tree, 160

traverse, contiguous List, 221
depth-first graph, 578
linked list in array, 257
List, specification, 216

Treasure hunt, 115
Tree:

2-tree (see 2-tree), 290
adjacent branches, 159
AVL (see also AVL tree), 473–490
binary (see also Binary tree), 430–519
branch of, 159, 286
B*-tree, 556 (exercise)
B-tree (see also B-tree), 535–556
children, 159, 286
comparison (see Comparison tree)
decision (see Comparison tree)
definition, 521
definition as graph, 571
depth of vertex, 159
descendents, 286
edge of, 286
expression, 435–436
extended binary (see 2-tree), 290
external path length, 289
external vertex, 159, 286
family, 594–595
Fibonacci, 488
forest of, 524–525
free, 521

716 Index

Tree (continued)
function calls, 159–160
game (see also Game tree), 198–208
height of, 159, 286
implementation, 522–529
internal path length, 289
internal vertex, 286
leaf of, 159, 286
level of vertex, 159, 286
lexicographic, 530–535
line in, 286
multiway (see also B-tree), 520–556
node of, 159
number of vertices by level, 290
orchard of, 525
ordered, 521, 525
parent, 159, 286
path, 159
path length, 289
recursion (see also Recursion tree), 159–160, 170
red-black (see also Red-black tree), 556–566
rooted, 521, 525
root of, 159, 286
search (see Comparison tree and Binary search

tree)
siblings, 159
strictly binary (see 2-tree), 290
traversal, 160, 174
trie (see Trie), 530–535
vertex of, 159, 286

tree_search, binary search tree, 447, 449
Treesort, 437, 453–455

advantages and disadvantages, 454–455
analysis, 454–455
comparison with quicksort, 454–455

Triangle rule, distances, 388
Triangular table, 383–385

access array, 385
index function, 385

Triangulations of polygons, 664
Tri-diagonal matrix, 387
Trie, 530–535

analysis, 534
C++ implementation, 531–533
deletion, 533
insert, 533
insertion, 533
trie_search, 532

Truncation, hash function, 399
TUCKER, ALAN, 666
Tumbler (Life configuration), 33
Type:

atomic, 73

base, 389
construction, 73
definition, 73
structured, 73
value, 389

U Unary negation, notation, 603
Unary operator, 435, 600
Undirected graph, 570
unguarded, eight-queens problem, 187, 189–191, 194
Uniform distribution, 669–670
update, Life game, 24, 423
Upper triangular matrix, 387 (exercise)
user_says_yes, utility function, 27, 679
Utility package, 8, 10
Utility package, 678–679
Utility package, user_says_yes, 27

V valid_infix, expression evaluator, 638
Value, definition, 73
Value semantics, 133
Value type, 389
VANDER LINDEN, KEITH, xvi
VAN TASSEL, DENNIE, 47
VARDI, ILAN, 211
Variance, sequence of numbers, 20 (exercise)
Vector (see Table), 50, 382
Verification, 3

binary search, 280–285
evaluate_postfix, 609–611
greedy algorithm, 584–586
Life program, 36
orchard and binary tree correspondence, 526
postfix evaluation, 609–611
quicksort, 354–355

Vertex:
graph, 570
tree, 159, 286

Virtual method, 475–476
Virus (Life configuration), 33
visit, binary tree traversal, 439
VOGEL, RICK, xvii

W Walkthrough, structured, 28–29
WANG, JUN, xvii
Weakly connected digraph, 571
WEBRE, NEIL W., 111
Weight, graph, 575
Well-formed sequences of parentheses, 662
WELSH, JIM, 111
WICKELGREN, WAYNE A., 48
WILLIAMS, J. W. J., 378
WIRTH, NIKLAUS, 211, 362 (exercise), 594
WOOD, D., 211, 519, 568

Index 717

Word, expression evaluator, 632
Word of storage, 123
Workspace, linked list in array, 253
write, string, 240
write_file, text editor, 248

Y YOURDON, EDWARD, 48

Z ZHANG, ZHI-LI, xvi
Zig and zag moves, splay tree, 491–493
ZIMMERMANN, PAUL, 211

	Navigating the Disk
	Hints for Page Navigation
	Synopsis
	Course Structure
	Supplementary Materials
	Book Production
	Acknowledgments
	1 Programming Principles
	1.1 Introduction
	1.2 The Game of Life
	1.2.1 Rules for the Game of Life
	1.2.2 Examples
	1.2.3 The Solution: Classes, Objects, and Methods
	1.2.4 Life: The Main Program

	1.3 Programming Style
	1.3.1 Names
	1.3.2 Documentation and Format
	1.3.3 Refinement and Modularity

	1.4 Coding, Testing, and Further Refinement
	1.4.1 Stubs
	1.4.2 Definition of the Class Life
	1.4.3 Counting Neighbors
	1.4.4 Updating the Grid
	1.4.5 Input and Output
	1.4.6 Drivers
	1.4.7 Program Tracing
	1.4.8 Principles of Program Testing

	1.5 Program Maintenance
	1.5.1 Program Evaluation
	1.5.2 Review of the Life Program
	1.5.3 Program Revision and Redevelopment

	1.6 Conclusions and Preview
	1.6.1 Software Engineering
	1.6.2 Problem Analysis
	1.6.3 Requirements Specification
	1.6.4 Coding

	Pointers and Pitfalls
	Review Questions
	References for Further Study
	C++
	Programming Principles
	The Game of Life
	Software Engineering

	2 Introduction to Stacks
	2.1 Stack Specifications
	2.1.1 Lists and Arrays
	2.1.2 Stacks
	2.1.3 First Example: Reversing a List
	2.1.4 Information Hiding
	2.1.5 The Standard Template Library

	2.2 Implementation of Stacks
	2.2.1 Specification of Methods for Stacks
	2.2.2 The Class Specification
	2.2.3 Pushing, Popping, and Other Methods
	2.2.4 Encapsulation

	2.3 Application: A Desk Calculator
	2.4 Application: Bracket Matching
	2.5 Abstract Data Types and Their Implementations
	2.5.1 Introduction
	2.5.2 General Definitions
	2.5.3 Refinement of Data Specification

	Pointers and Pitfalls
	Review Questions
	References for Further Study

	3 Queues
	3.1 Definitions
	3.1.1 Queue Operations
	3.1.2 Extended Queue Operations

	3.2 Implementations of Queues
	3.3 Circular Implementation of Queues in C++
	3.4 Demonstration and Testing
	3.5 Application of Queues: Simulation
	3.5.1 Introduction
	3.5.2 Simulation of an Airport
	3.5.3 Random Numbers
	3.5.4 The Runway Class Specification
	3.5.5 The Plane Class Specification
	3.5.6 Functions and Methods of the Simulation
	3.5.7 Sample Results

	Pointers and Pitfalls
	Review Questions
	References for Further Study

	4 Linked Stacks and Queues
	4.1 Pointers and Linked Structures
	4.1.1 Introduction and Survey
	4.1.2 Pointers and Dynamic Memory in C++
	4.1.3 The Basics of Linked Structures

	4.2 Linked Stacks
	4.3 Linked Stacks with Safeguards
	4.3.1 The Destructor
	4.3.2 Overloading the Assignment Operator
	4.3.3 The Copy Constructor
	4.3.4 The Modified Linked-Stack Specification

	4.4 Linked Queues
	4.4.1 Basic Declarations
	4.4.2 Extended Linked Queues

	4.5 Application: Polynomial Arithmetic
	4.5.1 Purpose of the Project
	4.5.2 The Main Program
	4.5.3 The Polynomial Data Structure
	4.5.4 Reading and Writing Polynomials
	4.5.5 Addition of Polynomials
	4.5.6 Completing the Project

	4.6 Abstract Data Types and Their Implementations
	Pointers and Pitfalls
	Review Questions

	5 Recursion
	5.1 Introduction to Recursion
	5.1.1 Stack Frames for Subprograms
	5.1.2 Tree of Subprogram Calls
	5.1.3 Factorials: A Recursive Definition
	5.1.4 Divide and Conquer: The Towers of Hanoi

	5.2 Principles of Recursion
	5.2.1 Designing Recursive Algorithms
	5.2.2 How Recursion Works
	5.2.3 Tail Recursion
	5.2.4 When Not to Use Recursion
	5.2.5 Guidelines and Conclusions

	5.3 Backtracking: Postponing the Work
	5.3.1 Solving the Eight-Queens Puzzle
	5.3.2 Example: Four Queens
	5.3.3 Backtracking
	5.3.4 Overall Outline
	5.3.5 Refinement: The First Data Structure and Its Methods
	5.3.6 Review and Refinement
	5.3.7 Analysis of Backtracking

	5.4 Tree-Structured Programs: Look-Ahead in Games
	5.4.1 Game Trees
	5.4.2 The Minimax Method
	5.4.3 Algorithm Development
	5.4.4 Refinement
	5.4.5 Tic-Tac-Toe

	Pointers and Pitfalls
	Review Questions
	References for Further Study

	6 Lists and Strings
	6.1 List Definition
	6.1.1 Method Specifications

	6.2 Implementation of Lists
	6.2.1 Class Templates
	6.2.2 Contiguous Implementation
	6.2.3 Simply Linked Implementation
	6.2.4 Variation: Keeping the Current Position
	6.2.5 Doubly Linked Lists
	6.2.6 Comparison of Implementations

	6.3 Strings
	6.3.1 Strings in C++
	6.3.2 Implementation of Strings
	6.3.3 Further String Operations

	6.4 Application: A Text Editor
	6.4.1 Specifications
	6.4.2 Implementation

	6.5 Linked Lists in Arrays
	6.6 Application: par penalty -500 Generating Permutations
	Pointers and Pitfalls
	Review Questions
	References for Further Study

	7 Searching
	7.1 Searching: Introduction and Notation
	7.2 Sequential Search
	7.3 Binary Search
	7.3.1 Ordered Lists
	7.3.2 Algorithm Development
	7.3.3 The Forgetful Version
	7.3.4 Recognizing Equality

	7.4 Comparison Trees
	7.4.1 Analysis for $n = 10$
	7.4.2 Generalization
	7.4.3 Comparison of Methods
	7.4.4 A General Relationship

	7.5 Lower Bounds
	7.6 Asymptotics
	7.6.1 Introduction
	7.6.2 Orders of Magnitude
	7.6.3 The Big-O and Related Notations
	7.6.4 Keeping the Dominant Term

	Pointers and Pitfalls
	Review Questions
	References for Further Study

	8 Sorting
	8.1 Introduction and Notation
	8.1.1 Sortable Lists

	8.2 Insertion Sort
	8.2.1 Ordered Insertion
	8.2.2 Sorting by Insertion
	8.2.3 Linked Version
	8.2.4 Analysis

	8.3 Selection Sort
	8.3.1 The Algorithm
	8.3.2 Contiguous Implementation
	8.3.3 Analysis
	8.3.4 Comparisons

	8.4 Shell Sort
	8.5 Lower Bounds
	8.6 Divide-and-Conquer Sorting
	8.6.1 The Main Ideas
	8.6.2 An Example

	8.7 Mergesort for Linked Lists
	8.7.1 The Functions
	8.7.2 Analysis of Mergesort

	8.8 Quicksort for Contiguous Lists
	8.8.1 The Main Function
	8.8.2 Partitioning the List
	8.8.3 Analysis of Quicksort
	8.8.4 Average-Case Analysis of Quicksort
	8.8.5 Comparison with Mergesort

	8.9 Heaps and Heapsort
	8.9.1 Two-Way Trees as Lists
	8.9.2 Development of Heapsort
	8.9.3 Analysis of Heapsort
	8.9.4 Priority Queues

	8.10 Review: Comparison of Methods
	Pointers and Pitfalls
	Review Questions
	References for Further Study

	9 Tables and Information Retrieval
	9.1 Introduction: Breaking the lowercase {lg n} Barrier
	9.2 Rectangular Tables
	9.3 Tables of Various Shapes
	9.3.1 Triangular Tables
	9.3.2 Jagged Tables
	9.3.3 Inverted Tables

	9.4 Tables: A New Abstract Data Type
	9.5 Application: Radix Sort
	9.5.1 The Idea
	9.5.2 Implementation
	9.5.3 Analysis

	9.6 Hashing
	9.6.1 Sparse Tables
	9.6.2 Choosing a Hash Function
	9.6.3 Collision Resolution with Open Addressing
	9.6.4 Collision Resolution by Chaining

	9.7 Analysis of Hashing
	9.8 Conclusions: Comparison of Methods
	9.9 Application: The Life Game Revisited
	9.9.1 Choice of Algorithm
	9.9.2 Specification of Data Structures
	9.9.3 The Life Class
	9.9.4 The Life Functions

	Pointers and Pitfalls
	Review Questions
	References for Further Study

	10 Binary Trees
	10.1 Binary Trees
	10.1.1 Definitions
	10.1.2 Traversal of Binary Trees
	10.1.3 Linked Implementation of Binary Trees

	10.2 Binary Search Trees
	10.2.1 Ordered Lists and Implementations
	10.2.2 Tree Search
	10.2.3 Insertion into a Binary Search Tree
	10.2.4 Treesort
	10.2.5 Removal from a Binary Search Tree

	10.3 Building a Binary Search Tree
	10.3.1 Getting Started
	10.3.2 Declarations and the Main Function
	10.3.3 Inserting a Node
	10.3.4 Finishing the Task
	10.3.5 Evaluation
	10.3.6 Random Search Trees and Optimality

	10.4 Height Balance: AVL Trees
	10.4.1 Definition
	10.4.2 Insertion of a Node
	10.4.3 Removal of a Node
	10.4.4 The Height of an AVL Tree

	10.5 Splay Trees: A Self-Adjusting Data Structure
	10.5.1 Introduction
	10.5.2 Splaying Steps
	10.5.3 Algorithm Development
	10.5.4 Amortized Algorithm Analysis: Introduction
	10.5.5 Amortized Analysis of Splaying

	Pointers and Pitfalls
	Review Questions
	References for Further Study

	11 Multiway Trees
	11.1 Orchards, Trees, and Binary Trees
	11.1.1 On the Classification of Species
	11.1.2 Ordered Trees
	11.1.3 Forests and Orchards
	11.1.4 The Formal Correspondence
	11.1.5 Rotations
	11.1.6 Summary

	11.2 Lexicographic Search Trees: Tries
	11.2.1 Tries
	11.2.2 Searching for a Key
	11.2.3 C++ Algorithm
	11.2.4 Searching a Trie
	11.2.5 Insertion into a Trie
	11.2.6 Deletion from a Trie
	11.2.7 Assessment of Tries

	11.3 External Searching: B-Trees
	11.3.1 Access Time
	11.3.2 Multiway Search Trees
	11.3.3 Balanced Multiway Trees
	11.3.4 Insertion into a B-Tree
	11.3.5 C++ Algorithms: Searching and Insertion
	11.3.6 Deletion from a B-Tree

	11.4 Red-Black Trees
	11.4.1 Introduction
	11.4.2 Definition and Analysis
	11.4.3 Red-Black Tree Specification
	11.4.4 Insertion
	11.4.5 Insertion Method Implementation
	11.4.6 Removal of a Node

	Pointers and Pitfalls
	Review Questions
	References for Further Study

	12 Graphs
	12.1 Mathematical Background
	12.1.1 Definitions and Examples
	12.1.2 Undirected Graphs
	12.1.3 Directed Graphs

	12.2 Computer Representation
	12.2.1 The Set Representation
	12.2.2 Adjacency Lists
	12.2.3 Information Fields

	12.3 Graph Traversal
	12.3.1 Methods
	12.3.2 Depth-First Algorithm
	12.3.3 Breadth-First Algorithm

	12.4 Topological Sorting
	12.4.1 The Problem
	12.4.2 Depth-First Algorithm
	12.4.3 Breadth-First Algorithm

	12.5 A Greedy Algorithm: Shortest Paths
	12.5.1 The Problem
	12.5.2 Method
	12.5.3 Example
	12.5.4 Implementation

	12.6 Minimal Spanning Trees
	12.6.1 The Problem
	12.6.2 Method
	12.6.3 Implementation
	12.6.4 Verification of Prim's Algorithm

	12.7 Graphs as Data Structures
	Pointers and Pitfalls
	Review Questions
	References for Further Study

	13 Case Study: The Polish Notation
	13.1 The Problem
	13.1.1 The Quadratic Formula

	13.2 The Idea
	13.2.1 Expression Trees
	13.2.2 Polish Notation

	13.3 Evaluation of Polish Expressions
	13.3.1 Evaluation of an Expression in Prefix Form
	13.3.2 C++ Conventions
	13.3.3 C++ Function for Prefix Evaluation
	13.3.4 Evaluation of Postfix Expressions
	13.3.5 Proof of the Program: Counting Stack Entries
	13.3.6 Recursive Evaluation of Postfix Expressions

	13.4 Translation from Infix Form to Polish Form
	13.5 An Interactive Expression Evaluator
	13.5.1 Overall Structure
	13.5.2 Representation of the Data: Class Specifications
	13.5.3 Tokens
	13.5.4 The Lexicon
	13.5.5 Expressions: Token Lists
	13.5.6 Auxiliary Evaluation Functions
	13.5.7 Graphing the Expression: The Class Plot
	13.5.8 A Graphics-Enhanced Plot Class

	References for Further Study

	A Mathematical Methods
	A.1 Sums of Powers of Integers
	A.2 Logarithms
	A.2.1 Definition of Logarithms
	A.2.2 Simple Properties
	A.2.3 Choice of Base
	A.2.4 Natural Logarithms
	A.2.5 Notation
	A.2.6 Change of Base
	A.2.7 Logarithmic Graphs
	A.2.8 Harmonic Numbers
	A.3 Permutations, Combinations, Factorials
	A.3.1 Permutations
	A.3.2 Combinations
	A.3.3 Factorials
	A.4 Fibonacci Numbers
	A.5 Catalan Numbers
	A.5.1 The Main Result
	A.5.2 The Proof by One-to-One Correspondences
	A.5.3 History
	A.5.4 Numerical Results
	References for Further Study

	B Random Numbers
	B.1 Introduction
	B.2 Strategy
	B.3 Program Development
	References for Further Study

	C Packages and Utility Functions
	C.1 Packages and C++ Translation Units
	C.2 Packages in the Text
	C.3 The Utility Package
	C.4 Timing Methods

	D Programming Precepts, Pointers, and Pitfalls
	D.1 Choice of Data Structures and Algorithms
	D.1.1 Stacks
	D.1.2 Lists
	D.1.3 Searching Methods
	D.1.4 Sorting Methods
	D.1.5 Tables
	D.1.6 Binary Trees
	D.1.7 General Trees
	D.1.8 Graphs
	D.2 Recursion
	D.3 Design of Data Structures
	D.4 Algorithm Design and Analysis
	D.5 Programming
	D.6 Programming with Pointer Objects
	D.7 Debugging and Testing
	D.8 Maintenance

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

